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ABSTRACT—Subitizing is the rapid and accurate enumer-

ation of small sets (up to 3–4 items). Although subitizing

has been studied extensively since its first description about

100 years ago, its underlying mechanisms remain debated.

One hypothesis proposes that subitizing results from nu-

merical estimation mechanisms that, according to Weber’s

law, operate with high precision for small numbers. Al-

ternatively, subitizing might rely on a distinct process

dedicated to small numerosities. In this study, we tested

the hypothesis that there is a shared estimation system

for small and large quantities in human adults, using a

masked forced-choice paradigm in which participants

named the numerosity of displays taken from sets matched

for discrimination difficulty; one set ranged from 1 through

8 items, and the other ranged from 10 through 80 items.

Results showed a clear violation of Weber’s law (much

higher precision over numerosities 1–4 than over nu-

merosities 10–40), thus refuting the single-estimation-

system hypothesis and supporting the notion of a dedi-

cated mechanism for apprehending small numerosities.

For about 100 years, the fast, accurate, and seemingly effortless

enumeration of up to three or four items has presented an enigma

to psychologists (for a first account, see Bourdon, 1908). Indeed,

adults’ enumeration of a visual set of items shows a discontinuity

between three or four items and larger numbers. Numerosity

naming is fast and accurate for sets of up to three or four items,

but suddenly becomes slow and error prone beyond this range,

showing a linear increase of about 200 to 400 ms/item (e.g.,

Oyama, Kikuchi, & Ichihara, 1981; Trick & Pylyshyn, 1994).

This dissociation is held to reflect two separate processes in

exact enumeration, subitizing for small numerosities and count-

ing for larger ones.

How subitizing operates remains debated. One view proposes

that subitizing reflects the use of a numerical estimation proce-

dure shared for small and large numbers (Dehaene & Changeux,

1993; Gallistel & Gelman, 1991). It is now well demonstrated that

participants can quickly estimate the approximate quantity of a

large array of dots, without counting. This estimation is subject to

Weber’s law: Judgments become increasingly less precise as

numerosity increases, and their variability increases proportion-

ally to the mean response, such that numerosity discrimination is

determined by the ratio between numbers (Izard & Dehaene,

2008; Whalen, Gallistel, & Gelman, 1999). Weber’s law can be

accounted for by a logarithmic internal number line with fixed

Gaussian noise (Dehaene, 2007)—a hypothesis that we adopt

here for simplicity of exposition, although a similar account can

be obtained with the scalar-variability hypothesis (according to

which noise is proportional to the mean on a linear scale; Gallistel

& Gelman, 1992).

Because Weber’s law implies that the variability in the rep-

resentation of small numbers is low, it has been suggested that

this law may suffice to explain the transition from subitizing to

counting. According to this hypothesis, in an exact-enumeration

task with umlimited duration of stimulus presentation, partici-

pants would first generate a quick estimation, which would

suffice to discriminate a numerosity n from its neighbors n 1 1

and n� 1 when n is small, but would then have to switch to exact

counting when n is larger than 3 or 4 and the estimation process

becomes too imprecise to generate a reliable answer (Dehaene &

Cohen, 1994).

An alternative account postulates a cognitive mechanism ded-

icated to small sets of objects. Studies of numerosity discrimination
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in young infants and animals have suggested the existence of two

different systems for small and large numerosities (for a review,

see Feigenson, Dehaene, & Spelke, 2004). Although babies and

animals show a ratio effect for the discrimination of large nu-

merosities, under some circumstances their performance with

small numerosities (1–4) escapes Weber’s law: They perform

well when the quantities to be compared are smaller than 3 (or 4

for monkeys), but performance falls down to chance level when

one of the numbers is larger than this limit, even if the ratio is

one at which subjects succeed when both quantities are large.

These studies suggest that infants have a distinct system for

small numerosities, and that for larger numerosities, this system

is supplemented by an estimation system similar to that found in

adults. Trick and Pylyshyn (1994) have proposed a similar

distinction for adults: a dedicated mechanism of visual indexing

that operates over small sets of up to three or four objects and a

separate estimation system for larger numbers. According to this

proposal, the parallel tagging process that operates over small

sets is preattentive, occurring at an early stage of visual analysis

during which objects are segregated as individual entities. Be-

cause this process is limited to three or four items, a serial de-

ployment of attention is required to enumerate larger quantities,

as reflected by the onset of counting in an enumeration task.

