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Determining the state of consciousness in patients with disorders of consciousness is a challenging practical and theoretical prob-

lem. Recent findings suggest that multiple markers of brain activity extracted from the EEG may index the state of consciousness in

the human brain. Furthermore, machine learning has been found to optimize their capacity to discriminate different states of

consciousness in clinical practice. However, it is unknown how dependable these EEG markers are in the face of signal variability

because of different EEG configurations, EEG protocols and subpopulations from different centres encountered in practice. In this

study we analysed 327 recordings of patients with disorders of consciousness (148 unresponsive wakefulness syndrome and 179

minimally conscious state) and 66 healthy controls obtained in two independent research centres (Paris Pitié-Salpêtrière and Liège).

We first show that a non-parametric classifier based on ensembles of decision trees provides robust out-of-sample performance on

unseen data with a predictive area under the curve (AUC) of ~0.77 that was only marginally affected when using alternative EEG

configurations (different numbers and positions of sensors, numbers of epochs, average AUC = 0.750 � 0.014). In a second step,

we observed that classifiers based on multiple as well as single EEG features generalize to recordings obtained from different

patient cohorts, EEG protocols and different centres. However, the multivariate model always performed best with a predictive

AUC of 0.73 for generalization from Paris 1 to Paris 2 datasets, and an AUC of 0.78 from Paris to Liège datasets. Using

simulations, we subsequently demonstrate that multivariate pattern classification has a decisive performance advantage over

univariate classification as the stability of EEG features decreases, as different EEG configurations are used for feature-extraction

or as noise is added. Moreover, we show that the generalization performance from Paris to Liège remains stable even if up to 20%

of the diagnostic labels are randomly flipped. Finally, consistent with recent literature, analysis of the learned decision rules of our

classifier suggested that markers related to dynamic fluctuations in theta and alpha frequency bands carried independent informa-

tion and were most influential. Our findings demonstrate that EEG markers of consciousness can be reliably, economically and

automatically identified with machine learning in various clinical and acquisition contexts.
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Introduction
Patients suffering from disorders of consciousness (DOC)

demonstrate that it is possible to be awake in the absence

of behavioural evidence of consciousness (Laureys et al.,

2010). Despite best efforts for consistency, current diagnos-

tic procedures rely on human interaction and are, therefore,

error-prone (Rohaut and Claassen, 2018). The degree of

misdiagnosis in patients with DOC may exceed 40%

when relying on the clinician’s judgement without standar-

dized behavioural assessments (Schnakers et al., 2009).

Even when using diagnostic instruments such as the

Coma Recovery Scale-Revised (CRS-R) (Giacino et al.,

2004), misdiagnosis can remain high if patients are not

assessed repeatedly within a short time window (Wannez

et al., 2017). Furthermore, in some cases evidence of con-

scious processing in these patients can only be obtained

using functional neuroimaging where patients sometimes

demonstrate wilful modulations of their brain activity

(Owen et al., 2006; Monti et al., 2010). These patients

have been labelled as ‘covert awareness’ or ‘cognitive

motor dissociation (CMD)’ patients (Gosseries et al.,

2014; Schiff, 2015; Curley et al., 2018).

Among the DOC one distinguishes the comatose state,

the unresponsive wakefulness syndrome (UWS, historically

vegetative state), and the minimally conscious state (MCS)

(Giacino et al., 2002; Laureys et al., 2010). The presence of

eye-opening helps to distinguish UWS patients from coma-

tose ones (Jennett and Plum, 1972). Additionally, MCS but

not UWS patients show signs of awareness (i.e. visual pur-

suit in MCS– and command following in MCS+) (Bruno

et al., 2011) while neither achieving functional communi-

cation nor object use. It is nevertheless believed that these

patients can have a partial and fluctuating awareness of

themselves and their surroundings and are more likely to

recover (Luauté et al., 2010; Faugeras et al., 2018), which

emphasizes the importance of reliable diagnostic tools.

In the past two decades, non-invasive brain imaging has

supplemented behavioural assessments for detection of con-

sciousness. Sleep studies and neurological assessments have

early on revealed preferentially altered EEG amplitudes in

the delta (2–4 Hz), theta (4–8 Hz) and alpha (8–12 Hz)

frequency ranges (Emmons and Simon, 1956; Rosenberg

et al., 1977). PET revealed globally decreased glucose

uptake in patients with DOC as compared to healthy con-

trols (Stender et al., 2014). Several functional MRI studies

have documented disruption of functional connectivity

along diverse subcortical and neocortical pathways in pa-

tients with DOC (Demertzi et al., 2014). Ever since, ad-

vances in cognitive science have allowed one to infer

consciousness from increasingly fine-grained patterns of

brain activity. Accordingly, recurrent interactions between

higher-order neocortical networks, as well as the morph-

ology and complexity of brain dynamics in response to

stimulation have been related to the states of consciousness

(Tononi and Edelman, 1998; Dehaene and Naccache,

2001; Casali et al., 2013; Iotzov et al., 2017), which has

led to various types of putative markers of consciousness.

