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Traditional inference in neuroimaging consists in describing brain
activations elicited and modulated by different kinds of stimuli.
Recently, however, paradigms have been studied in which the converse
operation is performed, thus inferring behavioral or mental states
associated with activation images. Here, we use the well-known
retinotopy of the visual cortex to infer the visual content of real or
imaginary scenes from the brain activation patterns that they elicit. We
present two decoding algorithms: an explicit technique, based on the
current knowledge of the retinotopic structure of the visual areas, and
an implicit technique, based on supervised classifiers. Both algorithms
predicted the stimulus identity with significant accuracy. Furthermore,
we extend this principle to mental imagery data: in five data sets, our
algorithms could reconstruct and predict with significant accuracy a
pattern imagined by the subjects.
© 2006 Elsevier Inc. All rights reserved.

Introduction

The neuroimaging inverse problem

Validation of anatomo-functional knowledge produced from
neuroimaging data is a difficult task. While statistical significance,
reproducibility and multi-modal coherence are well-accepted
proofs of consistency, neuroscientists lack a gold standard to
assess the significance of their findings. A possible way to solve
this issue is to reason as follows: understanding a cognitive
subsystem of the brain means that the stimulus-to-activation chain
has been identified. More precisely, although the detailed
mechanisms of neural and hemodynamic activation are not fully
understood, we can expect that a controlled stimulus (e.g. a
flashing checkerboard) will produce a known pattern of activation.
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When this holds, the processing chain can be inverted, leading to
activation-to-stimulus inference. When possible, this inverse
inference allows good performance characterization, since the
results are expressed in terms of predicted versus true stimulus, in
the well-known (and controlled) stimulus space.

This point of view has already been investigated in the case of
motor experiments (Dehaene et al., 1998), mental imagery
(O'Craven and Kanwisher, 2000), counting/subitizing (Piazza et
al., 2003), the notion of object categories (Haxby et al., 2001;
Carlson et al., 2003; Cox and Savoy, 2003), the orientation of visual
stimuli (Haynes and Rees, 2005; Kamitani and Tong, 2005) and lie
detection (Davatzikos et al., 2005). It has been popularized under the
concept of brain reading. This novel approach in neuroimaging has
been facilitated by the use of data classification techniques such as
Linear Discriminant Analysis (LDA) (Carlson et al., 2003) and more
recently, Support Vector Machines (SVM) (Cox and Savoy, 2003;
LaConte et al., 2005) that can take functional images as input and
classify them into categories (supervised classification). But in that
case the activation-to-stimulus function remains implicit, i.e. it is
embedded in a set of learning samples, each one being associated
with a known stimulus. An important question is whether this
binding may be made explicit.

There is at least one system in which the stimulus-to-activation
coding is known explicitly: this is the case of retinotopy, where the
spatial layout of an image is in the visual field also spatially encoded in
the primary visual cortex (Sereno et al., 1995). The inverse problem
consists in predicting the spatial layout of an activation pattern
(stimulus) given a functional activation image. We address this
problem with two kinds of analysis tools: supervised classification
(based on SVMs) and an explicit inversion of the stimulus-to-
activation function (inverse retinotopy). In this paper, we study two
different situations: a visual stimulation experiment, in which the
subject passively views a sequence of stimuli chosen among a discrete
set and a mental imagery experiment in which the subject is asked to
imagine a self-selected pattern chosen among the presented stimuli.
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Retinotopy of the human visual cortex

It is well known that the human visual cortex is retinotopically
organized, at least in early areas. Retinotopic mapping, based on a
travelling wave paradigm, is a standard procedure in the fMRI
literature (see e.g. Sereno et al., 1995; DeYoe et al., 1996; Tootell
et al., 1996, 2003; Engel et al., 1997; Warnking et al., 2002;
Dougherty et al., 2003; Wotawa et al., 2005). It is frequently
performed in order to delineate the early visual areas (V1, V2, V3,
V3a, VP), which can be characterized by a visual field sign (VFS)
(Sereno et al., 1995). By contrast, we interpret here the retinotopic
information as a forward mapping from the visual field to the
visual cortex: we assume that there exists a transfer function that
maps visual stimulation patterns to the primary visual cortex. In
this work, the retinotopic data are used to estimate the transfer
function. This kind of model has been suggested for V1 (Tootell et
al., 1998b), and is supported by recent experiments (Hansen et al.,
2004). In our setting, we take into account the receptive field
structure (Smith et al., 2001) that characterizes the responsivity of
cortical neurons to retinal stimulation. Let us note, however, that
such a model ignores some parts of the response (non-linear and/or
negative components) (Shmuel et al., 2002, 2006).

In a recent paper (Vanni et al., 2005), a direct estimation of the
transfer function has been proposed based on randomized visual
stimulation in an event-related design. However, this procedure is
not as generic as the phase-encoded retinotopic experiments and it
can only delineate predefined regions of the visual field.

Inverse reconstruction and classification

Assume that we are given a set of brain activation images ϕ1,
…, ϕn associated with a set of stimuli σ1,…, σn chosen within a
finite set S. Supervised classification and inverse reconstruction
perform two kinds of characterization on these data:

• In the inverse reconstruction framework, we assume that a
forward operator T that models the stimulus-to-activation
process has been defined. The inverse reconstruction consists
in estimating the stimulus pattern ρ̂i=T−1ϕi, i=1…n in order to
identify the label σ̂i, i=1…n of the reconstructed pattern. The
performance of the procedure can thus also be expressed in
terms of correct prediction rate. While this procedure requires
the prior knowledge of the operator T, it applies to any activation
image, and understanding the failures of the system might be
easier, since the intermediate results ρ̂i, i=1…n are available.

