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The aim of group fMRI studies is to relate contrasts of tasks or stimuli to
regional brain activity increases. These studies typically involve 10 to 16
subjects. The average regional activity statistical significance is assessed
using the subject to subject variability of the effect (random effects
analyses). Because of the relatively small number of subjects included,
the sensitivity and reliability of these analyses is questionable and hard to
investigate. In this work, we use a very large number of subject (more
than 80) to investigate this issue. We take advantage of this large cohort
to study the statistical properties of the inter-subject activity and focus
on the notion of reproducibility by bootstrapping. We asked simple but
important methodological questions: Is there, from the point of view of
reliability, an optimal statistical threshold for activity maps?Howmany
subjects should be included in group studies? What method should be
preferred for inference? Our results suggest that i) optimal thresholds
can indeed be found, and are rather lower than usual corrected for
multiple comparison thresholds, ii) 20 subjects or more should be
included in functional neuroimaging studies in order to have sufficient
reliability, iii) non-parametric significance assessment should be
preferred to parametric methods, iv) cluster-level thresholding is more
reliable than voxel-based thresholding, and v) mixed effects tests are
much more reliable than random effects tests. Moreover, our study
shows that inter-subject variability plays a prominent role in the
relatively low sensitivity and reliability of group studies.
© 2006 Elsevier Inc. All rights reserved.

Introduction

Inter-subject variability in neuroimaging and its impact on group
analyses

One of the key characteristics of fMRI data is their large inter-
subject variability compared to the generally lower intra-subject
⁎ Corresponding author.
E-mail address: thirion@shfj.cea.fr (B. Thirion).
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2006.11.054
variability (see, amongst others, Wei et al., 2004). This high degree
of variability impacts dramatically the sensitivity of random effects
studies often performed with 10–16 subjects, and much effort is
therefore spent to obtain statistically significant results by
improving the spatial normalization procedures or the statistical
tests while controlling for false positives.

The between subject variability is caused by a mixture of
random and deterministic or structured factors that are not easily
studied. We briefly summarize those.

• Spatial mismatch between subjects cortical structures. It is
known that perfect correspondences between two anatomical
images cannot be achieved, and that correspondences should
generally be considered as approximate, even after rigid or non-
rigid spatial normalization. The magnitude order of such local
shifts is probably as large as 1 cm in many brain regions (this can
be observed for functional regions like the motor cortex or the
visual areas (Thirion et al., 2006a; Stiers et al., 2006) or the
position of anatomical landmarks (Collins et al., 1998; Hellier et
al., 2003). Across subjects, this effect typically yields a
structured but variable pattern.

• The activation magnitude recorded at the same location for
several tasks is variable across subjects, and sometimes across
sessions (Smith et al., 2005), and the precise nature of this
variability is not clear. Part of this variability may be related to
physiological fluctuations, motion, resting-state activity (Fox et
al., 2006), and more generally, what is usually called structured
noise (Lund et al., 2006). It should be recalled that fMRI is not a
quantitative neuroimaging modality, and that the standard use of
reporting percent of signal increase is also problematic, due to
the ambiguous definition (voxel-based or global average) of the
baseline reference.

• Finally, there could be global differences in the brain networks
elicited by a given task or experimental condition, related to
genetic or epigenetic differences between subjects, or to
different cognitive strategies (for non-trivial tasks). This is of
course an interesting phenomenon to be studied, but clearly
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difficult to demonstrate and to account for in standard studies
given the subject sample size.

While this is only a superficial account of the possible sources
of variability across subjects, it is important to note that all these
effects are equally treated as confounds and globally modelled as
the second-level variability (Friston et al., 2002) terms in current
random effects analyses. Note also that the intra-subject variability
across scanning sessions is not generally measured, but is generally
less than inter-subject variability (Wei et al., 2004).

Because of this (generally) large inter-subject variance compared
with the relatively small increase of Blood Oxygen Level Dependent
(BOLD) activity, voxel-based random effects analyses that assess
the significance of an effect by comparing its mean value to its
variability across subjects are typically not sensitive (Friston et al.,
1999; McNamee and Lazar, 2004). Several factors have a direct
influence on the sensitivity for a given effect size. First, the quality of
the model, including preprocessing, choice of noise and signal
model, amount of smoothing performed etc. Second, the power of
the statistical test chosen for detection (local maxima, cluster size,
combination of the two, parametric or non-parametric testing etc).
Third, the number of subjects included in the study. Vast differences
in sensitivity can be observed depending on those parameters. In
particular, Desmond and Glover (2002) report that about 25 subjects
are necessary to achieve 80% power for a 0.5% increase of activity
(based on the variability measured on a group of 12). Note that
groups are often half this size. We illustrate this issue in Fig. 1 with
Fig. 1. Illustration of the low sensitivity andweak reliability of supra-threshold
patterns in standard group studies. (a) For a functional contrast that shows
regions involved in a computation task, we showactivitymaps thresholded at a
p<0.001 level, uncorrected for multiple comparisons, after a random effect
analysis on 6 disjoint groups of 13 subjects; the position of the view is
z=37 mm in the MNI normalized space. (b) In the same plane, we present the
same map computed from all the subjects combined. Note the low sensitivity
and weak reliability of the maps in (a): different regions would be reported.
an example taken from a dataset presented below composed of 78
subjects. We observed that the analysis of 6 different groups of 13
subjects would lead to different reports of the set of activated regions
for the same experimental conditions at a standard threshold, and
also observe the striking increase in sensitivity with the pooled
analysis (all 78 subjects).

Reproducibility measures

Beyond the poor sensitivity of group analyses, there is an
apparent lack of reliability in brain mapping studies (Jernigan et
al., 2003), that may be seen as one of the key problems of this
domain. This notion has been used in very few brain imaging
papers (Murphy and Garavan, 2004; Liou et al., 2003; Genovese
et al., 1997). A more systematic approach that combines the
prediction of the activation states–or inverse inference–and the
measure of the reproducibility of brain maps obtained from
univariate or multivariate models has been presented in Strother et
al. (2002), and applied in the optimization of pre-processing
choices (LaConte et al., 2003; Shaw et al., 2003; Strother et al.,
2004). To our knowledge, these methods have not provided any
conclusion on the best way to perform statistical tests in group
studies.

There are two main reasons why reproducibility is not
systematically studied. First, studying reproducibility requires a
large sample of subjects and second, it is less widely used in the
medical or biological literature than the standard hypothesis
testing framework. Nevertheless, the notion does seem to be at
the heart of what would be needed by researchers or clinicians,
because it can give a direct and interpretable answers to
questions such as “how likely is this result to hold on a new
dataset?”, “What is the chance to observe this effect on a new
subject?”

Reproducibility (or reliability1) analysis is based on binary i.e.
thresholded maps obtained from distinct subgroups of subjects. In
this work, we will use two reproducibility measures. The first is
based on the modelling of the “activated” or “non-activated” label
of the voxels across groups through a mixture of binomial
distributions to assess the reproducibility of this labelling2 The
second is based on the distance between the position of large
clusters in the thresholded binary maps. A large distance means
that no correspondence can be found between supra-threshold
clusters across groups of subjects, and hence that the maps are not
very reliable (Murphy and Garavan, 2004). Importantly, notions of
reproducibility and sensitivity are different and cannot be
confounded. In particular, false positive occurring in (too) sensitive
analyses will not be reproducible.