Following recent trends in neuroimaging, the increasing

number of neural markers of consciousness is likely to be

best approached with multivariate pattern analysis (MVPA)

(Naci et al., 2012; King et al., 2013b; Claassen et al., 2016).

Indeed, machine learning algorithms can be trained to best

predict the medical status of individual patients from un-

known combinations of physiological markers (for example,

Chang et al., 2005). Typically, a classifier is trained to op-

timally discriminate clinical labels based on brain data.

Generalization performance is then assessed by comparing

the predictions of the classifier to the actual diagnosis

when presented with unseen data. In the absence of inde-

pendent datasets, cross-validation is performed to estimate
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the out-of-sample performance by subdividing the data into

training and testing sets and averaging over testing set

scores. It is, however, noteworthy that cross-validation

tends to be too optimistic when sample sizes are small

(Varoquaux et al., 2016; Varoquaux, 2018; Woo et al.,

2017), rendering face-value interpretation of scores futile

for a significant proportion of neuroimaging studies.

Examples of MVPA for the study of patients with DOC

include the analysis of patterns of resting state functional

MRI functional connectivity (Demertzi et al., 2015), spectral

responses to command following (Goldfine et al., 2011;

Cruse et al., 2012) and cerebral metabolism to distinguish

locked-in patients from UWS (Phillips et al., 2011).

In this context, EEG is particularly interesting as this

neurophysiological technique conveys rich temporal in-

formation on cognitive operations and can be economic-

ally operated in a wide range of situations, potentially

enabling bedside or home assessment. The challenge of

processing large amounts of EEG data at scale can now-

adays be addressed using automated EEG processing

methods (Engemann et al., 2015; Jas et al., 2017).

However, preferences for cognitive theories and EEG

methodologies are heterogeneous across laboratories,

which significantly obstructs the development of large-

scale data resources well suited for high-fidelity machine

learning. The emerging EEG markers, so far, fall into

four conceptual families. Evoked markers are based on

time-locked event-related analysis of cognitive experi-

ments. The other families contain markers defined inde-

pendently from protocols, including, connectivity markers

exploiting brain–network interactions, information theory

markers capitalizing on information properties of time

series and spectral markers quantifying neuronal oscilla-

tions or stochastic band-limited dynamics. Yet, the situ-

ation is further complicated by the fact that DOC reflect

several cognitive and neurological components rather

than a single dimension, motivating the consideration of

marker profiles (Bayne et al., 2016; Sergent et al., 2017).

In a recent study, using a support vector machine (SVM)

classifier, Sitt et al. (2014) analysed dozens of EEG mar-

kers from more than 150 high-density EEG recordings

during an auditory novelty task. Interestingly, combin-

ations of markers synergistically outperformed single

markers. Similarly, using graph-theoretical summaries

of alpha-band connectivity, Chennu et al. (2017) pre-

sented an alternative SVM approach cross-validated on

104 patients with severe brain injury (among those 89

with DOC).

Nevertheless, a generalized large-scale attempt for cross-

laboratory predictions of state of consciousness in brain-

injured patients is missing, and several practical questions

remain unanswered: what is the optimal duration for indi-

vidual EEG recordings? Which task should the patient

undergo, if any? How many sensors should be used, and

where should they be located? Can a single machine learn-

ing algorithm perform on data from different clinical cen-

tres? Do models based on current EEG markers achieve

prospective generalization on independent data (Woo

et al., 2017)? Are single markers sufficiently powerful and

when does multivariate classification provide the clearest

advantage?

To address these questions, we rigorously probed the ro-

bustness and validity of EEG markers of consciousness.

Using the robust Extra-Trees algorithm (Geurts et al.,

2006) we developed a classifier to differentiate UWS from

MCS patients (which we termed ‘DOC-Forest’). This clas-

sifier was trained and tested using 28 potential EEG mar-

kers of consciousness from 249 patients recorded at the

Paris Pitié-Salpêtrière and 78 patients from the University

Hospital of Liège. We first show that different EEG config-

urations (sensor number, sensor position and numbers of

epochs) and experimental protocols (auditory stimulation

or resting state) induce significant changes in the distribu-

tion and performance of the EEG markers. Yet, we found

that the DOC-Forest is relatively immune to such variations

by exploiting the information conveyed by reliable EEG

markers. We subsequently demonstrate out-of-sample gen-

eralization to two independent datasets: a new cohort of

107 task-EEG recordings (not previously analysed) from

Paris and 78 resting state EEG recordings from the

University Hospital of Liège. Moreover, we show that

our DOC-Forest’s generalization performance is decisively

superior to univariate markers. Finally, by investigating the

influence of individual markers on the decisions of DOC-

Forest, we found that alpha-band power, theta-band con-

nectivity and time series complexity carry complementary

information about states of consciousness.