• In the supervised classification framework, a subset of the images
ϕ1,…, ϕr, r<n associated with stimulus labels σ1,…, σr are used
as a learning set. The learning algorithm (SVM typically) learns
how to predict the stimulus label given the functional image. The
test set, that consists of the remaining images ϕr + 1,…, ϕn is used
to predict labels σ̂r+ 1,…, σ̂n. The performance of the classifier is
given by the rate of correct predictions. The advantage of such an
approach is that it works efficiently, without requiring prior
knowledge on the precise activation mechanisms (functional
architecture, connectivity, hemodynamic phenomena). In that
sense it is universal. The disadvantage is that it is hard to
diagnose a failure in the system. Moreover, the interpretation is
not straightforward (see e.g. Hanson et al., 2004). Last the ability
to discriminate between activation patterns and to associate
correct labels is restricted to the data set used in the learning
procedure.
Our main experiment consists thus in the identification of visual
patterns presented to the subjects, separately in the left and right
hemifields. The inverse reconstruction is based on retinotopic
information obtained in a traveling wave paradigm, while SVM
classification is performed directly on activation images masked by
the retinotopic regions. We also asked the subjects to perform a
mental imagery experiment. Involvement of low-level visual areas
has been reported during imagery tasks (Tootell et al., 1998a;
Kosslyn et al., 1999), and hints of a retinotopic organization of
mental images has been seen with fMRI (Klein et al., 2004;
Slotnick et al., 2005). We propose to use this limit case as an
additional benchmark to test how well the classification/inverse
reconstruction techniques can decode subjective brain states.

Materials and methods

Data acquisition and pre-processing

Subjects
Nine subjects participated to the study. One data set was

discarded due to poor fixation during the experiment (see below).
This provided us with a total of 16 data sets, each hemisphere being
analyzed independently. The subjects gave written informed consent
and the protocol was approved by the local ethics committee.

Stimuli
The experimental protocol consisted in three parts: (i) a

retinotopic mapping of the subjects, (ii) a passive viewing
experiment, in which the subjects were viewing so-called domino
stimuli, (iii) an imagery experiment, in which the subjects had to
imagine one of the domino stimuli when prompted to. Next we
describe the stimuli used in these three parts.

(i) The retinotopic experiment consisted in rotating wedges and
expanding/contracting rings that flickered at a rate of 7.5 Hz.
The checkerboard pattern was superimposed on a uniform
grey field. The stimuli were projected onto a rear-projection
viewing screen mounted within the scanner. Subjects were
supine and viewed the display by means of a mirror placed
above their eyes and housed in a custom-designed head
piece. The duration of a complete stimulus movement was
32 s, and it was repeated eight times for either condition. The
wedge stimuli had one single lobe, with a maximal
eccentricity of 10.5° and an angular width of 40° (see Fig.
1(a)). The ring had an eccentricity between 0.8° and 10.5°. The
size of the display, which matched the red circle in Fig. 1(b),
was 21° diameter. The subjects were instructed to fixate a
central cross, and fixation was controlled using an eye-tracker
system.

(ii) In the domino experiment, two grids, situated on the left and
right parts of the visual field, and a central fixation cross were
presented to the subjects. The grid was surrounded by a disk
of 9.5° diameter. Every 8 s, a flickering pattern appeared in
several sectors of the grid. These patterns belonged to a set of
6 possible shapes (see Fig. 1(c)). The patterns were presented
simultaneously in the left and right visual field for a total of
36 combinations which were all presented once per fMRI
run, in a randomized order. Each subject performed four
sessions of this domino experiment.

(iii) Then the subjects were asked to choose one of the six
patterns. During the last session, the subjects viewed the



Fig. 1. Visual stimuli used in our experiments. (a) First the subject was involved in a classical retinotopic mapping experiment, in which he viewed flickering
rotating wedges and expanding/contracting rings. (b) In the domino experiment, the subject viewed groups of quickly rotating Gabor filters in an event-related
design. These disks appeared simultaneously on the left and right side of the visual field, superimposed on a low-contrast grid and a fixation cross. (c) There were
6 different patterns in each hemifield. (d) In a last session, the subject was presented with the same grid. When the central fixation cross (left) became a right
arrow (middle) or a left arrow (right), the subject had to imagine one of the six patterns presented previously, either in the left or right hemifield.
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same grid, but without any pattern presentation. The central
cross was changed to a small left/right arrow of the same size
(0.8°), prompting the subject to imagine the selected pattern
on the left or right side (see Fig. 1(d)). The arrow occurred 4 s
every 10 s interval and appeared a total of 36 times: 18 times
on the left side, 18 times on the right side. Once the
experiment was finished, the subject reported which pattern
he or she had chosen for the imagery experiment.

During all the scanning sessions, the subjects were instructed to
fixate the center of the screen. Eye movement were registered with
an ISCAN eye-tracker system, in order to ensure that fixation was
maintained. One subject did not fixate adequately, and the data set
was eliminated from the analysis.

Acquisition parameters, pre-processing
Functional images were acquired on a 3 T Bruker scanner using

an EPI sequence (TR=2000 ms, TE=40 ms, matrix size=64×64,
FOV=19.2 cm×19.2 cm). Each volume consisted of 35 3 mm-
thick axial slices without gap. The first four functional scans were
discarded in order to allow the MR signal to reach steady state.
Anatomical T1 images were acquired on the same scanner, with a
spatial resolution of 1×1×1.2 mm3.

Motion estimation was performed on each data set using SPM2
software (see e.g. Ashburner et al., 2004). The anatomical images
were then normalized to the MNI template of the SPM2 software,
and resampled. The interpolation of the functional data took into
account motion estimates, so that the normalized images were also
realigned. Resolution after interpolation was 2×2×2 mm3. No
other pre-processing was performed.

First-level analysis of the data

All data sets were analyzed using the General Linear Model
(GLM) implemented in the SPM2 software: retinotopic sessions
were analyzed using sinusoidal regressors at the stimulus
frequency; the other sessions were analyzed by convolving the
activation onset vectors with a standard hemodynamic response;
standard high pass filtering (hfcut =80 s) and AR(1) noise
whitening were used. Activation maps were produced for each
experiment. In the retinotopic mapping experiment, these maps
show regions with significant activity at the stimulus frequency,
hence retinotopic regions. By contrast, the statistical images
resulting from the analyses of the domino and imagery experiments
were associated with occurrences of the stimuli. They could thus be
readily interpreted as stimulus-induced activation patterns.