Reproducibility depends on the analysis performed

Those measures will clearly depend on the choice of the
analysis that precedes thresholding and on the threshold. In this
respect, a large number of methods are available in the literature
and show increasing sophistication in defining an appropriate
1 In this paper we will use both words to describe the same notion
considering that a result with high reproducibility is reliable and a reliable
result has high reproducibility measure.
2 We exclude trivial or non-informative cases, e.g. cases in which the

entire brain is “activated”, or “non-activated”.
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threshold (Worsley, 2005). The classical random effects model is a
particular instance of mixed effects models, which recently gained
popularity (Worsley et al., 2002; Friston et al., 2002; Beckmann et
al., 2003; Neumann and Lohmann, 2003; Woolrich et al., 2004). In
this work, we will use tests based either on the voxel intensity or
cluster size, with mixed effect models or standard random effects,
and investigate the use of non-parametric versus parametric
statistics:

• Choice of the threshold. Usually, statistical maps (SPMs) are
thresholded to control for the rate of false positives.3 Hereafter,
we study the impact of the threshold on reproducibility
measures.

• Voxel versus cluster based tests. While sensitivity and
specificity have been studied for thresholding procedures
based on the voxel or at the cluster level, reproducibility of
those procedures is unknown.4 We also investigate the use of
parcel-based random effects maps (Thirion et al., 2006a), with a
possibly double advantage: if parcels adapt to individual
anatomy, they can cope with some parts of the inter-subject
variability; second, this procedure considerably alleviates the
multiple comparison problem.

• Parametric versus non-parametric tests. While parametric tests
are particularly efficient and computationally cheap, they are
based on possibly unrealistic hypotheses that may reduce their
sensitivity (e.g. normal distribution). These hypotheses cannot
be checked in the usual, small datasets. Non-parametric tests
may avoid these issues (Holmes et al., 1996; Brammer et al.,
1997; Bullmore et al., 1999; Nichols and Holmes, 2002;
Hayasaka and Nichols, 2003; Mériaux et al., 2006a), but at a
higher computational cost.

• Spatial filtering. Amongst the standard pre-processing steps, the
smoothing kernel size (often chosen between 8 and 12 mm
FWHM) is known to have large impact on sensitivity. It is
already has been shown (Shaw et al., 2003; LaConte et al., 2003)
that cross-validation schemes could help optimizing this choice;
we simply use two different filter sizes and report the effect of
this choice on reliability.

Note that the tests considered in this paper are signed, so that
supra-threshold areas have a positive sign.

Taking advantage of a very large number of subjects

Another fundamental parameter of a study is the number of
subjects that should be included in a study. While this question
has been addressed with sensitivity measures and power analyses,
it has not been studied with reproducibility measures. This
3 In general, the chosen threshold does not reflect a trade-off between the
necessity of controlling both the number of false positives and the number
of false negatives. One straightforward reason is that it is relatively simple
to model the statistical distribution under the null hypothesis, but not under
the alternative hypothesis.
4 For cluster size tests, the map is first thresholded at a (relatively lenient)

significance level, and a second, the size of the resulting connected
components is assessed against its distribution under the null hypothesis.
This is usually considered as a safe procedure, but fully neglects the
possibility of small yet significant activation foci. One of the reasons is that
intensive smoothing of the data simply removes the possibility of finding
such peaks.
number typically represents a trade-off between (a) the cost of
conducting neuroimaging experiments on large cohorts of
subjects and (b) the necessity of having enough subjects for the
significance of statistical tests (Desmond and Glover, 2002;
Murphy and Garavan, 2004). Reproducibility measures could
answer the fundamental question: “how many subjects are enough
to make the analysis reliable, in terms of avoiding false negatives
while still controlling the false positives?”. This would yield the
confidence level that can be given to a result as a function of the
number of subject included in the study. Following (Liou et al.,
2003) we define it practically as the agreement between
independent measurements of a given effect size. While such a
study would still be difficult with groups of 30 or 40 subjects,
because of the limited number of subgroups–two or three–that can
be drawn from such populations, it becomes feasible with 80
subjects.

It is clear that very strong activity will show higher
reproducibility compared to weaker signals. We therefore also
study the effect of the activation size on the number of subjects
necessary to achieve high reproducibility using different cognitive
contrasts which have different characteristics in terms of contrast-
to-noise ratio or spatial variability.

Finally, because the number of subjects included in group
analyses is usually small it is practically impossible to study the
population distribution of activity in response to an experimental
condition. Several techniques have been employed to quantify
inter-subject differences globally (across brain regions) (Kherif et
al., 2004), and this can be used to show that only one subject’s
pattern of activity can significantly impact the group results (outlier
detection). As a first analysis, our large number of subjects allows
us to statistically test for normality of the activation level across
subjects, and in the future could be use to detect subpopulations
with univariate or multivariate procedures. Indeed, it is possible
that inhomogeneous populations may be encountered in neuroima-
ging studies, and this can only be studied with a large number of
subjects.

To summarize, in this paper we present reproducibility
measures with various statistical procedures and thresholds and
study the statistical properties of activation across subjects using an
unusually large cohort.

Materials and methods

Dataset

We used an event-related experimental paradigm consisting
of 10 conditions. Subjects were presented with a series of stimuli
and were engaged in tasks such as passive viewing of horizontal
or vertical checkerboards, left or right button press after audio or
video instruction, computation (subtraction) after video or audio
instruction and sentence processing, from the audio or visual
modality. Events were randomly occurring in time (mean inter-
stimulus interval: 3 s), with 10 occurrences per event type
(except button presses for which there are only five trials per
session). Note that contrasts of experimental conditions rely in
fact on the sum of number of trials of each condition. For
instance, the left–right button press contrast combines four
experimental conditions (left/right button press after audio/video
instruction) and relies on 20 trials. Similarly, the audio–video
and computation–sentences contrasts rely on 60 and 40 trials
respectively.



5 Given our definition of the group mask, it may occur that functional
data is available in a sub-sample of the population of size n, with S

2≤n≤S.
In such a case, S is replaced by n in the formulas. In the present work, we
systematically apply such corrections.
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Eighty-one right-handed subjects participated in the study. The
subjects gave informed consent and the protocol was approved by
the local ethics committee. Functional images were acquired on a
3T Bruker scanner using an EPI sequence (TR=2400 ms,
TE=60 ms, matrix size=64×64, FOV=24 cm×24 cm). Each
volume consisted of na 3-mm- or 4-mm-thick axial slices without
gap, where na varied from 26 to 40 according to the session. A
session comprised 130 scans. The first four functional scans were
discarded to allow the MR signal to reach steady state. Anatomical
T1 images were acquired on the same scanner, with a spatial
resolution of 1×1×1.2 mm3.

fMRI data processing consisted in 1) temporal Fourier
interpolation to correct for between-slice timing, 2) motion
estimation. For all subjects, motion estimates were smaller than
1 mm and 1°, 3) spatial normalization of the functional images,
re-interpolation to 3×3×3 mm3, and 4) smoothing (5 mm
FWHM). This pre-processing was performed with the SPM2
software (see e.g. Ashburner et al., 2004). Datasets were also
analyzed using the SPM2 software, using standard high-pass
filtering and AR(1) whitening. For further analysis, the voxel-
based estimated effects for several contrasts of interest were
retained.