Materials and methods

Ethics statement

This research project was approved by the ethical committee of
the Pitié-Salpêtrière hospital under the code ‘Recherche en
soins courants’ (routine care research). All investigations
were carried out in accordance with the Declaration of
Helsinki on ethical principles for medical research involving
human subjects. For the dataset from the Coma Science
Group, the family of the patient gave their informed consent
for participation in the study, and the Ethics Committee of the
University hospital of Liège approved the study.

Participants

In total, 327 EEG recordings from 268 distinct patients from
our expert centres were included in the current study (Table 1).
Patients were assessed at variable delays (sub-acute or chronic
stage following the brain injury) in order to clarify the actual
state of consciousness. Clinical assessments were performed at
least three times in the Paris dataset and five times in the
Liège dataset, in all cases on different days by trained clin-
icians (see ‘Acknowledgements’ section) and included system-
atically the CRS-R. CRS-R scores range from 0 to 23 and
reflect the presence or absence of response on a set of hier-
archically ordered items testing auditory, visual, motor,
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oromotor, communication, and arousal functions (Giacino
et al., 2004). According to the best assessment, each patient
was diagnosed with UWS or MCS. The data acquisition proto-
col included, in all centres, multiple clinical assessments and at
least one EEG recording. For some patients, several EEG
recordings were available, which we later accounted for by
statistical modelling. The number of recordings varied consid-
erably across datasets; however, the ratio of MCS to UWS
patients was roughly balanced. Across all datasets more male
than female patients were observed. Age distributions were
similar; however, the delay from accident was visibly higher
for the resting state dataset. Likewise, the distribution of
aetiologies was different for the resting state dataset while pro-
portions were consistent with the literature.

Experimental paradigm

In the Paris 1 and 2 datasets, task-related EEG signals were
obtained using the ‘Local-Global’ protocol (Bekinschtein et al.,
2009) designed to study unconscious and conscious auditory
processing. In the Liège dataset, EEG recordings were task-free
(see the online Supplementary material for details)

Selection and computation of
putative EEG markers of
consciousness

We extracted 28 putative EEG biomarkers detailed in Sitt et al.
(2014). The markers can be grouped into four conceptual
families, i.e. information theory, connectivity, spectral, and
evoked response markers (Table 2). Among several connectiv-
ity metrics described in Sitt et al. (2014), we only considered
the weighted symbolic mutual information (wSMI) metric in
theta frequency band as previous research had suggested that
the long-range connectivity patterns theoretically related to
consciousness are most robustly and accurately assessed by
this metric (King et al., 2013a). Note that for the analysis of
resting state EEG we did not make use of the evoked response
markers as those are only defined for the task used in the Paris
datasets. For a detailed description and discussion of the mar-
kers, see Sitt et al. (2014).

The markers commonly used in clinical neuroscience are
often defined at a general level and can be observed over mul-
tiple electrodes, time points or frequency bands. To delineate
low-level features, we computed four summary statistics from
each marker (Fig. 1). To summarize epochs, we either com-
puted the 80% trimmed mean, or the standard deviation (SD).
The sensor dimension was then summarized using a mean or
the standard deviation, yielding four combinations in total
(Fig. 1A). Throughout the manuscript we refer to these
marker subtypes as ‘mean,mean’, ‘std,mean’, ‘mean,std’ and
‘std,std’ and in figures, for brevity, ‘m,m’, ‘s,m’, ‘m,s’, ‘s,s’.
For a full list and abbreviations, see Table 2.

Computation was carried out using a designated Python
software library implementing the biomarker extraction func-
tionality from Sitt et al. (2014). The extracted markers closely
matched the original values and group results for the reference
datasets were qualitatively reproduced (Engemann et al.,
2015).