The parameter maps of the retinotopic experiments were further
processed as indicated in (Sereno et al., 1995) in order to yield
polar and eccentricity maps (see also Appendix A.2). False
positives were discarded by retaining only the main connected
component of supra-threshold voxels, after thresholding at P<10−3

uncorrected. This systematically corresponded to a symmetric
occipital cluster. This yielded V (~10000–15000) voxels, according
to the subject. The retinotopic regions were divided into left and
right hemispheres using the segmentation of the anatomical image
by the Brainvisa analysis pipeline (Rivière et al., 2000).
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The domino experiment was analyzed on a trial-by-trial basis,
yielding trial-specific (ts) activation maps. Condition-specific (cs)
contrasts and activation maps were also estimated. For further
processing, both cs and ts maps were masked by the retinotopic
regions. Similarly, the imagery experiment was analyzed in order
to yield trial- and condition-specific images. All maps were
masked as the images of the domino experiment.

Explicit solution of the inverse problem

The explicit reconstruction of images in the visual field requires
the solution of a forward problem (definition of a mapping from
retina to cortical activity) and then the solution of an inverse
problem (visual image associated with a given activation image).
The global setting is described in Fig. 2.

Solution of the forward problem
We define a visual image as a function ρ that associates an

activity value ρ(p) with any point p on the retina R. In practice the
retina will be discretized on a grid of size P. In our setting, P is
100×100 to balance the competing demands of computational
efficiency and resolution. An activation image is a function ϕ that
associates an activation value ϕ(v) with any voxel v of the brain
volume. In practice the brain volume is restricted to a set of V
voxels that have retinotopically specific responses.

We use the following generative model: the visual stimulation ρ
is mapped to a functional image ϕ through a transfer operator T, i.e.
ϕ=T(ρ). The forward problem consists in estimating T. Since the
travelling wave paradigm used in the retinotopic mapping
experiment performs a complete sweep of the visual field, we
use the corresponding data to estimate T: let ρ1,…, ρn be the visual
images of the retinotopic mapping paradigm, and ϕ1,…, ϕn the
associated functional images, we search T such that

ϕi ¼ TðqiÞ þ ϵi;8ia½1 N n� ð1Þ
where ϵi is an additive (measurement) noise that models possible
mismatch. This noise will be assumed to be independently
identically distributed Gaussian and centered.

A priori T is a-possibly nonlinear-operator from RP to RV . Given
that the sizes P and V are well above 103, the direct estimation of T
Fig. 2. Illustration of the forward and inverse problem in an inverse
retinotopy framework. The forward problem consists in estimating explicitly
a transfer operator that maps a stimulus into an activation image. The inverse
problem consists in predicting the stimulus associated with an activation
image, given the transfer operator.
from Eq. (1) is impossible. Thus, we first assume that T is linear,
which is equivalent to a spatial superposition principle of visual
activations; this hypothesis is supported by recent experiments
(Hansen et al., 2004). If T is linear, it is fully specified by its behavior
on spatial Dirac functions (δp, p∈ [1…P]) in the input space. At this
point, we use physiological prior knowledge to estimate T. For each
voxel v∈ [1…V], we assume that there exist a point pv of the retina,
a positive real number (radius) λv and a real number γv (gain) so that

Tdp
� �

vð Þ ¼ gvexp �tp� pvt
2

2k2v

 !
þ ϵ vð Þ ð2Þ

where δp is a Dirac function on p, and [Tδp](v) is the associated
functional image evaluated at voxel v. This simply means that voxel
v is associated with a receptive field, i.e. a Gaussian kernel centered
on pv, with width λv, and that the gain of the filter is γv. The receptive
fields are assumed to be isotropic. This model is illustrated in Fig. 3.

Given model (2), the estimation of T boils down to the
estimation of the parameters (pv, λv, γv). Given Eq. (1), this
amounts to solving the following equations

pv;kv;gv ¼ argminp;k;g
Xn
i¼1

tϕi vð Þ

� g

Z
R

qi rð Þexp�tr�pt2

2k2 drt2 ð3Þ

However, due to the non-linear nature of the estimation
problem, we find an approximate solution by estimating (i) pv
first, then (ii) λv, then (iii) γv.

(i) The estimation of pv is standard in retinotopic mapping
experiments (Sereno et al., 1995). For completeness, we
detail it in the Appendix A.2.

(ii) The size λv of the receptive field could be determined from
the retinotopic data (Smith et al., 2001; Duncan and Boynton,
2003); however, here we prefer to rely on two models:

ðM1Þkv ¼ l0 ð4Þ
ðM2Þkv ¼ l1tpvt ð5Þ

In the first model the width of the receptive field is constant. In the
secondmodel, thewidth is proportional to the eccentricity of its center.
These two models are two possible simplifications of the current
physiological knowledge about receptive field size, which corre-
sponds to an increasing affine function whose characteristics depend
on the visual area considered (Smith et al., 2001). Model (M1) might
be a more robust choice on real data, given the strong non-linear
dependence of the model (3) on λv. An illustration of the results of the
inverse problem using (M1) or (M2) is given in Fig. 4. Thereafter we
retain the model (M1), where the constant l0 is 0.75° in the visual field.

(iii) Last, the estimation of γv from Eq. (3) is now straightforward
and is performed by linear regression.

Our estimation procedure thus yields

T̂q
h i

vð Þ ¼ ĝv

Z
R

q rð Þexp�
tr�q̂vt2

2 ˆk
2
v dr ð6Þ

Solution of the inverse problem
Once the operator T has been estimated, it can be used to infer

the visual image ρ associated with any activation map ϕ. In our



Fig. 4. Comparison of receptive fields models M1 and M2 when applied
in the solution of inverse problem described in Solution of the forward
problem. Left: the model M1 is used, resulting in a spatially stationary
smoothness of the reconstructed image. Right: using model M2, the
reconstructed images are rougher in the foveal region and smoother at
the periphery. The true stimulus is represented by five circles in both
cases. Note that these differences have little or no impact on pattern
identification.

Fig. 3. Receptive field model that is implemented in the forward model. Any
voxel v of the visual cortex is associated with a kernel centered on a retinal
point pv, with a width λv. The gain that maps the magnitude of visual activity
to BOLD activity is modeled by a parameter γv.