We determined a global brain mask for the group by
considering all the voxels that belong to at least half of the
individual brain masks defined with SPM2. It comprises
approximately 60,000 voxels (this is the average size of individual
brain masks). Note that considering the strict intersection of the
individual masks yields about 34,000 voxels only and a large part
of the brain–mostly cortical voxels!–is not included in the
intersection mask. In what follows, the estimation procedures take
this into account by considering that data is not available in some
subjects. In such cases, mean signal and standard deviations are
computed on the subsample of subjects that have data in this part
of the mask. When necessary, appropriate corrections for the
degrees of freedom are performed.

Elementary statistical description of the dataset

In this section, we select a few contrasts of interest, and study
the statistical distribution of the corresponding parameters in each
voxel. Using a first level, subject-specific, General Linear Model
(GLM), one can obtain parametric estimates of the BOLD activity
at each voxel in each subject: For each subject sa{1, …, S} and
each voxel va{1, …, V}, we have a parameter estimate β̂ (s, v),
and a variance estimate σ̂2(s, v).

The first question that may arise is whether the effects β (s, v)
are normally distributed or not, since this is a key assumption in
standard (random effects) group analysis. We have used the
D’Agostino–Pearson test (Zar, 1999), based on the computation of
the skewness and the kurtosis (third and forth order cumulants) of
the values {β̂ (s, v)}, s=1…S in each voxel v. This provides the p-
value of the D’Agostino–Pearson statistic under the null (normal)
hypothesis. For the sake of visualization, we convert the p-value
into a z-value. We have then repeated the procedure based on the

normalized effects s s; vð Þ¼ b̂ðs; vÞ
r̂ðs; vÞ

( )
, sa{1, …, S}, va{1, …, V}

which removes a potential variability in signal scaling across the
population. At the group level, the normalization through the residual
magnitude has a much greater impact than the deviation from
normality on the resulting tests due to the fact that σ̂(s, v) is
estimated with a finite (ν=100) number of degrees of freedom.
Then, assuming a two-level normal model of the data

b̂ðs; vÞ ¼ bðs; vÞ þ eðs; vÞ; with eðs; vÞfNð0; r2ðs; vÞÞ ð1Þ

bðs; vÞ ¼ b̄ðvÞ þ fðs; vÞ; with fðs; vÞfNð0; vgðvÞÞ ð2Þ
where β (s, v) is the true effect for subject s, β̂ (s, v) is the estimated
effect for subject s, and β̄ (v) is the average effect in the population
at voxel v; ε(s, v) and ζ(s, v) are first-level (estimation) and second-
level (inter-subject) normal residual terms. The first equation
represents thus the subject-specific estimation of the signal and the
second, the group-level model. We have estimated the second level
variance vg in each voxel, since it plays a central role in many
group-level statistics. In particular, an interesting question is
whether β̄ (v) and vg(v) are independent or not. Note that vg is
estimated by maximizing the likelihood of the data given β (s, v)
and σ(s, v). Newton or EM estimation schemes can be used
(Worsley et al., 2002; Mériaux et al., 2006b). In this work, we use a
Newton estimation scheme (see Appendix A).

Group-level analysis methods: voxel-based statistics

We review here different techniques used for voxel-based inter-
subject activation detection. We consider a given contrast of interest.
For each subject sa{1, …, S} and each voxel va{1, …, V}, we
have a parameter estimate β̂ (s, v), and a variance estimate σ̂(s, v)2.

A random effects (RFX) statistic is based on model (1) and (2),
in which the first level variance is neglected. It is defined as

t vð Þ ¼
ffiffiffi
S

p meansaf1;: : :;Sgb̂ðs; vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varsaf1;: : :;Sgb̂ðs; vÞ

q ð3Þ

Under the null hypothesis, assuming a normal distribution for
{β̂ (s, v)}, s=1…S, t(v) is t-distributed with (S−1) degrees of
freedom, and the p-value under the null hypothesis can be assessed
with or without correction for multiple comparisons.5 Alternatively,
a non-parametric scheme can be used to estimate the distribution of
t(v) under the null hypotheses, based on milder assumptions
(Hayasaka and Nichols, 2003; Mériaux et al., 2006a). In this work,
we use the analytical threshold.

A mixed effects (MFX) statistic takes into account the first-
level variance: assuming a group (or second-level) variance vg(v) at
each voxel v, the MFX is the quotient of the group mean b̄ ¼PS

s¼1

b̄ðsÞ
r2ðsÞ þ vg

P
s¼1
S 1

r2ðsÞ þ vg

� ��1

[see Eq. (11) in Appendix

A] by its standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS

s¼1
1

r2ðsÞþvg

q
In a Bayesian setting

(Beckmann et al., 2003), these quantities can be termed the
posterior mean and variance. Thus the MFX statistic is written as:

l vð Þ ¼
XS
s¼1

b̂ðs; vÞ
r̂ðs; vÞ2 þ vgðvÞ

XS
s¼1

1

r̂ðs; vÞ2 þ vgðvÞ

 !�1
2

ð4Þ

Intuitively, MFX may perform better than RFX since it down-
weights the observations with high first-level variance. The
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distribution of the quantity μ(v) under the null hypothesis is
difficult to assess (Woolrich et al., 2004). We rely on an non-
parametric scheme as in Mériaux et al. (2006a,b): we tabulate the
values of μ(v) for different sign swaps of each subject’s dataset in
order to generate a distribution under the null hypothesis, and
compare the actual values with their estimated null distribution.
A quicker but very conservative approximation (μ∼ tS−1, tS−1
being the Student law with S−1 degrees of freedom) is also
possible.

One can also construct another statistic by neglecting the group
variance vg in Eq. (4). This yields a pseudo-MFX statistic, which is
just a weighted average of the effects of the subjects. We denote it
henceforth as ΨFX:

W vð Þ ¼
XS
s¼1

b̂ðs; vÞ
r̂ðs; vÞ2

XS
s¼1

1

r̂ðs; vÞ2
 !�1

2

ð5Þ

Note that this is the statistic proposed in Neumann and Lohmann
(2003). The difference is that we assess the value of ΨFX through
a frequentist approach by estimating the distribution of Ψ(v) under
the null hypothesis by random sign swaps of the individual data
(which we refer to as a non-parametric approach), exactly as we do
for the MFX statistic. In that case it is necessary to use a voxel-
based assessment of the statistic value (i.e. voxels may not be
exchangeable under the null hypothesis).