Statistical analysis

Classification of disorders of consciousness from

EEG markers

Diagnosis was classified based on EEG markers using a uni-
variate and a multivariate machine learning strategy. To enable
comparisons across studies, we also computed model-free per-
formance on single markers as in Sitt et al. (2014).
Performance was assessed using the area under the curve
(AUC). For details see Supplementary material ‘Area under
the curve metric’ section. For multivariate and univariate pat-
tern analysis, we chose the Extra-Trees algorithm (Geurts
et al., 2006) whose non-parametric design facilitates robust
classification. To complement insights from univariate classifi-
cation, we extracted the so-called variable importance metric
from the Extra-Trees following best practice recommendations
for enhanced interpretability (Louppe et al., 2013; Louppe,
2014). Accordingly, our variable importance scores reflect
mutual information between a variable and the diagnosis
while conditioning out the other variables. For background
information on parameters and model tuning, see
Supplementary material ‘Multivariate pattern classification’
section. To use a common currency when comparing

Table 1 Patient characteristics in the three datasets

Auditory local global task Resting state

Paris 1 Paris 2 Liège

n(EEG) 142 107 78

n(patients) 98 92 78

n(UWS) 75 52 21

n(MCS) 67 55 57

Gender ratio, male/female 2.06 1.93 1.26

Age, years, mean (SD) 46.5 (17.8) 45.4 (17.7) 38.0 (14.3)

Delay, days, mean (SD) 126.0 (372.9) 299.6 (823.6) 1040.6 (1227.6)

Delay, days, min–max 6–2611 8–6570 11–5380

Anoxia, % 29.6 30.4 21.7

Stroke, % 29.6 15.2 3.84

Traumatic brain injury, % 23.5 28.2 48.1

Other, % 18.4 29.4 21.8
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univariate with multivariate marker performance, we turned
single markers into fully functional classification models by
using the identical recipe as for the DOC-Forest, effectively
only changing the features passed to the classifier. This
allowed us to predict the probability of DOC diagnosis from
single markers using the same framework as for multivariate
analysis.

Statistical inference

We extended our visualizations into hypothesis tests by using
the percentile bootstrap (Efron and Tibshirani, 1993)
(Supplementary material). To assess out-of-sample generaliza-
tion we used two complementary approaches: a conservative
validation on independent data (new cohorts, different proto-
cols and laboratories) and cross-validation (Supplementary
material).

Software

All data were processed using the Python programming lan-
guage. To simplify preprocessing and feature extraction for
machine learning, we developed a designated software library
(available at https://github.com/nice-tools/nice) built on top of
the open source software libraries MNE (Gramfort et al.,
2014) and scikit-learn (Pedregosa et al., 2011). The DOC-
Forest recipe is publicly available (https://github.com/nice-
tools/nice) to encourage community efforts in building predict-
ive models of DOC patients’ state of consciousness.

Data availability

The clinical data used in this paper can be made available
upon reasonable request, but because of the sensitive nature
of the clinical information concerning the patients the ethics
protocol does not allow open data sharing.

Results

Robust detection of state-of-
consciousness from EEG features

Multivariate classification of UWS versus MCS is

robust across EEG configurations

The DOC-Forest classifier exhibited an average perform-

ance of AUC = 0.75 (SD = 0.014) and performed better

and more robustly than most other markers did individu-

ally (Fig. 2A, B, Supplementary Figs 1 and 2). Moreover, its

discrimination performance increased with the number of

sensors (rhoSpearman = 0.803, 95% CI: 0.646–0.891; P

50.001) and epochs (rhoSpearman = 0.40, 95% CI: 0.07–

0.668; P 50.05) (Fig. 2B) but was already strong with 16

sensors and 5% of epochs. Importantly, using the full EEG

configuration, the performance closely resembled previous

Table 2 Potential EEG biomarkers of consciousness

Abbreviation Marker Conceptual family Protocol

PE� Permutation entropy Information theory Task, rest

K Kolmogorov complexity Information theory

wSMI � Weighted symbolic mutual information Connectivity

a Alpha PSD Spectral

|a| Normalized alpha PSD Spectral

b Beta PSD Spectral

|b| Normalized beta PSD Spectral

d Delta PSD Spectral

|d| Normalized delta PSD Spectral

g Gamma PSD Spectral

|g| Normalized gamma PSD Spectral

y Theta PSD Spectral

|y| Normalized theta PSD Spectral

MSF Median power frequency Spectral

SE90 Spectral entropy 90 Spectral

SE95 Spectral entropy 95 Spectral

SE Spectral entropy Spectral

CNV Contingent negative variation Evoked Task

P1 Short-latency auditory potential to the first sound Evoked

P3a Mid-latency auditory potential to the first sound Evoked

P3b Mid-latency auditory potential to the first sound Evoked

GD–GS Full contrast Evoked

LD–LS Full contrast Evoked

LSGD–LDGS Full contrast Evoked

LSGS–LDGD Full contrast Evoked

�MMN Contrasted MNN (local deviant versus local standard) Evoked

�P3a Contrasted P3a (local deviant versus local standard) Evoked

�P3b Contrasted P3b (global deviant versus global standard) Evoked

GD = global deviant; GS = global standard; LD = local deviant; LS = local standard; MMN = mismatch negativity; PSD = power spectral density.
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results reported by Sitt et al. (2014) and beat any other

marker (Supplementary Fig. 2). These results suggest that

the DOC-Forest preferentially tracks information conveyed

by a few robust markers over a variety of EEG

configurations.