Table 1
Values of the parameters used in the forward/inverse retinotopy model

Parameter Value

pv Polar coordinates estimated
from the retinotopy data
(voxel-based)

λv 0.75°
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setting, the images ϕ are now those obtained from the domino or
imagery experiment.

If T̂ was invertible, the straightforward estimate of ρ would be

q̂ ¼ T̂
�1
ϕ ð7Þ

However, T̂ might not be invertible-neither in theory nor in
practice. The estimation of ρ must be regularized. This can be
simply cast in a Bayesian framework

PðqjϕÞ~PðqÞPðϕjqÞ ð8Þ
Given our Gaussian noise model hypothesis, the likelihood

writes

P ϕjqð Þ~exp � 1
2

ϕ�T̂q
� �

VΔ�1 ϕ�T̂q
� �� �

ð9Þ

where Δ models the uncertainty about the measurement ϕ. Note
that, assuming that Δ is diagonal,1 an estimate of this
uncertainty is provided by the GLM analysis when ϕ is a
parametric image.

Given the model (9) for the likelihood, it is natural to choose
the conjugate, hence normal prior

P qð Þ ¼ exp � 1
2
qVK�1q

� �
ð10Þ

This means that visual activations are expected to be zero, with a
spatial correlation structure provided by K. The prior can be a
simple shrinkage prior ðK ¼ l�1IPÞ, IP being the P � P identity
matrix and μ a positive constant, or it may involve some spatial
modeling (e.g. Kij=k(p(i)−p( j)), where k is some decreasing
function of the distance ∣p(i)−p( j)∣).

The solution of the inverse problem consists in minimizing the
following functional

WðqÞ ¼ ðϕ�T̂qÞVΔ�1ðϕ�T̂qÞ þ qVK�1q ð11Þ
Note that the covariance of the estimator ρ̂ can be estimated as

K̂q ¼ ðK�1 þ T̂ VD�1T̂Þ�1 ð12Þ
1 This amounts to assuming that the errors in the forward model are

γv Estimated by linear regression
(voxel-based)

μ 0.0001 ∑ij∣Tij∣
η 0.01
This allows to estimate the likelihood of an activation at a given

uncorrelated. This oversimplification is necessary for computational
reasons.
point r of the retina through the statistic

s rð Þ ¼ q̂ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂qðr;rÞ
q ð13Þ

This neglects the covariance between neighboring points, but
allows for an easy interpretation, since it yields the probability that
ρ(r) is indeed positive given our observation.

In practice, we initialize ρ to 0, and iterate the update rule

qðiþ1Þ ¼ qðiÞ � gjWðqðiÞÞ ð14Þ
η being small enough to ensure convergence. We have tried two
possible alternatives for K−1, namely K�1 ¼ lIP and

K�1
ij ¼

1 if i ¼ j
�0:25 if pðiÞ and pðjÞ are four−neighbors
0 otherwise

8<
: ð15Þ

The final difference was not very important but model (15)
performed slightly better and was used in our experiments. The
factor μ>0 – which characterizes the amount of regularization –

has to be set a priori. It was chosen to be proportional to the norm
of T̂. We noticed that halving it had little impact on the resulting
image.

The set of parameters used in the forward/inverse problem
is summarized in Table 1. Last, we have approximated Λρ

(see Eq. (12)) through the inverse of the diagonal part of
K−1+ T̂′Δ−1T̂.



Table 2
Correct classification rate of the trial-specific functional patterns across
subjects and hemispheres after explicit reconstruction of the stimuli in the
domino experiment

Subject Correct classification rate

Left hemisphere (%) Right hemisphere (%)

bru2773 41 65
bru2774 71 51
bru2782 69 53
bru2783 60 47
bru2784 42 43
bru3070 63 61
bru3071 69 56
bru3072 50 56

The chance level is 1/6, and a score of 27% is above chance level with a P-
value of 10−3.
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Evaluation of the inverse reconstruction
We have computed the correlation of the reconstructed pattern

with the different candidate patterns corr(i, s)=<τi∣s>∀ s∈S;
the predicted stimulus is then the best correlating one s*(i)=
argmaxscorr(i, s). The performance of the stimulus decoding can
then be assessed as the correct prediction rate P(s*(i)=σi).
Fig. 5. Explicit reconstruction of the condition-specific visual patterns τ obtained fo
visual field. The true stimulus is defined by five disks whose contour is superimp
reconstruction, all patterns can be identified with the true stimulus for both hemis
Classification of the trial-specific images

Let ϕ1,…, ϕn be a set of brain activation images associated
with a set of known stimuli σ1,…, σn. These images are those
of the domino experiment. Any classifier proceeds by learning
to discriminate between the images associated with a given
label Φs={ϕ

i∣σi= s} and the other images. Each image is
defined by its values on a number V of retinotopically specific
voxels.

We describe in the Appendix A.1, how classification
techniques can be used to learn the association between the set
of stimuli and functional data. Let us simply mention that it
relies on (a) the selection of a subsample of the voxels whose
activity is used to discriminate between stimuli, (b) the
construction of a decision function that gives generalizable
results and (c) a validation procedure that yields unbiased
prediction rates for the classification-based identification. It is
important to note that, in this procedure, the learning of the
association is performed on the domino data; this procedure does
not use the information collected in the retinotopic mapping
experiment, except for the definition of retinotopically specific
voxels. We have nevertheless studied in which visual areas the
most discriminative voxels of the classifier could be found across
subjects and hemispheres.
r subject bru3070: (top) left part of the visual field; (bottom): right half of the
osed on the reconstructed visual image. In spite of the imperfections of the
pheres by correlation analysis.