We also have used Wilcoxon’s signed rank statistic (WKX)
(Hollander and Wolfe, 1999), which sorts the absolute effects in
ascending order, then sums up the ranks modulated by the
corresponding effect’s sign:

W ðvÞ ¼
XS
s¼1

signðb̂ðs; vÞÞrankðb̂ðs; vÞÞ ð6Þ

The behaviour of this statistic under the null hypothesis is data-
independent, thus its significance is assessed very easily. Unlike
the previous statistics, it does not assess the positivity of the
average effect, but the asymmetry of the estimated effects β̂ (s, v)
with respect to 0, the null hypothesis being that β̂ (s, v) are
distributed symmetrically about 0. The main interest of this statistic
is that it is not based on the hypothesis that the (β̂(s, v)), s=1…S
are normally distributed.

Group-level analysis methods: higher-level statistics

Higher-level or non-voxel-based analyses statistical inference
methods include cluster-based inference and parcel-based
inference.

Cluster-based inference (Hayasaka and Nichols, 2003; Mériaux
et al., 2006a) is simply an extension of the voxel-based procedures,
based on a double thresholding of a statistic map: first, a threshold
is performed at the voxel level, then supra-threshold clusters are
kept whenever their size is statistically significant. In our
implementation, we measure connectivity using the 18-nearest
neighbours of each voxel in 3D, and estimate the p-values at the
cluster-level using the non-parametric framework.

Parcel-based inference is a different scheme in which parcels
are defined across subjects using anatomical and/or functional
information. Two possible schemes have been presented in Flandin
et al. (2002), Flandin (2004) and Thirion et al. (2006a), based on a
Gaussian Mixture Model (GMM) and a hierarchical approach
respectively. A key issue of both techniques is to obtain
functionally and spatially connected parcels that adapt to the
subject’s anatomical or functional variability. Statistics, such as the
t statistic, can then be computed at the parcel level by working on
parcel-based signal average instead of voxel-based signal (PRFX
statistic). The advantage is that some spatial relaxation is possible
in the definition of the parcels, allowing for a better spatial
registration of functional information. Care must be taken when the
same functional data is used to build the parcels and perform the
test to control appropriately for the false positives rate (Thirion et
al., 2006a). Here we assess the reliability of PRFX maps and
compare it to other techniques.

Assessing the reliability of activation maps

In this work, we propose two measures to assess the reliability
of the activation maps derived from group analysis. The first, based
on a mixture of binomial distributions, characterizes the stability of
the status (active/inactive) of each voxel of the dataset. The second
measures how frequently clusters of voxels are found at similar
locations in the normalized MNI/Talairach space across subjects.
We use these measures in a bootstrap framework that enable us to
characterize the reproducibility of activation maps obtained at the
group level.

Reliability measure at the voxel level
In order to estimate the reliability of a statistical model, we

need a method to compare statistical maps issuing from the
same technique, but sampled from different groups of subjects.
We use the reliability indexes elaborated in Genovese et al.
(1997) and Liou et al. (2003, 2005). Assume that a statistical
procedure (e.g. thresholding) yields binary maps g1, …, gR for
different groups of subjects. At each voxel v, an R-dimensional
binary vector [g1(v), …, gR(v)] is thus defined. At the image
level, the distribution of GðvÞ ¼PR

r¼1 grðvÞ is modelled by a
mixture of two binomial distributions, one for the null
hypothesis, one for the converse hypothesis: Let p1A be the
probability that a truly active voxel is declared active, p0A ¼
1� p1A the probability that a truly active voxel is declared
inactive, p1I , the probability that a truly inactive voxel is declared
active, p0I ¼ 1� p1I the probability that an truly inactive voxel is
declared inactive, and λ the proportion of truly activated voxels.
Then, using a spatial independence assumption, the log-like-
lihood of the data is written as

logðPðGÞjk; p0A; p0I Þ ¼ cst þ
XV
v¼1

logðkðp0AÞR�GðvÞðp1AÞGðvÞ

þ ð1� kÞðp0I ÞR�GðvÞðp1I ÞGðvÞÞ ð7Þ

Assuming R≥3 the three free parameters, p0A, p0I , λ can be
estimated using EM or Newton’s methods. Note that optimizing
the model over its different parameters sequentially, and using an
adequate initialization, we could run the model for R=2, though
with higher variability in the estimation. An example of mixture
of binomial distributions is given in Fig. 2.

Given these estimates, the coherence index κ, known as Cohen’s
kappa is computed to measure the concordance of the different
observations with the mixture model. Let p0 ¼ kp1A þ ð1� kÞp0I be
the fraction of voxels that are correctly classified by the mixture
model. p0 should be compared to the fraction of correct
classifications that occur by chance pC ¼ kp0 þ ð1� kÞð1� p0Þ,
where p0 ¼ kp0A þ ð1� kÞp0I is the proportion of voxels declared



Fig. 2. Example of mixture of binomial distributions. The empirical
histogram of G(v) is modelled by the model in Eq. (7), with R=8. The Yaxis
is in log-coordinates for the sake of clarity.
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inactive. The fraction of correct classifications corrected for chance
is thus

j ¼ p0 � pC
1� pC

ð8Þ

In this setting, 0≤κ≤1 measures the fit of the mixture model to the
data, which in turns reflects the concordance of the binary maps
given as input to the model (7). If there is very little agreement on
which voxels are active, the components of the mixtures have a
strong overlap, and κ is close to 0, whereas the separation between
the components of the mixture increases and κ is close to 1 if there is
a good agreement between binary maps. For instance, κ=0.45 for
the data presented in Fig. 1. λ can also be retained as an index of the
test sensitivity.

Note that more complex–and realistic–models have been
proposed in the literature (Maitra et al., 2002), in which the
parameter λ is allowed to vary spatially. However, our main
purpose is not activation detection, but obtaining a global
reliability measurement; for this reason, we keep the basic setting.

Reliability measure at the cluster level
Another way to assess the reliability of the results is to

compare the positions of the clusters of supra-threshold voxels
that arise through any group analysis. Assuming that the binary
maps g1, …, gR are obtained from different groups of subjects
through a thresholding procedure, one can post-process them in
order to yield connected components. The connected compo-
nents with a size greater than a given threshold η are then
retained, and their centre of mass (cm) is computed: let xri ,
i=1…I (r) be the spatial coordinates of the cms derived from
map gr, we propose the following average distance between any
two maps:

U¼ 1
RðR� 1Þ

XR
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X
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is a penalty function that is close to

zero when the cluster centroids are properly matched and close to 1
otherwise. Φ represents the average mismatch between the cm of a
supra-threshold component in a given map and the closest cm of
any supra-threshold cluster obtained from another map. Appropriate
penalty terms are used to handle the case I(r)=0. We have
performed some experiments using η=10 voxels or η=30 voxels,
and use δ=6 mm.