Using the full configuration, we subsequently assessed the

consistency of classification success for different aetiological

groups and different levels of chronicity (Supplementary

material ‘Consistency of classification results in diagnostic

subgroups’ section). Comparable results were obtained for

the chronic (delay 4 30 days) and acute (delay 4 30 days)

groups. The classification performance was significant for

all the aetiology groups (i.e. anoxia, stroke and traumatic

brain injury). Yet, in the case of traumatic brain injury

patients the performance was slightly lower, suggesting

that the heterogeneity of this group makes it more difficult

to classify. For additional fine-grained comparisons be-

tween single markers and the DOC-Forest, see

Supplementary material ‘Detailed comparison between in-

dividual markers and DOC-Forest’ section.

Classification is preferentially driven by distinct

theta- and alpha-band dynamics

While it is not convenient to reason separately about each of

the 2000 decision trees grown inside our DOC-Forest, we

can still analyse the relative contributions of EEG markers to

classification performance by considering the variable im-

portance. This multivariate metric approximates the mutual

information between a marker and the diagnosis while con-

trolling for the contribution of other markers. The variable

importance can deviate systematically from the univariate

AUC whenever information is shared between markers or

the model has identified non-linear interaction effects.

Inspecting all DOC-Forest classifiers for the 36 configura-

tions, we observed that markers contributing most strongly

on average belonged to different conceptual families (Fig.

2C). Specifically, permutation entropy and long-range con-

nectivity in the theta band and the alpha frequency band

power were top ranked in terms of univariate discrimination

and variable importance. In contrast, evoked markers, on

average, often assumed values below 0.89%, which is less

than would be expected if all markers were equally influen-

tial. We observed a positive but non-linear relationship be-

tween average AUC and average variable importance

(rhoSpearman = 0.817, 95% CI: 0.727–0.880; P 50.001). It

can be seen that highly performing markers were dispropor-

tionally more important than expected for a linear associ-

ation (Fig. 2C).

Exploiting invariant EEG features of
consciousness for generalization

Generalization to independent data, protocols and

configurations

Here we considered two independent cohorts: 107 task-

EEG recordings from the Paris Pitié-Salpêtrière Hospital

Figure 1 Extraction of EEG features. (A) The EEG markers fell into four conceptual families, i.e. spectral, information theory, connectivity

and evoked responses. When computing the markers from the preprocessed EEG, we obtained several observations for channels, epochs, time

points and frequency bins, depending on the family. Following Sitt et al. (2014), we extracted four features from each marker (indicated by the red

dots) by summarizing the observations systematically: we computed either the mean or the standard deviation first across epochs (1) and then

across sensors (2). If a third dimension was present (3), we summarized it using the mean. We, hence, referred to the ensuring four features as

‘mean,mean’, ‘mean,std’, ‘std,mean’ and ‘std,std’. (B) We repeated this process using six alternative sensor configurations (256,128, 64, 32, 16, 8)

and six alternative percentages of consecutive epochs (1, 5, 25, 50, 75, 100) with about seven epochs at 1% and about 700 epochs at 100%.

Sensors were selected such that they approximated realistic EEG caps respecting the international 10-20 system. Selection of epochs respected

the relative proportions of conditions used in the task. This allowed us to compute markers based on experimental contrasts at any point. This

yielded 36 alternative EEG configurations. D = deviant; freq. = frequency; G = global; L = local; S = standard; sens. = sensor; std = standard

deviation.
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(Paris 2) and 78 resting state EEG recordings by an inde-

pendent research group (Coma Science Group, Liège,

Belgium; see Table 2 for an overview). When training the

DOC-Forest on the Paris 1 dataset, and testing the algo-

rithm on the Paris 2 dataset, each time using the full EEG

configuration, we observed significant classification per-

formance with an AUC around 0.73 [standard deviation

(SD) = 0.05, 95% CI: 0.63–0.82] (Fig. 3A). Likewise,

when trained on all available data from Paris (Paris 1

and Paris 2) but ignoring the evoked markers (Table 1

and Fig. 1A), the DOC-Forest scored an AUC of 0.78

(SD = 0.06, 95% CI: 0.66–0.89) on the Liège resting

state data (Fig. 3B).

We subsequently assessed generalization of our classifier

trained on the Paris dataset to distinguish UWS versus

MCS to a dataset of 66 conscious controls. The DOC-

Forest classified 94% of the controls (Paris local-global

paradigm: 34 of 36, Liège resting state: 28 of 30) as

MCS. This result suggests that the patterns used by the

classifier to distinguish UWS versus MCS patients extrapo-

late to normal controls.