Table 4
Correct classification rate of the trial-specific functional patterns across
subjects and hemispheres in the visual stimulation experiment

Subject Correct classification rate

4 folds cross-validation LOO cross-validation

Left
hemisphere

Right
hemisphere

Left
hemisphere

Right
hemisphere

bru2773 81% 81% 70% 74%
bru2774 77% 73% 85% 70%
bru2782 78% 80% 85% 86%
bru2783 92% 96% 91% 94%
bru2784 83% 75% 85% 76%
bru3070 81% 88% 86% 90%
bru3071 93% 83% 96% 83%
bru3072 72% 87% 75% 88%
Means 82.5% (P<10−15) 83.4% (P<10−15)

The selection of significant features (P<0.1, FDR corrected), is followed by
a linear SVM analysis. Two cross-validation methods are used, left: learn on
3 sessions, then test on the fourth; right learn on all samples except one then
test on the left out sample. The chance level is 1/6, and a score of 27% is
above chance level with a P-value of 10−3.
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Results

Explicit reconstruction of the visual stimuli

The reconstructed visual images τ(r) (see Explicit solution of the
inverse problem) were correlated with the true stimuli, so that the
prediction was the best correlated input image. Note that these are ts
images, i.e. one for each trial. The rate of correct responses is given
in Table 2 for each subject and hemisphere. This rate varies between
41% and 71%, hence is significantly (P<10−11) above chance level
(1/6) in all cases, in spite of significant between subject variability.

An example of the condition-specific reconstructed maps τ(r) is
given for the two hemispheres of subject bru3070 in Fig. 5. The
correlation of the reconstructed visual patterns with the different
candidate shapes is given in Table 3 for this subject. Although the
most lateral part of the stimulus was imperfectly inferred, this
reconstruction allows for an unambiguous recognition of the true
stimulus in both hemispheres.

For comparison, the reconstructed images and correlation with
the candidate patterns are given as Supplementary Fig. 1 and Table 1
for subject bru3071. In general, the images reconstructed from the
other data sets have similar quality and correlation scores. The
average of the correlation scores across all subjects is given in
Supplementary Table 2.

We have also performed the reconstruction of the stimulus using
only voxels from area V1, which has been delineated from the
retinotopy experiment. This gives quite similar results as the
reconstruction fromall retinotopic voxels, in terms of visual appearance
and in terms of correlation. Reconstructed images and a correlation
table with the candidate patterns are provided as Supplementary
material Fig. 2 and Table 3 respectively for subject bru3070.

Classification of the trial-specific activation images

In the analysis of the domino experiment, we have selected the
voxels based on their ANOVA score, keeping only voxels with an
Table 3
Correlation of the reconstructed pattern with the different candidate patterns
for subject 3070

Ideally, the diagonal value should be 1, and the off-diagonal values should
be between 0 and 0.8, reflecting the correlation between the true stimuli.
In the present case, the maximal values of each row, indicated in bold font,
are actually in the diagonal, within the [0.3 0.8] interval.
activity significantly modulated by the domino category (P<0.1,
FDR corrected), see Appendix A.1.2. The activity of the selected
voxels is the input to a linear SVM classifier. Table 4 presents
results with two different cross-validation schemes: on the left part
of the table, three sessions (108 trials, see section Stimuli) are used
as the training samples and the fourth session (36 trials) as the
independent test set. This procedure is repeated four times and
classification rate is averaged across the four runs. On the right part
of the table, we performed a Leave-One-Out (LOO) procedure
where all samples except one are used to train the discriminant
model, which is then tested against the left-out sample. We
obtained between 70% and 96% correct classification, according to
the subject and the hemisphere. All 16 data sets were classified
significantly (P<10−11) above the chance level (1/6 or 16.7%
correct responses).

Across subjects and hemispheres, we found that 50–60% of the
most discriminative voxels were in V1, while only 20% were in V2
(ventral and dorsal). We did not try to study other visual areas,
since their delineation was not reliable enough from our retinotopic
maps.
Mental imagery: explicit reconstruction of the patterns

The imagery activation images were also submitted to the inverse
reconstruction procedure. We have tried to identify the pattern that
was imagined by the subject using separately the data from the left
and right hemisphere using condition-specific activation images, i.e.
the images being averaged across trials, and trial-specific activation
images. An example of condition-specific reconstructed pattern is
given in Fig. 6, together with its correlation with he correlations with
the candidate shapes.

In five out sixteen hemispheres (bru2774, right, bru2783, right,
bru3070, right, bru3071, left, bru3072, left ), we were able to
predict the stimulus that the subject had imagined – or reported to
imagine–by correlation of the reconstructed pattern with the
candidate patterns.

On a trial-by trial basis, we were able (i) to identify the laterality
(left or right hemifield) of the imagined pattern with significant



Fig. 6. (a) Explicit reconstruction of the condition-specific imagery pattern obtained for subject bru3070, in the left and right hemifields. The true pattern (as
stated by the subject) is given by the set of circles superimposed on the figure. Note from the color scale that the activation magnitude is clearly smaller than in
Fig. 5. (bottom) Correlation with the candidate shapes. The left hemifield is not identified correctly, while the right hemifield is. (b) The same data, for subject
bru3072. In that case, the imagined stimulus is also identified correctly in the right hemifield.
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accuracy, in five out of eight subjects and (ii) to identify the
imagined stimulus with significant accuracy in three hemispheres:
bru2783, right (78% accuracy, P<10−8), bru2784, left (44%
accuracy, P<0.006) and bru3071, left (39% accuracy, P<0.03).
Mental imagery: identification of trial-specific patterns through
classification

In this experiment we tried to identify the pattern that was
imagined by the subject using the data from the left and right
hemispheres separately. The method is similar to the one used for the
classification of the trial-specific domino activation maps (Classi-
fication of the trial-specific activation images), except for two
points.

(i) We compare a stringent feature selection scheme (P<0.05
after Bonferroni correction, see the left part of Table 5) with
the initial scheme (P<0.1 FDR corrected, see the right part of
Table 5).

(ii) The second difference lies in the validation procedure: for
each subject, we used the 144 visual trials of the domino
experiment as training samples, and the 18 trials of the
imagery experiment as test samples. The correct classifica-
tion rate thus indicates the correspondence between the
predicted shape and the shape reported by the subjects.