Procedure for the assessment of reliability
The procedure consists in dividing the population of 81 subjects

in R=2, 3, 4, 5, 6 or 8 disjoint groups of S=40, 27, 20, 16, 13 and
10 subjects respectively. The computation of different statistics, the
derivation of an adequate threshold and the thresholding are
performed in the different subgroups, and global reliability
measures are derived from the ensuing binary maps. This
procedure is repeated 100 times for each instance, yielding a
distribution of the indexes κ, λ and Φ for each possible technique/
parameter.

First, we choose the traditional RFX analysis procedure [see
Eq. (3)], thresholded at p<0.001, uncorrected using an analytical
threshold and evaluate the distribution of the different indexes for
three contrasts of interest. This is important to understand how well
the indexes are characteristic of the amount, the spread and the
variability of supra-threshold activity. In particular, it is important
that the estimated reliability indexes are less variable for a given
contrast than across contrasts.

Second, we evaluate the choice of the threshold on the different
indexes, in the case of the voxel-based t-test. While the sensitivity
index certainly decreases while the threshold increases, the
behaviour of the reliability may be more complex, due to the
trade-off between false positive and false negative rates (non-
standard behaviours due to extremely low or high thresholds are
not considered here).

Third, we study the behaviour of the different measurements
when the number of subjects in the group varies; while it is
obvious that reliability increases with the group size, it is not clear
whether there exists a plateau and at which level. Previous studies
(Desmond and Glover, 2002; Murphy and Garavan, 2004) suggest
a steady increase of sensitivity with the group size.

Finally, we choose the following statistics: RFX, RFX on
smoothed (12 mm FWHM instead of 5 mm) effect maps (SRFX),
MFX, Wilcoxon(WKX), Cluster-level RFX (CRFX), Parcel-based
RFX (PRFX) and ΨFX. RFX, SRFX, MFX, ΨFX and PRFX
maps are thresholded at the p<0.001 level, uncorrected for
multiple comparisons. CRFX is thresholded at p<0.01, un-
corrected level at the voxel level, then at p<0.01, at the cluster
level. Note that these choices are made in order to roughly
balance the specificity of the methods, while using them in a
standard way.

PRFX maps are computed for Q=500 parcels. Since the
parcel centres are defined at the group level in Talairach space,
the voxels in the group result map are assigned to the parcel with
the closest centre in Talairach space. This results in a piecewise
constant map, the pieces resulting from a Voronoi parcellation of
the group mask into parcels. Note that in our bootstrap
procedure, such boundaries are defined independently in each
subgroup of subject. For parcellation, we use the hierarchical
procedure presented in Thirion et al. (2006a) and a number of
parcels optimized according to cross validation (Thyreau et al.,
2006).
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Results

Statistical model of the inter-subject data

We performed the D’Agostino–Pearson test on the effects β̂(v)
of all the voxels, as well as the normalized effects b̂

r̂ ðvÞ, which
yields two maps for each contrast. We present them for left–right
button press, audio instructions–video instructions and computa-
tion–reading, thresholded at the p<0.001 uncorrected level. We
also present the inter-subject variance maps vg(v) computed in a
mixed-effect model (see Appendix A). We present these maps
together with the RFX map (converted to a z-variate) based on 81
subjects in Figs. 3–5. Note that other contrasts, e.g. horizontal–
vertical checkerboards, sentence reading–low-level vision, cogni-
tive trials–motor trials, and the opposite ones, not presented here
due to space limitations, yield qualitatively similar results.

In each case, the regions with highest group variance are found
in the regions with highest random effects statistics in absolute
values; some of them are absent in the maps 3–5, where signed
statistics are presented.

Inspection of these maps suggests that

• Areas of high variance tend to co-localize with the activated
areas. This implies that the parameters vg(v) and β̄ (v) are
Fig. 3. Statistical model of the effects for the left–right button press contrast, on S
estimate; (c) z-value of the D'Agostino–Pearson test for normality of the effects β̂;
s ¼ b̂

r̂. Note that all the z values are limited to the [−8, 8] range. The color scale of th
areas that are comparable with the other maps. The variance is expressed in squared
the MNI space.
certainly not independent, and that statistics that are penalized
by the group variance may not be very efficient in general.

• Non-normality is very significant in wide regions of the brain:
deviation from normality of β̂ across subjects concerns 22% of
the brain voxels at (p<0.001, uncorrected) for the computation–
reading contrast, 27% for the left–right button press contrast
and 30% for the audio instructions–video instructions contrast.

• Deviation from the normality hypothesis is much lower for the
normalized effects s ¼ b̂

r̂ than for the raw effects β̂ . For instance,
the rate of voxels with normality rejected at (p<0.001,
uncorrected) drops from 22% to 9.2% for the computation–
reading contrast, from 27% to 2.9% for the left–right button press
contrast and from 30% to 10% for the audio instructions–video
instructions contrast. This means that dimensionless first-level
statistics yield more homogeneous quantities across subjects than
effects expressed in percents of baseline signal increase.

• Deviation from normality of the effects does not specifically co-
localize with activated areas, but, in several cases it coincides
with the boundaries of activated areas.

Reliability measurements for different cognitive contrasts

We computed the random effects z-variate for different
cognitive contrasts, using R=5 groups of S=16 and a threshold
=81 subjects. (a) z-value associated with the RFX test; (b) group variance
(d) z-value of the D'Agostino–Pearson test applied to the normalized effects
e variance image has been chosen arbitrarily in order to have supra-threshold
percentage of the BOLD mean signal. Cross position: (−23, −28, 56) mm in



Fig. 4. Statistical model of the effects for the audio instructions–video instructions contrast, on S=81 subjects. (a) z-value associated with the RFX test; (b) group
variance estimate; (c) z-value of the D'Agostino–Pearson test for normality of the effects β̂; (d) z-value of the D'Agostino–Pearson test applied to the normalized
effects s ¼ b̂

r̂. Note that all the z values are limited to the [−8, 8] range. The color scale of the variance image has been chosen arbitrarily in order to have supra-
threshold areas that are comparable with the other maps. The variance is expressed in squared percentage of the BOLDmean signal. Cross position: (−54, −6, 8)
mm in the MNI space.
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θ=3.1 corresponding to p<0.001 uncorrected for the contrasts
left–right button press, audio instructions–video instructions and
computation–reading. The reliability index κ, the proportion of
putative true positives λ, and the inter-cluster distance penalty Φ
are given in Fig. 6. It shows that κ and λ have different
behaviours and are strongly dependent on the cognitive contrast
under study. For instance, the left motor contrast activates
relatively small regions with a relatively low reliability; the
auditory-selective contrast activates larger regions with high
reproducibility; the computation-selective contrast activates larger
regions, but with low reliability. The inter-cluster distance penalty
Φ does not discriminate between the different contrasts as strongly
as κ. As could have been expected, it has the opposite behaviour
(maximal for the computation contrast, minimal for the auditory
contrast).

How the threshold affects the reliability of the analysis

Here we study the behaviour of our reliability measures when
applied to a thresholded RFX map, when we let the threshold vary.
The reliability measure is computed for 100 different splits of the
population of subjects into R=5 groups of S=16 subjects, in the
case of the left–right button press contrast. The threshold (in z-
variate scale) varies from θ=2.2 (p<0.015, uncorrected) to θ=4
(p<3.2×10−5, uncorrected) in steps of 0.2.