In summary, two prominent accounts of subitizing have been

proposed: (a) the hypothesis that a single numerical estimation

system is used for both small and large sets and (b) the hy-

pothesis that there is a tracking system dedicated to small sets.

The present experiment was designed to test these two possi-

bilities. We reasoned that if subitizing relies on numerical es-

timation, performance should be similar in a naming task with

numerosities 1 through 8 and in the same task with decade

quantities 10 through 80. If Weber’s law is all that matters, these

numerosities should be strictly matched for discrimination

difficulty (same ratio between 1 and 2 as between 10 and 20,

etc.; see Fig. 1). Therefore, once participants are trained with

using only decade numbers, the disproportionately higher pre-

cision expected over the range from 1 through 4 should also be

seen in the range from 10 through 40: One should see ‘‘subiti-

zing’’ even for large numbers as long as they are sufficiently

discriminable. If this were not the case, it would clearly indicate

that Weber’s law does not suffice to account for subitizing,

and that a distinct process must be at play with numerosities 1

through 4.

We further reasoned that if subitizing arises from approximate

estimation, its range should be determined by participants’ ca-

pacity for numerosity discrimination (as measured in a large-

number comparison task). Specifically, participants with better

discrimination capacities should be more precise in both nam-

ing tasks, and in particular should have a larger subitizing range.

Our paradigm was designed so that conditions were identical

for the two naming tasks. To prevent counting, subgrouping, or

arithmetic-based strategies, we masked stimuli and required

participants to respond within a short delay. It is important to

note that we calibrated participants, as participants spontane-

ously underestimate large quantities, but can be trained to label

them accurately (Izard & Dehaene, 2008). To reinforce this

calibration process, we gave feedback at the end of each trial.

Finally, because naming small quantities is a much more fa-

miliar task than naming decades, participants were trained in-

tensively.

METHOD

Participants

Eighteen right-handed participants (8 men, 10 women; mean

age 5 24.9 years, range 5 18–38) with no history of neuro-

logical or psychiatric disease, and normal or corrected-to-nor-

mal vision, gave written informed consent.

1

10 20 30 40 50 6070 80

2 3 4 5 6 7 8

log(1)

log(10) log(50)

log(5)

Fig. 1. The log number-line model of performance in the naming tasks.
Numerosities are first encoded on an internal continuum, the mental
number line, which, in this model, is compressed (so that numerosity 1 is
represented by log(1), etc.; see x-axis). The model assumes that each
numerosity is encoded by a fluctuating representation, that is, a random
variable that is distributed according to a Gaussian distribution with fixed
variability. In the figure, solid lines highlight the distributions corre-
sponding to numerosities 1, 5, and 8 (top panel) and 10, 50, and 80
(bottom panel). The distributions for other numerosities are represented
with dotted lines. The internal representation of numerosity is translated
into a verbal number word by means of a response grid: The number line
is divided into segments, each corresponding to a different verbal label
(see the labels above the distributions). This figure depicts an optimal
response grid, in which the response criterion marking the boundary
between two adjacent response labels is optimally placed where the two
underlying distribution curves meet. According to this model, numero-
sities 1 through 8 (top panel) do not differ from decades 10 through
80 (bottom panel) in discrimination difficulty, so naming performance
should be equivalent for these two sets. Specifically, naming should be
almost flawless over the first numerosities in each set (because there is
little underlying representation overlap) and become progressively less
precise for larger numerosities (because of the increase in overlap).
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Tasks and Procedure

Tasks were programmed using E-Prime software (Schneider,

Eschman, & Zuccolotto, 2002) and administered on a portable

computer at a viewing distance of 57 cm. Participants performed

a comparison task and two naming tasks.

Dots Comparison Task

In this task, participants were presented with two dot arrays and

judged as accurately and as quickly as possible which one

contained more dots. On each trial, one array contained a fixed

numerosity (16 for half the trials, 32 for the other half), and the

other array (varying numerosity) contained a numerosity that was

smaller or larger than the fixed numerosity by one of four pos-

sible ratios: 1.06, 1.13, 1.24, or 1.33. Thus, comparison diffi-

culty was manipulated (the smaller the ratio, the harder the

comparison). The two fixed numerosities and four ratios were

presented in random order across blocks. Participants re-

sponded by pressing the mouse button on the same side as the

larger array (using their left or right index fingers). The dots,

present on the screen until participants responded, were black,

and the two arrays appeared in two white discs on either side of a

central white fixation spot (after a delay of 1,400 ms); the

background of the display was black. On half the trials, dot

size of the varying-numerosity array was held constant, and on

the other half, the size of the area occupied by the varying-

numerosity array was held constant; in the fixed-numerosity

arrays, these parameters were varied simultaneously. This de-

sign was adopted to prevent participants from basing their

performance on these nonnumerical parameters (see Dehaene,

Izard, & Piazza, 2005, for a more detailed description of the logic

behind such manipulations). Participants performed 16 training

trials with accuracy feedback and then performed a total of 128

experimental trials (32 trials per ratio).

