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One-sentence summary: 

A Euclidean approach to the analysis of fMRI data reveals that category-specific neural 

activation patterns are significantly more reproducible for seen versus unseen objects. 

 

Abstract 

What qualifies a neural representation for a role in subjective experience? Previous evidence 

suggests that the duration and intensity of the neural response to a sensory stimulus are factors. 

We introduce another attribute – the reproducibility of a pattern of neural activity across different 

episodes – that predicts specific and measurable differences between conscious and non-

conscious neural representations indepedently of duration and intensity. We found that conscious 

neural activation patterns are relatively reproducible when compared to non-conscious neural 

activation patterns corresponding to the same perceptual content. This is not adequately 

explained by a difference in signal-to-noise ratio. 
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Though once controversial, it is now widely accepted that sensory-perceptual information can be 

processed by the brain, even at the semantic level, without that information “reaching” or 

“entering” awareness (1-3). But what does it mean for neural information to “reach” awareness? 

Once the information has been encoded in neural activity, what else has to happen for it to 

become part of one’s subjective reality? A growing body of evidence suggests that the intensity 

of activation in areas that encode the contents of perception (e.g. ventral-temporal cortex) is one 

determinant of whether or not that information contributes directly to subjective experience (4-

7). However, local enhancement of a cortical sensory signal is also associated with attention (8), 

which can be independent of awareness (9-11). Therefore, there may be additional features other 

than the intensity of neural activity that distinguish conscious from non-conscious neural 

information.  

 

Kinsbourne (12) proposes three interacting properties that collectively determine whether or not 

a neural representation will contribute directly to subjective experience: (a) the duration and (b) 

the intensity of a pattern of activity, and (c) the coherence of that pattern of activity with the 

dominant “configuration” of neural activity at the global level.  Here we propose that another 

attribute of neural activity patterns — reproducibility — characterizes conscious representations.  

We define reproducibility as the similarity of patterns of neural activity across different instances 

of the same percept. We focus specifically on reproducibility because it is measurable, and 

therefore empirically testable.  A corollary of our proposal that conscious representations are 

more reproducible is that unconscious representations are more variable, even as they may carry 

information within a given episode.  
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We used functional magnetic resonance imaging (fMRI) to measure brain activity while subjects 

performed a simple visual category-discrimination task (N = 12 subjects (13)). Stimuli were 

simple line drawings of faces and houses (12 of each), rendered in two opposing but isoluminant 

colors (Fig. 1 and SOM). Visibility of the stimuli was manipulated using dichoptic color masking 

(DCM; (7) and Fig. 1). Subjects were asked to identify the category of the stimulus (face or 

house) on each trial, guessing if necessary, and also to wager (“high” or “low”, for monetary 

rewards) on the accuracy of each of their perceptual decisions (14 – 16). Wagering was used as a 

collateral index of subjects’ awareness of the object. 

 

For visible stimuli, performance was at or near 100% correct for all 12 subjects and all wagers 

were “high”.  For invisible stimuli, task performance was only marginally different from chance 

(54 +/- 2.5[SEM] % correct; p < 0.06, one-tailed), and sensitivity of high wagers to correct 

responses (wagering d-prime, or d’; see SOM) was not different from zero (mean d’ = 0.015 +/- 

0.11[SEM]; p = 0.45, one-tailed). For invisible stimuli, wagering d’ and overall willingness to 

place high wagers were not significantly correlated across subjects (r = 0.33, p > 0.30, n = 12). 

This reassures against the possibility that wagering d’ was artificially low due to an interaction 

with a wagering bias (16). The proportion of high wagers (for invisible stimuli) was similar for 

faces and houses (0.20 and 0.19, respectively). 

 

Subjects were always aware of a visual event - a yellowish flickering square - and this provoked 

significant activation in and of itself. What varied was subjects' awareness of an object 

embedded in the square. We used multivariate pattern analysis to ascertain how the encoding of 

perceptual information differs depending upon whether or not that information is present in 
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subjective experience (17). Thus, in our analyses we focused specifically on the patterns of 

activation corresponding to the perceptual information of which the subject was or was not aware 

– the category of the object. 