As expected, the sensitivity parameter λ decreases when θ
increases (see Fig. 7(b)). More interestingly, κ reaches a maximum
for θ⁎∼2.7, but the index remains close at least for θ<3.5 as can
be seen in seen in Fig. 7(a). Accordingly, the inter-cluster distance
penalty Φ is minimized for a threshold θ⁎∼3. The correspondence
of these results is interesting, given that these two similarity
measures are obtained independently, and based on different
considerations. Note that we have obtained similar results when
studying the other contrasts with slightly higher (auditory contrast)
or lower (computation contrast) threshold values. Thereafter, we
retain the threshold θ=3.1 (p<0.001, uncorrected for multiple
comparisons) for random effects z-statistics.

How many subjects are necessary to obtain a reliable group map

We study the dependence of κ, λ and Φ when we let the size S of
the group vary. We base our investigation on the left–right button
press contrast, with group maps thresholded at the θ=3.1 (p<0.001,
uncorrected) level. The results are presented in Fig. 8. It shows that
the reliability increases with the group size, which was expected.
The sensitivity also increases with the group size. Interestingly, the



Fig. 5. Statistical model of the effects for the computation–reading contrast, on S=81 subjects. (a) z-value associated with the RFX test; (b) group variance
estimate; (c) z-value of the D'Agostino–Pearson test for normality of the effects β̂; (d) z-value of the D'Agostino–Pearson test applied to the normalized effects
s ¼ b̂

r̂. Note that all the z values are limited to the [−8, 8] range. The color scale of the variance image has been chosen arbitrarily in order to have supra-threshold
areas that are comparable with the other maps. The variance is expressed in squared percentage of the BOLD mean signal. Cross position: (−33, −60, 56) mm in
the MNI space.

113B. Thirion et al. / NeuroImage 35 (2007) 105–120
reliability reaches a plateau only for S≈25. The inter-cluster distance
penalty Φ has a similar behaviour, with a plateau for S=27 subjects
when η=10, while lower values are reached when using η=30.

Comparison of different group analysis methods

Now we study how the reliability index behaves for different
statistical methods: The t statistic [RFX, see Eq. (3)], the same test
after 12 mm smoothing of the data–instead of 5 mm–(SRFX), the
mixed effects statistic, controlled by permutation [MFX, see Eq.
(4)], the parcel-based RFX test (PRFX), the t-statistic thresholded
at the cluster-level (CRFX), the Wilcoxon test (WKX), and the
pseudo-MFX test ΨFX. RFX, SRFX, MFX, WKX, PRFX and
ΨFX maps are thresholded at the p<0.001 level, uncorrected for
multiple comparisons. The CRFX map is first thresholded at the
p<0.01, uncorrected level, then at the p<0.01 cluster-level. The
results are obtained by bootstrapping in R=8 groups of size S=10.
The results are presented in Fig. 9.

From the point of view of reliability, the WKX and RFX tests
have the worst performance overall, while the SRFX performs
slightly better. CRFX, PRFX and MFX techniques yield higher
reliability, but ΨFX yield the highest values. The results are more
variable with PRFX than with other techniques; this reflects the
fact that PRFX is based on a smaller number of volume elements,
so that statistical tests have a less stable behaviour purely due to
fewer number of parcels compared to voxels.

CRFX, MFX, and to a lesser extent, PRFX tests are more
sensitive, i.e. have a larger fraction of generally activated voxels,
than voxel-based tests. Note however that the specificity control of
CRFX matches the other approaches only approximately.

Finally, the average supra-threshold cluster distance Φ is
minimal for ΨFX, and relatively low for MFX. It is similar for
the other techniques.

Discussion

Normality and second-level variance

From Figs. 3–5, one of the most striking effects is the co-
localization of high second-level variance areas with large random
effects areas. Numerically, such an effect is not expected since the
RFX is defined as the quotient of the estimated mean effect by the
standard deviation of this estimate.

The interpretation could be that 1) the contrast-to-noise ratio
(CNR) of the BOLD effect is highly variable across subjects, and
by definition this effect does not appear in non-activated areas and/



Fig. 6. Dependence of the reproducibility and of the sensitivity of the random effects analysis on the functional contrast under consideration. These results are
obtained by drawing 5 disjoint groups of S=16 subjects in the population of 81 subjects, and applying the procedure described in the Reliability measure at the
voxel level section. The threshold is θ=3.1 (p<0.001). (a) Over 100 replications, the reliability index is higher for the audio instructions–video instructions
contrast than for the left–right button press and computation–reading contrast. (b) However, the size of the putatively activated areas is greater for the contrast
that shows regions involved in computation, and smaller for the contrast that shows the regions involved in motor activity. (c–d) The cluster variability penalty Φ
is presented for clusters of more than η=10 (c) or η=30 (d) voxels (the lower the better). The behaviour is as expected, with the smallest value for the auditory-
specific contrast.
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or 2) spatial mis-registration6 implies that at a given voxel, i.e. a
given position in MNI space, some subjects have activity while
other subjects do not, thus spatially widening the signal
distribution. For simple contrasts such as those used (left or right
button press, sentence listening), different cognitive strategies
should be ruled out.

This inflated variance effect certainly deserves more investiga-
tion, given its prominent effect on statistics (sensitivity and
reliability): for instance, the ΨFX statistic–that does not take into
account the group variance, hence is simply a weighted average of
the subject-based effects–seems more reliable than the MFX
statistic, which is itself much more reliable than the RFX statistic
(see Fig. 9). The effect of group variance is also an argument in
favour of Bayesian analysis of fMRI data, if the reference signal
level is not 0 (Friston and Penny, 2003).

Non-normality is another important factor. To our knowledge,
this has not been investigated before, since it requires a high
number of subjects. Interestingly, the importance of non-normality
is reduced when considering normalized effects τ(s, v) instead of
6 Spatial mis-registration may be artefactual (incorrect normalization) or
not (intrinsically different functional anatomy).
raw effects β̂(s, v). This shows that first-level statistics can play an
important role in group statistics. In particular, the difference
observed between the normality of τ and β̂ maps possibly indicates
that the current way of normalizing signal magnitude with respect
to the mean signal may not be optimal for inter-subject comparison
(this is also an open question for inter-session variability).
However, the normalization with respect to first-level variance
might not be satisfactory, since it could in turn be highly dependent
on acquisition artifacts, motion and physiology, whether these are
modelled of not. We are not aware of any successful signal
calibration strategy, but mixed-effects model may solve part of the
problem. Interestingly, several areas with significant non-normality
are found at the periphery of activation maxima, confirming the
impact of spatial shifts on group statistics. Once again, further
investigations on non-normality may be performed, e.g. searching
different groups of subjects in the population or outlier subjects
(see Kherif et al., 2004). Robust statistics might also be used for
inference (Wager et al., 2005), but at the risk of a weaker control on
specificity. Moreover, such inference schemes raise the difficult
question of the generalizability of group results to other groups of
subjects (given that the concept of outlier is ill-defined when
considering a small group). In general, it is advisable to use non-