Furthermore, we detected two cognitive-motor dissoci-

ation patients in the Liège dataset. These patients were ori-

ginally labelled as UWS from their behaviour but showed

evidence of conscious processing using an active functional

MRI paradigm (see the Supplementary material for a brief

description of the two cases). Both cases were classified as

MCS by DOC-Forest.

Generalization using univariate markers

Less consistent results were obtained when using univariate

forests based on the markers from the connectivity,

information theory and spectral families, which showed

the highest cross-validation performance on the training

set. For Paris 1 (Fig. 3A) these were wSMI (mean,mean),

theta permutation entropy (mean,mean) and normalized

alpha power (std,mean) with scores of 0.75, 0.74 and

0.77, respectively. For the combined Paris 1 and 2 dataset

these were: theta wSMI (std,mean), theta permutation en-

tropy (mean,mean) and alpha band power (mean,mean)

with cross-validated scores of 0.69, 0.69 and 0.73, respect-

ively. All univariate models showed lower generalization

performance (0.04 to 0.14 AUC points) compared to the

DOC-Forest and only the alpha band classifiers performed

meaningfully better than a dummy classifier (Fig. 3,

middle). Comparing the variable importance to each mar-

ker’s out-of-sample performance, again, revealed posi-

tive non-linear associations (Fig. 3A and B, right,

rhoSpearman Paris 1!2 = 0.477, 95% CI: 0.312–0.620;

P5 0.001; rhoSpearman Paris!Liège = 0.521, 95% CI:

0.309–0.684; P5 0.001). The display reveals that several

univariate models showed reasonable generalization per-

formance with AUC values beyond 0.70. Highly perform-

ing markers were disproportionally more important for the

DOC-Forest than would have been expected assuming a

linear relationship.

Strikingly, generalization was even successful when dif-

ferent EEG configurations were combined, e.g. training

with 100% of the epochs and 32 sensors and testing

with 50% of the epochs and eight sensors, although this

induced decodable differences between training and testing

sets (Supplementary Fig. 3). On average, the DOC-Forest

performed significantly higher than any of the three corres-

ponding univariate forests (Table 3). Inspection of the

Figure 2 Performance of EEG markers of consciousness across different EEG configurations. (A) Performance distribution over

markers (grey: model-free in-sample performance; blue: cross-validation with univariate forests) and the multivariate DOC-Forest pattern

classifier (red) across 36 EEG configurations on the Paris 1 dataset. (B) DOC-Forest tended to improve as more epochs and sensors were used.

Although optimal performance was achieved with 128 electrodes, reasonable performance could still be obtained with only 16 electrodes and a

minimum of epochs. (C) Cross-validated univariate performance as a function of multivariate variable importance in the DOC-Forest, both

averaged across EEG-configurations. Marker subtype and conceptual family are indicated by shape and colour, respectively. A positive but non-

linear relationship emerged. The best univariate markers were disproportionally more important to the DOC-Forest as a linear relationship

would predict. It is noteworthy that markers from the spectral, connectivity and information theory families had the highest univariate per-

formance and were assigned the highest importance by the classifier while the evoked markers systematically less important. See also Table 2; m,m

= mean,mean; m,s = mean,std; PE = permutation entropy; sens. = sensor; s,m = std,mean; s,s = std,std.
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cross-configuration generalization patterns revealed that the

performance changes were far from random, favouring spe-

cific but distinct combinations of sensors and epochs for

both generalization tasks (Supplementary Fig. 4).

Robustness to noise

As the DOC-Forest seemed resilient to mismatching EEG

configurations, we conducted a computational stress-test by

adding noise to the markers in the testing set until classifi-

cation broke down (Fig. 5A). Unsurprisingly, across gener-

alization tasks, the univariate classifiers collapsed earlier at

signal-to-noise ratios (SNRs) between 1/10 and 1/100,

whereas the DOC-Forest endured longer, eventually failing

at SNR values of 1/1000. Another concern potentially lim-

iting generalization performance is the quality of the diag-

nostic information. We empirically assessed in a second

computational stress-test the stability of generalization

from Paris to Liège in the face of increasingly inaccurate

diagnostic training labels (Fig. 5B). By design, this

simulation forced the DOC-Forest to collapse and eventu-

ally yield systematically wrong predictions. However, the

classifier still delivered reasonable predictions even if up

to 30% of the diagnostic labels were flipped. Moreover,

the literature would predict between 6% and 17% of mis-

diagnoses (Wannez et al., 2017) for the three to five CRS-R

repetitions used in this study and, here, fall into the range

of resilient generalization. These results demonstrate that

the DOC-Forest is not only relatively robust to noise in

the data but also to noise in the diagnostic labels.