 

To verify the neural representation of category-specific information for both visible and invisible 

stimuli, we attempted to discriminate the category of the stimulus (faces versus houses) based on 

the spatial pattern of neural activity in the temporal lobes (derived statistically from each run of 

functional data (13)). We did this independently for the visible and invisible stimuli, using a 

Gaussian Naïve Bayes classifier (18). We focused our analyses on the temporal lobes, because 

these are widely viewed as being critical for high level perceptual representation of visual 

information (19).  Mean accuracy of the classifier (% correct averaged across 12 subjects) was 

significantly different from chance (50%) for both visible (63% correct; t = 3.82, p < 0.002) and 

invisible (58% correct; t = 2.53, p < 0.02) stimuli (see table 1). The difference in accuracy for 

visible versus invisible stimuli was not significant (p < 0.2, one-tailed paired-samples t-test). It 

might be expected that as long as the classifier performed above chance on both types of stimuli 

then it would also perform well when trained on one type and tested on the other (20). However, 

this was not the case for these stimuli (table 1). 

 

Each round of training/testing of the classifier involved a dimensionality-reduction step, wherein 

we determined which voxels (features) varied most consistently as a function of stimulus 

category (feature selection) separately for visible and invisible stimuli (13). Training / testing of 

the classifier was then performed on these smaller feature spaces (“selections”). Our approach 

involved examining the patterns of activity within these selections of voxels, on the assumption 
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that these would reveal properties of information encoding under conditions of conscious and 

non-conscious perception.  

 

Activation patterns 

 

Treating patterns of activation as vectors allows us to test hypotheses about the properties of 

neural information, independently of specific loci and their level of activity. The angle between 

two activation vectors reflects differences in the contents of perception, while the norm of each 

vector corresponds to the intensity of the information being encoded. We can then define 

reproducibility as the similarity in the pattern of activity across different instances of the same 

stimulus category, among voxels that carry relevant information. This can be measured by 

computing the trial-to-trial variability of the vector angle in the space of the voxels selected as 

informative for classification.  

 

We predicted that activation vectors associated with conscious perception (i.e. visible stimuli) 

would exhibit less trial-to-trial variability in their angle than those associated with non-conscious 

perception (reflecting greater reproducibility), without necessarily any difference in the norm 

(i.e. intensity). To assess the reproducibility of representations, we measured the variability in 

the angle between pairs of vectors (both from the same run and same stimulus category), as well 

as the norm of each vector, separately for visible and invisible stimuli (13, 21). We repeated this 

in both the “visible” and the “invisible” selections (22). This resulted in four sets of data: 

responses to visible and invisible stimuli in the “visible” selection, and responses to visible and 

invisible stimuli in the “invisible” selection. To avoid confounds likely to arise from comparing 
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properties of vectors in different subsets of voxels (and hence different regions of cortex), we 

restricted our comparisons to vectors within the same selection (23). We used the mean within-

category within-run angular deviation as an index of reproducibility. 

 

Figure 2B shows that, within the “invisible” selection, the variability of the vector angle (dVA) 

is significantly less for visible than for invisible stimuli (p < 0.01, paired-samples two-sided 

signed rank test). There was no difference in dVA between visible and invisible stimuli in the 

“visible” selection (Fig. 2A), suggesting that the variability is found primarily in the subset of 

voxels that carry non-conscious information, and that this subset is distinct from that within 

which conscious information is found (for this particular combination of stimuli and task). This 

is consistent with the failure of the classifier to generalize across the two levels of visibility. 

When dVA for the “invisible” selection was compared with the baseline level 4 seconds prior 

(i.e. at the time of stimulus onset), there was a significant interaction (p = 0.021, two-sided 

signed rank test on the deviation from baseline): dVA is below baseline in response to visible 

stimuli and is higher than baseline in response to invisible stimuli (Fig. 2B). There was no 

difference in the mean or variance of the vector norm for visible versus invisible stimuli, either 

in the “visible” or “invisible” selection (Fig. 2C & D; means: p > 0.35, paired-samples two-sided 

signed rank test; variances: p > 0.7, Levene’s test). Thus a difference in signal to noise ratio is 

not sufficient to explain the effect. 

 

Since measurable category-specific information had been identified separately for both visible 

and invisible stimuli, we examined where in the brain the information tended to coalesce in each 

case (Fig. 3). For any given subject, reliably informative voxels could be found throughout the 
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temporal lobes (Fig. 3A). Averaging across subjects (24) revealed two clusters in the right 

ventral temporal cortex, one for visible and the other for invisible stimuli, with minimal spatial 

overlap, consistent with the failure of the classifier trained on one type of stimulus to generalize 

to the other (Fig. 3B, C). The anterior-posterior relationship of the two clusters (“visible” and 

“invisible” selections, respectively) coincides with previous observations (25). 