In the first experiment (Bonferroni P<0.05), we obtain
significantly above chance recognition rates in five of out of
sixteen hemispheres. Using the less stringent feature selection
method (FDR P<0.1), four cases remain above chance, but it
should be noticed that it dramatically improves (up to 83%) the
recognition rate in subject bru2773, right hemisphere. A possible
reason is that lenient feature selection schemes yield high
performance in some data sets with high signal levels, and poor
performance in data sets with lower signal levels.
Discussion

Inverse retinotopy

We have presented a model-based scheme to decode the
information carried by the occipital retinotopic cortex that was
successful in identifying the presented stimuli, significantly for all
subjects and hemispheres (see Table 2).



Table 5
Correct classification rate of the 18 trials of the imagery experiment, using a
discriminant model built on the 144 trials of the domino experiment of the
corresponding subject and hemisphere

Subject Correct classification rate computed by LOO (P-value)

Bonferroni P<0.05 FDR P<0.1

Left
hemisphere

Right
hemisphere

Left
hemisphere

Right
hemisphere

bru2773 11% (0.83) 44% (0.005) 11% (0.83) 83%
(1.04e−9)

bru2774 28% (0.17) 0% (0.96) 17% (0.6) 0% (0.96)
bru2782 33% (0.07) 17% (0.6) 17% (0.6) 17% (0.6)
bru2783 0% (0.96) 6% (0.96) 0% (0.96) 11% (0.83)
bru3070 67%

(2.19e−5)
40% (0.03) 73%

(1.94e−6)
20% (0.47)

bru3071 0% (0.96) 11% (0.83) 0% (0.96) 6% (0.96)
bru3072 50%

(1.13e−3)
38% (0.02) 44%

(5.3e−3)
39% (0.02)

The left and right parts of the table differ on the feature selection method.
Each rate is given with P-values computed relative to the null hypothesis
that the classifier was operating at chance level. Significantly greater than
chance results are emphasized with a bold font. Non-significant results are in
grey. The chance level is 1/6, and a score of 33% is above chance level with a
P-value of 0.05.
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These results confirm that (i) retinotopic activations in the
primary visual cortex are reproducible across trials and sessions,
(ii) the retinotopic information obtained with the now classical
traveling wave paradigm (Engel et al., 1997) can be used as a code,
as suggested in (Tootell et al., 1998b; Vanni et al., 2005), and (iii) a
linear filter model for V1 (Hansen et al., 2004), that we use in our
forward model, holds as a first approximation.

An important new feature of our approach compared to recent
contributions (Haynes and Rees, 2005; Kamitani and Tong, 2005)
is that we compare classification techniques that model implicitly
the stimulus/activation relationship with the explicit resolution of
an inverse problem. Importantly, these techniques are based on
different hypotheses:

• Supervised classification assumes that reproducible differences
might be found between functional images, so that the
associated stimulus can be inferred. The important issue is to
identify and select the discriminating information and to assess
its reliability. Cross-validation and heuristic arguments are used
to solve the problem. The acquired knowledge is restricted to the
categories presented in the learning set.

• Inverse reconstruction builds on a model of the activation
process, with explicit simplifying assumptions. The main issue
is to find a simplified model that remains consistent with the
data. The inverse problem can then be solved in a rather
systematic way, and with any kind of input data: the initial
retinotopic mapping is assumed here to yield a generalizable
model of any visual activation.

As we have noticed, SVM-based classification yields more
accurate results than the inverse problem; the price to pay is that it
is not as general. But a key point is that the high performance of
classifiers indicates that sufficient discriminant information is
indeed present in the data, even if it was not explicitly decoded:
some identification failures in the inverse problem can thus be
attributed to shortcomings of the model rather than insufficient
information in the data (which might e.g. be related to the
performance or attention of the subjects).

Mental imagery

Moreover, we were able to extrapolate our predictions from
passive viewing experiments to mental imagery in some of the
subjects, with particularly strong evidence when using classifica-
tion tools. These latter findings are consistent with the hypothesis
that mental imagery involves activation in the primary visual areas,
and that the spatial structure of these activations is accounted for
by standard retinotopic mapping (Kosslyn et al., 1999; Klein et al.,
2004; Slotnick et al., 2005).

If inter-subject differences play a mild role in the performance
of inverse retinotopy algorithms applied to actual visual stimuli,
they might have more impact on the results of the imagery
experiment. In particular, the different subjects reported more or
less subjective difficulty in the task performance, as already
noticed in the literature (Kosslyn et al., 1984). This is clear in Table
5, where the performance in the prediction of the laterality varies
strongly across subjects. One can also notice that in O'Craven and
Kanwisher (2000), mental imagery activations were decoded in
three out of eight subjects. In view of this, the good performance
achieved in five hemispheres is thus an important result (if
responses were random, the probability of obtaining significant
values in five hemispheres would be P<0.00043). The explicit
identification of the imagined pattern is a challenging task, due to
the weak signals that are obtained (see Fig. 6). Note that, besides
the well-known weakness of retinotopic activations in imagery
experiments (Klein et al., 2004), the subjects had to keep their eyes
open and fixate the grid during this experiment, which might have
reduced the level of activation in primary visual areas.

Technical aspects

Care should be taken when evoking fMRI-based brain reading
experiments. In particular, any method rests on a deconvolution of
the hemodynamic responses on a voxel-by-voxel basis. We have
performed this using a standard GLM procedure, which is
reasonable given that the temporal linearity hypothesis might be
fulfilled given our inter-stimulus intervals (6 s) (Boynton et al.,
1996; Soltysik et al., 2004). One might think, however, that
unmodeled spatio/temporal interactions may be present in the data.