Numerosity Naming Tasks

Participants performed two naming tasks, one with numerosities

1 through 8 (the 1–8 task) and one with decade numerosities 10

through 80 (the 10–80 task). Both tasks were administered in

each of two sessions. The tasks order was counterbalanced

across sessions and participants.

The procedure was identical for the two naming tasks. Par-

ticipants were explicitly informed which task was coming next

and which quantities could appear during the task. They were

instructed to name the number of dots as accurately and quickly

as possible, within 1 s (otherwise the trial would be discarded).

They were first calibrated by viewing 16 examples of the stimuli,

which consisted of random patterns of dots. In order to make sure

that participants’ estimation was based on numerosity and not on

other continuous parameters, we kept dot density constant in

half the calibration and test stimuli and kept dot size constant in

the other half. During calibration, examples and correct answers

were presented for up to 10 s, according to the participant’s

need.

Test trials began with a central cross, which flashed twice to

announce the arrival of the dots; the dots were followed by a

flicker mask and finally a black screen (see Fig. 2). Participants
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Fig. 2. The naming tasks. In the 1–8 naming task (a), after a fixation cross flashed twice, participants were shown a group of 1 to 8 dots, followed by a
mask; the task was to name the presented numerosity as quickly as possible using the labels ‘‘1’’ through ‘‘8.’’ In the 10–80 naming task (b), the procedure
was identical except that only numerosities 10 through 80 were presented, and participants used only decade names (i.e., ‘‘10’’–‘‘80’’) as labels.

Volume 19—Number 6 609

S.K. Revkin et al.



responded using a microphone. Responses given within 1 s were

entered by the experimenter using the keyboard, and partici-

pants then received feedback (the correct response was dis-

played if the response had been incorrect). If response time

exceeded 1 s, a slide that encouraged faster responses and

showed the correct answer was displayed. Each block consisted

of 16 calibration trials followed by 40 experimental trials pre-

senting each numerosity five times, in random order. Partici-

pants performed four blocks of each test in each session, for a

total of eight blocks (320 trials, 40 presentations of each nu-

merosity) over the two sessions. The first two blocks of each test

in each session were discarded as training, and analysis was

therefore limited to a maximum of 160 trials per test (20 trials of

each numerosity per test, or less if the participant responded too

slowly on some trials).

For analysis, the error rate, mean response time (RT), mean

response, and variation coefficient (VC; standard deviation of

response divided by mean response) were calculated for each

numerosity and each participant. Scalar variability and Weber’s

law are reflected by a stable VC across numerosities (Izard &

Dehaene, 2008; Whalen et al., 1999), and the VC thus gives an

indication of the overall precision of the underlying numerical

representation (Izard & Dehaene, 2008).

RESULTS

Dots Comparison Task

Accuracy on the dots comparison task was used to estimate the

internal Weber fraction (w), a measure of the precision of un-

derlying numerical representation, for each participant, using a

method previously described (the ‘‘maximum-likelihood deci-

sion model’’ described in the Supplemental Data from Piazza,

Izard, Pinel, Le Bihan, & Dehaene, 2004). This method basi-

cally estimates the standard deviation of the theoretical

Gaussian distribution that determines the precision of the in-

ternal numerosity representation on a log scale (see Fig. 1).

Mean w across participants was 0.18 (SD 5 0.06, Mdn 5 0.16).

Participants were divided by median split into two discrimina-

tion-precision groups: low (w> 0.16; 7 participants) and high (w

� 0.16; 11 participants). The two groups did not differ on overall

RT, t(16) 5 1.50, p 5 .15.