Fig. 7. Dependence of the reproducibility, the sensitivity, and the distance between supra-threshold clusters of the group random effects analysis on the threshold
chosen to binarize the statistic maps. These results are obtained by drawing 5 disjoint groups of S=16 subjects in the population of 81 subjects, and applying the
procedure described in the Reliability measure at the voxel level section. This is performed on the images of the left–right button press contrast, with 100
resamplings. (a) The reproducibility index κ shows is maximized for θ∼2.7. (b) The sensitivity decreases when θ increases. (c,d) The average distance between
supra-threshold clusters of more than 10 (c) or 30 (d) voxels across groups has a minimum around θ∼3.
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parametric assessment to obtain reliable thresholds (Mériaux et al.,
2006a). However, the choice of robust statistics (statistics that
adapt to non-normal data) is not necessarily advantageous: for
instance, the Wilcoxon statistic did not perform better than other
statistics in our experiments (see Fig. 9).

Measuring the reliability of group studies

The reliability of an activation pattern measures how system-
atically a given voxel or region will be found when performing a
group study in a particular group of subjects. Taking advantage of
the great number of subjects, we have used a bootstrap procedure
and two measures for assessing the reliability of the group studies:
one models the activated/non-activated state of voxel as a mixture
of binomial distributions, and quantifies the difference between the
null and the active mode, while the other defines how well clusters
of supra-threshold activity match across groups.

The first criterion has already been proposed in the literature; it
has the advantage of yielding very stable results across splits (see
Figs. 6 and 9). One reason is that all the R groups are used in each
single computation of the parameters, while the cluster-based
measure is based on pairwise comparisons. However, care must be
taken because the estimation may come trapped in local minima
(although we have never observed convergence problems in our
experiments), or because the joint estimation of the different
parameters may imply some non-trivial interaction between the
parameters (e.g. the sensitivity λ might not be independent from κ;
across splits there is on average a negative correlation of around
−0.3 between κ and λ, which is significant). More importantly,
results at the voxel level are not as important as the presence of a
strong local maximum or a significant cluster, which deserve being
reported.

This has incited us to develop a second measure [see Eq. (9)],
which takes into account only extended clusters and compares the
position of their centres of mass, a measure related to the study of
(Murphy and Garavan, 2004). Note that the penalty function Φ
stabilizes to Ug1 as soon as the distance exceeds 12 mm. Cluster
centres that are separated by 20 mm are no more likely
homologous than clusters whose centres are separated by
50 mm. (this is true because we are reporting group results; when
reporting individual results, greater variability might be allowed).
Averaging across supra-threshold clusters yields an idea of how
frequently close clusters will be obtained across groups of subjects.
This pairwise measure is somewhat more variable than the voxel-
based indexes, but it yields an independent confirmation of
possible differences in reliability.

As reported, the bootstrap dispersion depends strongly on the
contrast studied, confirming the appropriateness of these measures



Fig. 8. Effect of the RFX group size on reproducibility κ (a), sensitivity λ (b) and the average distance between supra-threshold cluster centroids Φ (c–d). The
reliability is assessed considering disjoint groups of size S=10, 13, 16, 20, 27, 40 within the population of 81 subjects. This is performed on the images of the
left–right button press contrast, with 100 resamplings. (a) The reproducibility index increases with S and reaches a plateau for S>20. (b) The size of putatively
activated areas steadily increases with S. (c–d) The average intra-cluster distance decreases with S; it reaches a plateau for S>20 when η=10 (c), whereas it
further decreases when η=30 (d).
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(Fig. 6). In general terms, κ and Φ have a similar behaviour (κ is
high when Φ is low and vice versa). This was not obvious, given
that the two measures are independent and based on completely
different approaches. It suggests that our results reflect intrinsic
features of data.

Our setting for the study of the reliability may also be used to
compare competing pre-processing techniques or analysis frame-
works, in addition to previous contributions based on cross-
validation (Strother et al., 2002) and information theory (Kjems et
al., 2002). The main difference between our approach and the
cross-validation scheme from (Strother et al., 2002) is that:

• The analysis is univariate (based on one map) in our case, while
it was multivariate in Strother et al. (2002), with a dimension
reduction of the data. Though the interpretation of univariate
results is conceptually simpler, it may not generalize to
parametric designs such as those used in LaConte et al.
(2003), Shaw et al. (2003), and Strother et al. (2004).

• The reproducibility measure used in Strother et al. (2004) is
map-based correlation, whereas we compare supra-threshold
areas. This is an advantage, since only the supra-threshold areas
are of interest, but introduces an artefactual dependence on the
threshold.
• In Strother et al. (2002), two-fold reproducibility is considered,
while we need an R-fold splitting of the group with R>2
(although the estimation procedure still converges for R=2).
Our method requires a large database of subjects, but is more
general.

Is there a best threshold?

The fundamental question of finding an optimal threshold to
label areas as activated has rarely been addressed, since it requires
the modelling at the voxel level of both the null and the alternative
hypothesis to control both the false positive and false negative
rates. This is possible here, thanks to the large number of subjects.

Interestingly, we find a relatively low value for the optimal
threshold (θ⁎∼2.7 when considering κ, θ⁎∼3 when considering
Φ; note that these two measures are independent). The correspond-
ing p-values (0.0035–0.001, without correction) are not conserva-
tive, so that such thresholds do not allow a very strict control of the
rate of false positives. Interestingly, such thresholds are often used
in the literature. It is possible that researchers through trial and
error converged to this value.

Family-wise error control procedures such as Bonferroni,
Random Field Theory (Ashburner et al., 2004), and, to a lesser



Fig. 9. Dependence of the reliability κ (a), the sensitivity λ (b), inter-supra-threshold cluster distance penalty Φ (c–d) of the statistical analysis on the group
statistic used. Φ is based on clusters of size greater than η=10 (c) or η=30 (d). These quantities assessed considering R=8 disjoint groups of size S=10 within
the population of 81 subjects, using the left–right button press contrast, and 100 resamplings.
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extent, False Discovery Rate (Genovese et al., 2002), typically
require the use of much higher thresholds. In this study, we have
chosen a relatively lenient threshold p<10−3 uncorrected because
specificity control was not our main point. However, a good
compromise between the control of false positives and the
reliability may be the use of cluster-level or parcel-level inference.
It is important that those will control for the number of brain
regions reported, and not only for the number of voxels.

We obtained very similar results with higher SNR functional
contrasts such as the auditory contrast. The optimal threshold was
slightly higher, between 3 and 3.5 (in a z scale). However, it is not
obvious that our results generalize to datasets with different
structure and our point is certainly not to justify lenient thresh-
olding procedures. Nevertheless, the question of an optimized
threshold for reproducibility (accounting for both false positive and
false negative) could be addressed more systematically in
neuroimaging studies.

How does the sample size affect the reliability of the results?