Another set of simplifications were introduced in our formula-
tion of the forward model: linearity of the transfer operator,
isotropic Gaussian receptive field (RF) structure at the voxel level,
constant RF size, linear gain. While this model might be partially
supported by current knowledge about V1 (Tootell et al., 1998b;
Hansen et al., 2004), it is obviously an over-simplification
(Olshausen and Field, 2005), especially if one considers higher
visual areas. However, it is important to keep in mind that fMRI
signals represent in each voxel the average of the activity of
thousands of neurons, so that some hypotheses, e.g. the spatial
linearity or superposition principle used here, that are known to be
violated at a microscopic level, may hold approximately at the
much lower spatial resolution and/or using standard field strength.
Clearly, our forward problem framework may be a good bench-
mark to test violations of different hypotheses, e.g. the spatial
linearity of visual activity as seen in fMRI (see e.g. Shmuel et al.,
2002, 2006). For instance, we have also implemented Mexican hat
filters (Laplacian of the Gaussian), but did not find significant
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improvements in the results. Our interpretation is that the main
bottleneck in the forward/inverse problem is the correctness of the
estimate of pv in each voxel (see Eq. (2) and Appendix A.2).
Assuming that this parameter is perfectly known, modeling non-
linear effects or non-isotropic and non-Gaussian Receptive fields
would become worthwhile.

We found that a majority (50 to 60%) of the most discriminant
voxels used in the classifier were in V1, while a much smaller
proportion (around 20%) were in V2. Since this delineation was not
the primary goal of our analysis, we were not sure to obtain reliable
boundaries for other visual areas and did make further identification
of the discriminative information. One could indeed expect that most
of the information on the spatial layout of the stimulus would be
encoded in V1. In the Supplementary material, we show that
performing the inverse reconstruction basedonly onV1voxels yields
a very good approximation of what is achieved when considering all
the retinotopic voxels (see Supplementary Fig. 2 and Table 3).

The inverse problem is also limited by the possibility of
evaluating correctly the precision of the results (see e.g. Eq. (12)).
Approximations must be performed, so that the probabilistic
interpretation of the visual patterns is not fully assessed. For this
reason, we based our test procedure on the correlation of the
reconstructed pattern with the possible candidates, rather than on a
fully probabilistic interpretation of the reconstructed maps.

Power and limits of inverse retinotopy

First, it should be noticed that the retinotopic mapping was
performed in less that 20 min in each subject, so that the limited
accuracy of the retinotopic information may be the main limit in
this experiment.

Not unexpectedly, many confusions occurred between spatial
patterns that overlapped. For instance, the -shaped and -shaped
patterns in Fig. 1(c) were often confounded. Moreover, the -shaped
pattern was rarely identified in the framework of the inverse
problem: it is interesting to note that this pattern is the least
compact. This might be attributable to the low-pass filtering
inherent to the inverse problem. This effect is particularly evident
from Fig. 5 and Supplementary Fig. 1, and affects the results at
the group level (see Supplementary Table 2). Interestingly, the

-shaped stimulus was not confused with other patterns when
using classification tools. Thus the problem described here might be
an intrinsic shortcoming of the forward/inverse problem solution.
Another important effect is that the portion of the stimulus closest to
the center of the visual field is apparently much better reconstructed
than the activity in the peripheral regions, which is often smoothed
out in Fig. 5—and similarly for all the data sets studied. This
weakness is apparently not related to the receptive field size model
(see Fig. 4), and might be related to spatial/attentional modulations.
For instance, the fact that left and right patterns were presented
simultaneously facilitates fixation, but possibly increases foveal
attention at the expense of the periphery. Note that this foveal
emphasis effect is apparently also present in the imagery data (see
Fig. 6).

Conclusion and future work

We have presented an inverse retinotopy framework that builds
on two complementary points of view: an explicit inverse
reconstruction approach that builds on the knowledge of a
retinotopic experiment to decode any activation image projected
on early visual areas, and an SVM-based classification
approach that best classifies images into a discrete categories.
We could partly extrapolate these models from passive viewing
to mental imagery experiments, confirming the retinotopic
nature of imagery activations. Future work might concentrate
on intermediate approaches where the forward/inverse problem
could benefit from the support vector framework. Long-term
research might address more realistic simulations of activation
phenomena in the visual cortex, making the forward model
more realistic.
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Appendix A

A.1. Classification of functional images with
retinotopically-specific information

Let ϕ1,…, ϕn be a set of brain activation images associated
with a set of known stimuli σ1,…, σn. Any classifier proceeds by
learning to discriminate between the images associated with a
given label Φs={ϕ

i|σi= s} and the other images. Each image is
defined by its values on a number V of retinotopically specific
voxels.

A.1.1. Multivariate analysis and the risk of overfit
The discrimination function is efficient if it combines the

information from many of these voxels: classifiers are thus
inherently multivariate methods. Henceforth, we call feature a
voxel-based information, sample an image of the learning or test set
and label the indicator of the stimulus associated with an image.
Many features, i.e. non-retinotopically specific voxels, do not carry
any discriminant information, and thus they do not improve the
classifier performance. When the proportion of such useless features
increases, some of them are simply correlated with the associated
label within the training set by chance, and their information cannot
generalize to another set of samples (test samples). Those fake
positives may dramatically harm the classifier performance. This
problem, known as the curse of dimensionality, is illustrated in Fig.
7. The number N of features increases along the horizontal axis, so

that the ratio
n
N

decreases: the training space becomes sparser. As

shown by the blue line, the classifier rapidly reaches 100% of correct
recognition on the training samples. In parallel, the performance of
the classifier on an independent test set of images increases until it
reaches a maximum of 86% recognition for N=150 as shown by the
red line. Then it starts to decrease as N further increases.

To overcome this problem, we first apply a feature selection
(described in Appendix A.1.2); the selected features are then given
as input to a linear Support Vector Machines (SVM) classifier,
presented in Appendix A.1.3.
A.1.2. Classification step one: feature (voxels) selection
Feature selection is a crucial step of classification: it improves

the generalization power of a classifier and it is also useful to select



Fig. 7. Recognition rate (evaluated by a Leave-One-Out scheme) as a
function of the number of input features (voxels) for the subject bru2782, left
hemisphere. We measure the recognition rate of the classifier on the training
set and on an independent test set when the number N of input features varies
from 1 to 800.
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a small subset of discriminant features, which is a requirement to
interpret results in biological applications such as neuroscience or
even genomics. Among feature selection methods (Guyon and
Elisseeff, 2003), we choose a supervised univariate method based
on the computation of an ANOVA F and P-values. This simple
feature selection approach belongs to the family of methods called
filters. Filters are supervised univariate methods that rank features
independently of the context of others features, according to their
ability to separate the populations. Such methods are computa-
tionally efficient, which makes them tractable even on thousands of
features as in our case. Unlike PCA, filters select the features in the
original feature space which eases the interpretation in terms of
discriminant information; moreover, these methods are less prone
to overfitting than multivariate selection methods in general.