Numerosity Naming Tasks

Few numerosity trials were excluded because of excessive RTs

(1–8 task: M 5 3.44, SD 5 2.31; 10–80 task: M 5 6.78, SD 5

3.95). For each task, preliminary analyses of variance (ANO-

VAs) showed that the order of the task, session number, and

nonnumerical continuous parameter held constant did not have

significant effects on error rates, RTs, and VCs; data were

therefore collapsed across these factors. The data were then

analyzed in a 2 (numerosity range: 1–8 vs. 10–80) � 2 (dis-

crimination-precision group: low vs. high)� 8 (rank order of the

numerosity: from 1, for 1 or 10, up through 8, for 8 or 80)

ANOVA.

Error Rate

The error rate was significantly lower in the range from 1 through

8 (M 5 21%, SD 5 7%) than in the range from 10 through 80

(M 5 51%, SD 5 6%), F(1, 256) 5 518.32, p < .01, and was

also lower for participants in the high-precision group (M 5

32%, SD 5 4%) compared with those in the low-precision group

(M 5 39%, SD 5 2%), F(1, 256) 5 30.06, p < .01; there was

also a significant effect of rank order, F(7, 256) 5 104.49, p <

.01, the error rate being lower for smaller numerosities within

each range.

Crucially, the interaction between range and rank order was

highly significant, F(7, 256) 5 32.64, p< .01, thus violating the

prediction of a similar influence of rank order across the two

ranges, as derived from Weber’s law. In the range from 1 through

8, the error rate was essentially zero for numerosities 1 through

4, and began to rise steeply beginning with numerosity 5 (see

Fig. 3a). By contrast, in the range from 10 through 80, errors

were frequent even for numerosities 20 and 30 (see Fig. 3b).

The group factor interacted significantly with rank order, F(7,

256) 5 3.65, p< .01, as the lower error rate for participants with

high precision in numerical comparison was particularly evi-

dent for ranks 6 through 8. The triple interaction was also sig-

nificant, F(7, 256) 5 4.17, p < .01; participants with high

precision made fewer errors than those with low precision for

most numerosities in the large-numerosity task, but only for

numerosities 5 through 7 in the small-numerosity task. The

groups did not differ for numerosities 1 through 4.

Response Times

RTs revealed a main effect of range, F(1, 256) 5 517.40, p <

.01, being faster in the range from 1 through 8 (M 5 588 ms,

SD 5 32 ms) than in the range from 10 through 80 (M 5 737 ms,

SD 5 44 ms). Participants with high discrimination precision

were slightly slower (M 5 672 ms, SD 5 30 ms) than those with

low precision (M 5 655 ms, SD 5 41 ms), F(1, 256) 5 8.09, p<

.01. There was also a main effect of rank order, F(7, 256) 5

31.36, p < .01; RTs increased from rank 1 through rank 5 and

then stabilized. Crucially, an interaction of range and rank order,

F(7, 256) 5 27.14, p< .01, again showed differential processing

of the small numbers 1 through 4, which were processed with

much faster RTs than either 5 through 8 or 10 through 80 (see

Figs. 3c and 3d). This result again shows a distinct pattern of

processing within the subitizing range, contrary to predictions

derived from Weber’s law.

Finally, range also interacted with group, F(1, 256) 5 9.03,

p< .01, as participants with high precision were slightly slower

than those with low precision in the 10–80 task only (M 5 751 ms,

SD 5 36 ms, vs. M 5 715, SD 5 48 ms). All other effects were

nonsignificant.
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In sum, we again found clear differences between the two

ranges, participants being much faster in the 1–8 task than in the

10–80 task and showing a subitizing effect only over the nu-

merosities 1 through 4. Also, discrimination precision influ-

enced performance only in the 10–80 task, which suggests that

variability in the range from 1 through 8 was governed by

principles other than large-number estimation accuracy.

Mean Response and Variation Coefficient

In both number ranges, mean response was quite close to the

correct one, and variability in responses increased as numero-

sity increased, a signature of estimation processes (see Figs. 3e

and 3f). However, a clear broadening of the response range

appeared already at numerosity 20 in the 10–80 task, whereas

a comparable broadening did not appear until much later (nu-

merosity 5) in the 1–8 task.

To validate these observations statistically, we estimated

mean response and standard deviation of responses by fitting the

cumulative response distribution for each numerosity and each

participant with the cumulative of a Gaussian distribution

function. Fit was overall excellent for both the 1–8 task1 (R2:

M 5 1.00, SD 5 0.00) and the 10–80 task (R2: M 5 .99, SD 5

.006), except in the case of extreme numerosities, which

sometimes showed anchoring effects (very little response vari-

ability). Extreme numerosities were therefore excluded from the

VC analyses for both ranges, and VCs were analyzed in a 2

(range)� 2 (group)� 6 (rank order of the numerosity) ANOVA.