Discussion
We evaluated the robustness to different EEG configur-

ations and recording conditions of univariate and multi-

variate pattern based on 28 putative EEG biomarkers of

consciousness using the Extra-Trees algorithm. To the best

of our knowledge, our study represents the most extensive

Figure 3 Generalization between datasets and protocols. (A) Generalization from the Paris 1 cohort to 107 new EEG recordings from

Paris (task-EEG in both cases). Left: The ROC curves for the multivariate DOC-Forest and three univariate forests based on the feature that

performed best (cross-validation) on the training set corresponding to the connectivity, information and spectral families. Middle: Bootstrap

distributions of improvements over a dummy classifier based on paired differences, ordered by performance. Positive values indicate performance

better than the dummy model. Boxplot whiskers show the 95% CI. Right: The generalization performance of each marker against training-set

importance. The 10 most important features are labelled for convenience. (B) Generalization from 249 task-EEG (Paris 1 + Paris 2) to 78 resting

state EEG recordings (Liège) depicting an equivalent analysis as in A but not including the evoked response features. The results suggest

meaningful prospective generalization for the DOC-Forest while the univariate models were overall less successful. See also Table 2. m,m =

mean,mean; m,s = mean,std; PE = permutation entropy; sens. = sensor; s,m = std,mean; s,s = std,std.
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validation of a machine learning approach to diagnose

UWS versus MCS patients for two reasons. Our findings

are based on the currently largest EEG dataset of patients

suffering from DOC, comprising 327 recordings. Second, in

the context of DOC, the present study is the first to dem-

onstrate prospective generalization of multivariate pattern

classification between different centres, EEG configurations,

and protocols. We demonstrated that robust generalization

can be achieved despite non-trivial changes in the spatio-

temporal configuration of the EEG and that this general-

ization can be resistant to certain degree of uncertainty in

the training labels (up to 20%). We showed that by relying

on a robust classification algorithm, meaningful generaliza-

tion could be achieved even if the performance of individ-

ual markers varied systematically between datasets. While

certain EEG markers, i.e. alpha band power and its fluctu-

ations turned out to be useful as stand alone classifiers we

found that the advantage of multivariate over univariate

classification was most striking when systematic differences

between the training and testing sets were present.

Moreover, we found the DOC-Forest to preferentially

base its predictions on diverse aspects of alpha and theta

frequency band dynamics. Importantly, our results show

that EEG-markers of consciousness can be accessed equiva-

lently from task and resting state EEG.

Robust learning of UWS versus MCS
diagnosis from EEG markers of
consciousness

Our results demonstrate that diagnosis of UWS versus

MCS patients can be robustly inferred from multivariate

pattern classification using a wide array of EEG configur-

ations (Fig. 2A and B). This was also the case with a min-

imum of sensors (~16) and epochs (10–50) and even when

EEG configurations differed on the training and testing

data (Fig. 4, Supplementary Figs 3 and 4), e.g. when train-

ing on 10% of the epochs with eight sensors and testing on

all epochs with 256 sensors. We observed that many

Figure 4 Generalization between datasets and protocols when EEG configurations differ. (A) Generalization from Paris 1 to Paris 2

when 1296 different combinations of EEG configurations were used for training and testing (six sensors � six epoch configurations for each set).

The same univariate forest models as in Fig. 3 were considered next to the multivariate DOC-Forest. The distribution of AUC scores is indicated

by the histograms, single observations are indicated by the rug plot. The orange solid lines indicate the mean of the distribution, the orange dotted

line the performance when the reference configuration of 100% epochs and 256 sensors is used on both training and testing. (B) The same

analysis for the generalization from the joint Paris 1 and 2 dataset to the Liège dataset. It can be seen that, on average, the DOC-Forest

outperforms any of the univariate models. See also Table 2. m,m = mean,mean; m,s = mean,std; PE = permutation entropy; sens. = sensor; s,m =

std,mean; s,s = std,std.

Table 3 Average generalization performance over different EEG configurations

Generalization Contrast Difference 95% CI

Paris 1 ! 2 DOC-Forest - wSMI � (m,m) D = 0.124*** 0.122–0.125

Paris 1 ! 2 DOC-Forest - PE � (m,m) D = 0.097*** 0.096–0.098

Paris 1 ! 2 DOC-Forest - |a|(s,m) D = 0.035*** 0.033–0.037

Paris ! Liège DOC-Forest - wSMI � (s,m) D = 0.140*** 0.139–0.142

Paris ! Liège DOC-Forest - PE � (m,m) D = 0.118*** 0.115–0.120

Paris ! Liège DOC-Forest - a (m,m) D = 0.035*** 0.034–0.037

***P 5 0.001.

See also Table 2. m,m = mean,mean; m,s = mean,std; PE = permutation entropy; s,m = std,mean.
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individual markers were highly variable (Fig. 2A,