 

Conscious and non-conscious neural activation patterns coexist within the cerebral cortex, side 

by side at the same time, but presumably they differ in several ways. Proposed differences 

include duration, intensity, and coherence. Here we show that they also differ in their relative 

reproducibility across presentations of similar stimuli. Why might reproducibility distinguish 

conscious from non-conscious representations? One possibility is that conscious information is 

represented in a more discrete form (26), making it more durable and robust, but also more 

stereotypical (and therefore more reproducible). Another possibility is that conscious information 

manifests itself in relatively stable neural firing patterns, corresponding to the “settled” states of 

recurrent network interactions (27). There are a number of plausible theories regarding the neural 

correlates of consciousness, but relatively little data concerning the nature of conscious versus 

non-conscious encoding. Further work is required to understand the difference(s) in the way 

perceptual information is encoded in the brain depending on whether or not that information is 

present in subjective experience.  Such work is likely to have profound importance in a variety of 

arenas, including the assessment of consciousness under presumed anaesthesia or coma and the 

investigation of brain function in conditions such as schizophrenia, autism, and dissociation 

disorders.  
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Tables 

 

 TEST  

 VISIBLE INVISIBLE 
VISIBLE 63 +/- 3.5 

t=3.8, p<0.002* 
48 +/- 2.3 

t=-0.78, p=0.77 

TR
A

IN
 

INVISIBLE 52 +/- 3.0 
t=0.69, p=0.25 

58 +/- 3.1 
t=2.5, p<0.02* 

 
 

Table 1: Performance of a Gaussian naïve-Bayes classifier 
 
The objective of the classifier was to discriminate the category of the stimulus based on the 
pattern of beta weights (a GLM was applied separately to each run of functional data, see 
SOM). A voxel-wise ANOVA and nested cross-validation (18) were used for dimensionality 
reduction on each round of training/testing. For within-condition classification (i.e. visible-visible, 
invisible-invisible) a leave-one-run-out cross-validation was performed. For between-condition 
classification we trained on all the data from one condition and tested on the other, and vice-
versa. All t-tests are one-tailed with df = 11.
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Figures legends 

 

 

Fig. 1: Dichoptic-color masking 
 
This method of manipulating awareness, originally devised by (7), relies on the phenomenon of 
dichoptic color fusion. The “same color” mode corresponds to the “visible” condition and the 
“opposite color” mode corresponds to the “invisible” condition. In order to achieve 
disappearance of the image in the “opposite color” mode, the two colors must be approximately 
isoluminant and the object boundaries slightly blurred. Before the experiment, subjects were 
trained to maintain steady fixation, and were cued to do so during each trial with the appearance 
of the fixation point (500ms before stimulus onset). Stimuli were presented stereoscopically in 
the fMRI scanner using a cardboard divider and prism lenses (28). 
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Fig. 2: Variability in the angle of activation vectors in the “visible” and “invisible” selections (A, 
B), and mean vector norm (C, D). 
 
In both A and B, t0 corresponds to the TR (repetition time = 2 sec) on which the stimulus was 
presented, before the haemodynamic response had begun to rise. t2 corresponds to 2 TR’s (4 
seconds) after the stimulus was presented, at the (approximate) peak of the haemodynamic 
response. N = 12 subjects. This analysis was performed using a leave-one-run-out procedure: 
voxel selection was performed on data from n-1 runs, and the norm and angular deviation were 
computed on data from the run that had been left out (see SOM). Comparisons between the two 
selections (A versus B or C versus D) are not valid (23). 
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Fig. 3: Spatial distribution of informative voxels 
 
A and B show voxels that were selected as informative for classification (face versus house) on 6 
or more (out of 12) runs, for a subject with comparable classification accuracy (72% correct) for 
visible and invisible stimuli. C and D show the mean across subjects (24) projected onto the 
AFNI TT_N27 template brain (right hemisphere) at a statistical threshold of p < 0.05 
(corrected). The oblique white line serves as a visual landmark. The cluster in C encompasses a 
portion of the fusiform and parahippocampal gyri, in the area of the fusiform face area (FFA) and 
parahippocampal place area (PPA). The cluster in D lies along the posterior fusiform gyrus.
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