Another fundamental question concerns the number of
subjects that should be included in a study. The point here is
not only the sensitivity (Desmond and Glover, 2002; McNamee
and Lazar, 2004), but also the reliability (Murphy and Garavan,
2004) of the results. Our results clearly indicate that S=20 is a
minimum if one wants to have acceptable reliability, and
preferably S=27. Most studies currently do not have this number
of subjects, and one can therefore be legitimately concerned with
the reliability of many findings from neuroimaging studies:
activation detection is the result of a relatively arbitrary thresh-
olding procedure, while true activation configurations show a
complex picture (Jernigan et al., 2003). While the specificity of
detection procedures is strongly controlled, some activated areas
might not be reported due to the lack of power. Increasing S
should somewhat reduce the false negative rate, and thus increase
the reproducibility of the studies.

One might object that in our case, only one session was
available for each subject, and that the quick event-related design
might yield poor results in terms of detection. However, the impact
of this problem is limited for the following reasons:

• The results that we describe are related to very basic contrasts
(auditory and motor activity) for which we could check that
most of the subjects (motor contrast) or even every subject
(auditory contrast) had significant functional activity in
expected regions, which has to be compared with the subtle
functional contrasts that are often under investigation.

• The relatively limited number (20 to 60) of trials is perfectly
taken into account in mixed-effects models, in which the first-
order variance reflects the uncertainty about the activation value
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related to the effect. This is in particular the case in Figs. 3–5,
where group variance, estimated within a mixed-effects frame-
work (see Appendix A), is shown. In models that neglect first-
level variance, such as random effects analyses, unmodelled
first-level variance should simply yield an inflated group
variance. In particular, it does not explain deviation from
normality in the data, observed in Figs. 3–5.

• Our finding is consistent with earlier simulations and studies
(Desmond and Glover, 2002; Murphy and Garavan, 2004).

For these reasons, we hope that this paper will promote the use
of larger cohorts in neuroimaging studies.

Reliability of the different statistical tests

One of the most important practical questions is to describe or
design the most efficient ways to perform group studies in
neuroimaging. Based on this first study we can suggest some
guidelines.

First of all, given the results on normality tests, non-parametric
assessment of functional activity should be preferred to analytical
tests, which may rely on incorrect hypotheses. This can be done
using adapted toolboxes e.g. SnPM (Hayasaka and Nichols, 2003)
or Distance (Mériaux et al., 2006a), www.madic.org). It is
worthwhile to note that C implementation of the tests reduces
computation time to a reasonable level (e.g. cluster-level p-values
can be computed in less than 1 min on a 10-subject dataset). Non-
parametric estimation of the significance improves both the study
sensitivity and reproducibility.

Second, mixed-effects models should systematically be pre-
ferred to mere random effects analyses: there is some information
in the first level of the data that improves the estimation of the
group effects/variance and statistic.

Third, cluster- and parcel-based inference should be preferred to
voxel-based thresholding. Cluster-level inference is of frequent
use, which benefits the sensitivity and the reliability of group
analyses. However, it is based on the assumption that activated
regions are large, which is not necessarily true. Parcel-based
inference may thus be an interesting alternative, since it further
allows some spatial relaxation in the subject-to-subject correspon-
dence. The price to pay is a larger variability of the results due to a
less stable decision function (activated vs non-activated). We
recommend the combination of one of these techniques together
with MFX. By contrast, stronger smoothing (12 mm) did not
increase significantly the results reliability.

Fourth, to our surprise, ΨFX was found to be the most reliable
technique. Although the statistic function does not take into
account the group variance–as argued earlier, this is probably the
reason for its higher performance–its distribution under the null
hypothesis is tabulated by random swaps of the effects signs, so
that it is indeed a valid group inference technique. However, it
should be used with care because first the thresholds have to be
computed voxel per voxel (i.e. are not spatially stationary), and
second the statistic value itself has no obvious interpretation, in
contrast to the RFX and MFX statistics.

Conclusion

This analysis is also a starting point for developing new
strategies in brain mapping data analysis. Several directions could
be considered in the future.
• First, one could relate fMRI inter-subject variability to
behavioural differences and individual or psychological char-
acteristics of the subjects. Once again, such investigation may be
undertaken only on large databases of subjects.

• Second, further efforts should be made to relate spatial
functional variability to anatomical variability. While some
cortex-based analysis reports have indicated a greater sensitivity
than standard volume-based mappings (Fischl et al., 1999),
statistical evidence is still lacking, and it is not clear at all how
much can be gained when taking into account macroanatomical
features, e.g. sulco-gyral anatomy. Similarly, diffusion-based
imaging may add useful information to improve cross-subject
brain cartography (Behrens et al., 2006).

• Third, at a statistical level, we think that intermediate levels of
descriptions could be used more systematically between the
subjects and the group level. Identification of outlier subjects,
possible subgroups and so on can be investigated (Kherif et al.,
2004; Thirion et al., 2005; Thirion et al., 2006b), though finding
meaningful distance and separation criteria is not straightfor-
ward. For instance, it would be interesting to know what
proportion of subjects had a significant activity in a given
region; such a simple question requires solving issues in across-
subjects correspondences and in statistical thresholding (how
can one be sure that two foci of activity in two subjects are
homologous?).

Finally, we hope that these results will help establish useful
guidelines when planning acquisition and analyzing group
functional neuroimaging datasets.

Appendix A. Estimation of the group variance in a
mixed-effects model

The joint estimation of the group effect and the group variance
proceeds from Eqs. (1) and (2). At a voxel v, S values of estimated
effects β̂ are available, together with S estimates of the associated
variances σ̂2 (we drop the voxel index v for simplicity). We also
assume that the estimated variance is correct, so that σ2= σ̂2 (note
that the estimator relies on ν=100 degrees of freedom).

For this model, the log-likelihood of the data is written as:

L b̂ j b̄; vg
� �

¼ cst

� 1
2

XS
s¼1

log r2 sð Þ þ vg
� �þXS

s¼1

ðb̄ � b̂ðsÞÞ2
r2ðsÞ þ vg

 !

ð10Þ
maximizing L with respect to β̄ while keeping vg fixed yields:

b̄ ¼
XS
s¼1

b̂ðsÞ
r2ðsÞ þ vg

XS
s¼1

1
r2ðsÞ þ vg

 !�1

ð11Þ

while the minimization of L with respect to vg, while β¯ is fixed
yields

XS
s¼1

ðb̄ � b̂ðsÞÞ2
ðr2ðsÞ þ vgÞ2

¼
XS
s¼1

1
r2ðsÞ þ vg

ð12Þ

Let L(vg) and R(vg) be the left and right hand side terms in Eq. (12).
We solve it by iterating the solution of L(vg)=R in under the

http://www.madic.org
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constraint vg>0 using Newton’s method, then updating the right
hand side term. This procedure always converges in a few
iterations.

Finally, the joint estimation of β̄ and vg proceeds by successive
re-estimation of both terms, and always converges in practice.
Finally, this joint estimation based on a C implementation is fairly
quick, even on a large dataset.
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