We first perform an ANOVA to compute to which extent the
features are label-related; this yields an F and a P-value. We select
the features with two different methods for the control of false
positives.

In the first case, we select significant features (P<0.05) after a
Bonferroni correction. When doing so, we have a strong control
of the type I error (the number of false positives) selecting few
but reliable voxels which minimize the risk of overfit. We use
this very stringent method in difficult problems like mental
imagery (Mental imagery: identification of trial-specific patterns
through classification).

In the case of visual stimulation (trial-specific images of the
domino experiment, see the results in Classification of the trial-
specific images), the risk of overfit is lower. Hence we want to
reduce the type II error in order to grab more discriminant features
as input of the classifier. Thus we select significant features
(P<0.1) after a False Discovery Rate (FDR) (Benjamini and
Hochberg, 1995) correction.

A.1.3. Classification step two: linear SVM
Support Vector Machines (SVMs) (Schölkopf and Smola,

2002) have recently been successfully used in fMRI applications
(Cox and Savoy, 2003; LaConte et al., 2005; Kamitani and Tong,
2005). Briefly speaking SVMs build their discriminant model as a
linear combination of critical training samples. Those samples
called Support Vectors (SVs) are either samples that lie close to
the boundary of the two classes or samples that cannot be
correctly classified. The success of SVMs on real data may be
explained by their design which properly deals with few samples
in high dimensional spaces: in a N-dimensional space with n
samples, SVMs are fully parameterized with n+1 parameters,
while e.g. Linear Discriminant Analysis requires the estimation of
N(N+3) /2 parameters. This simple fact may explain the good
behavior of SVMs in high dimensional spaces. Another argument
is that the SVM model enhances the parsimony of the
discriminant model: SVMs not only attempt to perform a good
classification of the training samples, as a perceptron algorithm
does, but also constrain the discriminant model to be as simple as
possible, i.e. a model in which the number of SVs is minimal.
The choice of a linear SVM instead of a radial SVM (Schölkopf
and Smola, 2002) has been done after simple experiments
conducted on one of the subjects (bru2782, left hemisphere),
without any feature selection procedure. The linear SVM reaches
62% of correct classification while the radial SVM only reaches
22%. It is noticeable that the superiority of linear SVM has also
been reported in Cox and Savoy (2003). The cost parameter
(Schölkopf and Smola, 2002) of the linear SVM has been set to 1
and the implementation comes from LIBSVM (http://www.csie.
ntu.edu.tw/~cjlin/libsvm).

A.1.4. Validation
Validation is a simple but crucial point that must be carefully

conducted in order to assess the quality of a discriminant model
without any methodological bias. The classical way is to perform
an out-of-sample validation which consists of: (i) setting aside an
independent set of subjects (the test set), (ii) learning on the
remaining subjects (the training set) and (iii) testing the
discriminant model on the test set. Cross-validation or bootstrap
validation repeats the previous procedure and averages the errors
on test sets. The limit case of cross-validation is the Leave-One-
Out procedure where only one subject is set aside. It should be
noticed that feature selection is the first step of the discriminant
model, thus it must be performed within the cross-validation loop,
only on the training samples, and not as a pre-processing on all
samples before the cross-validation.

A.2. Analysis of the retinotopic maps: estimation of pv

We detail here how the voxel-based time courses during the
retinotopy experiment can be used to infer the center pv of the
receptive field associated with any voxel v. Note that this is the
standard procedure used to analyze retinotopic mapping experi-
ments (see e.g. Sereno et al., 1995).

Let ϕi(v), i=1: n be the values of the fMR images at voxel v
during one retinotopic mapping session (e.g. the clockwise rotating
wedge). The stimulation is periodic with a period T0=32 s, i.e. a

rotation speed x0 ¼ 2p
T0

. Fourier analysis of ϕi(v) yields

ϕiðvÞ ¼ AðvÞcosðx0i� hðvÞÞ þ wi ð16Þ

where A(v)>0 is an estimate of the amount of activity at frequencyx0

2p
in ϕi(v), θv the phase associated with voxel v and w the

unmodeled signal. Note that the estimation of (A(v), θ(v)) can be
cast in the framework of the general linear model since Eq. (16) is
equivalent to

ϕiðvÞ ¼ A1ðvÞcosðx0iÞ þ A2ðvÞsinðx0iÞ þ wi ð17Þ

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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where A1(v)=A(v) cos(θ(v)) and A2(v)=A(v) sin(θ(v)). This
enables us to use standard high-pass filtering and AR(1) residual
whitening that are commonly used in fMRI data analysis
(Ashburner et al., 2004). Note that Eqs. (16)–(17) rest on an
approximation in which only the fundamental frequency of the
stimulus is considered. Although we have also used more
complete models of the retinotopic activity, there was little
difference regarding the estimation of θ(v), which is ultimately the
parameter of interest.

Before turning to the analysis of the phase information, let us
first notice that the assessment through a standard Fisher statistic
that ||A(v)||2 >0 yields retinotopically specific voxels.

Then θ(v)∈ [−π, π] measures the delay of ϕv with respect to the
activity in a reference region, which is equal to the polar angle
between pv and the reference direction, biased by an hemodynamic
offset. This offset is nicely canceled out by averaging the value of
θ(v) across both directions of phase change. We end up with an
estimation of the polar angle α(v)∈ [−π, π] of pv. Similarly, the
analysis of expanding/contracting ring stimulus provides us a
phase eccentricity value θv∈ [−π, π], which is not biased by the
hemodynamic delay. The latter value is converted to a physical

eccentricity f vð Þ ¼ d
2p

pþ h vð Þð Þ, where δ=9.5° is the maximal

visual eccentricity achieved by the stimulus.
The values define uniquely an estimate p̂v ¼ fðvÞcosðaðvÞÞ

fðvÞsinðaðvÞÞ
� �

of pv.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2006.06.062.
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