There was a main effect of range, F(1, 192) 5 636.25, p< .01,

VC being much lower in the 1–8 task (M 5 0.05, SD 5 0.02)

than in the 10–80 task (M 5 0.23, SD 5 0.04). There was a trend

toward a main effect of rank order, F(5, 192) 5 2.31, p 5 .05, VC

being lower for the extreme numerosities, presumably because

of a remaining anchoring effect. Crucially, an interaction be-

tween range and rank order was again observed, F(5, 192) 5

26.52, p < .01; VC was dramatically lower in the range from 1

through 4 compared with the range from 5 through 8, but no such

effect was seen for 10 through 40 versus 50 through 80 (Figs. 3g

and 3h).

A main effect of group, F(1, 192) 5 25.45, p< .01, indicated

that participants with high precision had lower VCs (M 5 0.13,

SD 5 0.03) than participants with low precision (M 5 0.16, SD

5 0.02). No group-by-range interaction or triple interaction was

found; however, participants with higher precision had a lower

mean VC over numerosities 20 through 70, t(16) 5 �2.27, p <

.05, and over numerosities 5 through 7, t(16) 5�4.62, p< .01,

but not over numerosities 2 through 4, t(16) 5 �0.74, p 5 .47

(see Fig. 4).

In summary, responses showed an abrupt increase in vari-

ability between numerosities 4 and 5, a result not expected from

a purely Weberian estimation process. No such discontinuity

was found in the range from 10 through 80. Also, participants

with higher discrimination precision had lower VCs, particu-

larly in the 10–80 task and outside the subitizing range in the 1–

8 task.

Predictors of Subitizing Range and Response Precision

We conducted correlation analyses to explore further the links

between different measures of response precision. First, we

determined a subitizing range for each participant using the data

from the 1–8 task. The subitizing range was estimated by fitting

the full RT curve (excluding numerosity 8) with a sigmoid
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Fig. 3. Results of the two naming tasks: the 1–8 task (left) and the 10–80
task (right). From top to bottom, the graphs show the percentage of errors
(a, b), response time (c, d), mean response (e, f), and variation coefficient
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1Most participants showed no variability in response for numerosities 1
through 4, and the VC was null without fitting response distributions in these
cases.
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function of numerosity and taking the inflexion point of that

curve (1 outlier participant was excluded). Data fit was excellent

(mean R2 5 .91, SD 5 .12). This analysis yielded a mean

subitizing range of 4.38 (SD 5 0.25). If subitizing is due to a

single process of estimation used for small and large numbers,

subitizing range, Weber fraction in numerosity comparison, and

precision of numerosity naming should be tightly correlated.

Contrary to this prediction, subitizing range was unrelated to w,

the discrimination parameter (r 5 �.03), and was unrelated to

VC for numerosities 2 through 7 (r 5 �.08) and 20 through 70

(r 5 �.31). However, VC for numerosities 20 through 70 was

more strongly correlated with VC for numerosities 5 through

7 than with VC for numerosities 2 through 4 (rs 5 .78 and .52,

respectively).

DISCUSSION AND CONCLUSIONS

In conflict with Weber’s law, but in agreement with the hypoth-

esis that there is a mechanism dedicated to processing small

numbers, various measures revealed a disproportionate preci-

sion in the range of numerosities 1 through 4. The VC ap-

proached zero for these numerosities, indicating null or very

little variability in response, errors being exceedingly rare in

this range. In contrast, there was no clear advantage for nu-

merosities 10 through 40 in the 10–80 task. In particular, the VC

for 10 through 40 was high, as errors were frequent and re-

sponse variability was large.

Analyses of interindividual variability confirmed the special

status of the subitizing range. Compared with participants with

low discrimination precision for large numerosities, those with

high precision made fewer errors over most numerosities in the

10–80 task and outside the subitizing range in the 1–8 task and

were overall more precise. However, the subitizing range did not

correlate either with discrimination precision or with naming

precision.

In sum, the clear performance differences between the two

naming ranges, the unique advantage for numerosities in the

subitizing range, and the absence of a correlation between

subitizing and large-number performance strongly suggest that

there is a separate system dedicated to small numerosities (1–4),

and go against the hypothesis that subitizing is estimation at a

high level of precision (Dehaene & Changeux, 1993; Gallistel &

Gelman, 1991). Our results are in line with those of studies of

young infants and animals, which provide evidence for a sepa-

rate mechanism of apprehension of small quantities in these

populations (for a review, see Feigenson et al., 2004).

Our study also allowed us to investigate the link between

numerosity comparison and numerosity naming. According to

the log number-line model (Dehaene & Changeux, 1993; Izard &

Dehaene, 2008; see Fig. 1), a single parameter, the internal

Weber fraction, should directly predict both abilities. Our data

support this hypothesis, as participants with higher discrimi-

nation precision were also more precise in naming. Those results

are in line with a recent mathematical theory that shows how

performance and RT curves in those classical numerical tasks

can be derived from first principles based on the log number-line

hypothesis (Dehaene, 2007).

Our data contrast with those of Cordes, Gelman, Gallistel, and

Whalen (2001), who found no difference between the VCs within

and outside the subitizing range and therefore argued for con-

tinuous representation of small and large numerosities. Al-

though our data suggest the existence of a distinct, exact system

for small numerosities, it is possible that such a system coexists

with an approximate system for small numerosities, but that the
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system used in a given case depends on task conditions. In the

study by Cordes et al. (2001), stimuli were Arabic numerals, and

responses were fast nonverbal tapping. Perhaps there is a sep-

arate system for the apprehension of small numerosities that

predominates in cases in which nonsymbolic visual stimuli,

such as dots, are presented simultaneously as a set.

It is important to note that for both naming tasks, participants

were intensively trained and received regular feedback to

counter a possible effect of familiarity with naming smaller

numerosities. Although one could object that this training was

still insufficient, the clear discontinuity between numerosities 1

through 4 and 5 through 8 would still need to be explained. Such

a discontinuity is perhaps not surprising in RTs in a classical

subitizing task (unlimited duration of stimulus presentation),

because participants are thought to switch strategies and start

counting at about 4 or 5 items (Piazza, Giacomini, Le Bihan, &

Dehaene, 2003). However, in our study, the masking and narrow

window for response prevented participants from counting, and,

indeed, RTs showed no serial increase in either the subitizing

range (1–4) or the counting range (5–8). Because counting was

prevented, proponents of the subitizing-as-estimation hypothe-

sis would have to argue that the entire curve over the range from

1 through 8 was due to numerosity estimation—yet the results

clearly indicate that estimation was dramatically more precise

from 1 through 4 than from 5 through 8, in disagreement with a

system obeying Weber’s law. Simulations by current models

of numerosity estimation, such as Dehaene and Changeux’s

(1993) or Verguts and Fias’s (2004) model, produce perfor-

mance that obeys Weber’s law even in the small-number range,

and are thus unable to account for the present data with a single

process.

Our results also showed slightly better performance over

numerosities 5 through 8 than over numerosities 10 through 80

(see Fig. 3), which is not expected if subjects used only esti-

mation over both these ranges. However, it is possible that this

pattern reflects use of a strategy of coupling subitizing with es-

timation in the range from 5 through 8. Subjects might have

subitized subgroups of the stimuli in addition to estimating the

remaining quantity of dots, a strategy that was not applicable in

the 10–80 task.

Our results clearly suggest that subitizing is not linked to

discrimination difficulty as determined by Weber’s law. How-

ever, one could argue that a single process of discrimination

underlies subitizing and estimation, but that Weber’s law does

not hold for small numbers up to 3 or 4, for which the Weber

fraction would be much smaller. For instance, it could be sug-

gested that in the small-number range, variables other than the

ratio between stimuli (possibly variables relating to spatial ar-

rangement or to other perceptual factors) boost number

discriminability. Such a postulate may salvage the hypothesis

that a single process of discrimination underlies subitizing and

estimation, but it essentially amounts to postulating that small

numerosities receive a special treatment within the estimation

system—a proposal that seems hard to separate from the original

subitizing hypothesis.

In conclusion, although our study provides evidence against

estimation as the underlying mechanism of subitizing, the

question remains open as to whether subitizing relies on a

domain-specific numerical process or on a domain-general

cognitive process. One hundred years after the discovery of

subitizing, its mechanisms remain as mysterious as ever—but it

is now clear that they are not based on a Weberian estimation

process.
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