Supplementary Figs 1 and 2). Nonetheless, our DOC-

Forest fluctuated narrowly between AUC scores of 0.72

and 0.77 (Fig. 2D). Inspection of our classifier in terms

of the variable importance revealed a striking pattern

(Fig. 2C and Supplementary Fig. 1B). Markers that were

most influential for its classifications not only were the ones

with the greatest individual discrimination performance,

but also turned out to be less susceptible to changes in

the EEG configuration, noise on the EEG features and

noise in the diagnostic labels (Figs 4 and 5). Interestingly,

the overall relationship between univariate performance

and variable importance was not linear. As univariate

marker performance increased, marker importance

increased disproportionally, i.e. at the top of the distribu-

tion, a change in univariate AUC lead to a bigger change in

importance than at the bottom of the distribution. Our

findings, therefore, suggest that our DOC-Forest provides

robust learning of UWS versus MCS diagnosis by enhan-

cing the impact of robust EEG markers.

In this context, it may be interesting to consider the re-

cently issued warning that predictive variables are not ne-

cessarily the ones that differ significantly (Lo et al., 2015;

Bzdok et al., 2018). As the AUC can be regarded as a

rescaled Mann-Whitney U-test (Supplementary material),

significant univariate classification as in Sitt et al. (2014)

implies significant differences in a marker between the diag-

noses. The presence of univariate classification success and

its positive correlation with multivariate variable import-

ance suggests that, in the present study, more significant

variables were more predictive while less predictive vari-

ables were less significant.

Robust classification was driven by
distinct alpha and theta frequency
band dimensions

Our findings suggested that protocol-general markers were,

overall, more reliable. Strikingly, these markers, belonging to

different conceptual families, were all related to neuronal

dynamics in the theta and alpha range (Figs 3 and 4). The

robustness of these markers may be explained by the fact

that no excessive averaging is needed for their extraction and

their characteristic EEG topographies are simple and easy to

capture with few sensors. However, the tight relationship

between variable importance and conditional mutual infor-

mation (Louppe, 2014) suggests that these top performing

markers carry independent information. Indeed, recent re-

search has suggested a rather complex picture of functional

Figure 5 Computational stress tests. (A) The generalization performance of the DOC Forest and three univariate models as signal-to-noise

ratio is gradually reduced on the testing set. The noise was generated independently from Gaussian distributions with mean and variance

parameters from each feature with 50 realizations, scaled by the signal-to-noise ratio parameter and added to the testing set, such that at 1/10 the

noise was 10 times stronger than the signal. The standard deviation of performance over realizations is indicated by the shaded areas. It can be

readily seen that the DOC-Forest survives longest while at the same time decreasing its performance more slowly than each of the three

univariate models. In general, univariate models did not survive a signal to noise ratio of 1/100 or smaller while the DOC-Forest still showed

meaningful generalization performance beyond such low SNR values. (B) We estimated the impact of misdiagnosis on generalization empirically by

flipping the diagnosis labels for an increasing percentage of patients (0 to 100 in steps of five). To avoid bias and estimate variability, we randomly

draw patients at each percentage level and repeated the process 50 times. The median generalization performance is depicted by the boxplots

(whiskers show the 2.5 and 97.5 percentiles) and the mean performance by the superimposed red circles. The performance at 0% and 100%

flipping is shown by the red circles. For convenience, the percentage of misdiagnoses predicted from the number of CRS-R assessments reported

by Wannez et al. (2017) is superimposed by the coloured dotted lines. It can be seen that the mean generalization performance drops more slowly

between 10 and 30% than between 30 and 50% and remains reasonable even if up to 30% of the diagnoses are flipped. PE = permutation entropy.
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and pathophysiological landscapes. The complexity of theta-

band signals and their long-range interactions could reflect

distinct memory processes underlying consciousness, such as

access and maintenance (Axmacher et al., 2010). Similarly,

alpha-band power may reflect global arousal and demands

for dynamic inhibition required for functional encapsulation

of cortical networks (for an overview see Sadaghiani and

Kleinschmidt, 2016). Moreover, intact consciousness has

been related to the peak frequency of alpha and theta

band oscillations originating from distinct cerebral gener-

ators (Schiff, 2010; Williams et al., 2013). In fact, the meso-

circuit model predicts that the downregulation of the

thalamo-cortical circuits following a brain injury should be

directly associated to changes in the interactions within these

frequency bands observed in this study (Victor et al., 2011;

Schiff et al., 2014). Yet, this is further complicated by the

fact that these generators can be selectively disrupted for

different aetiologies and can show a variety of regional ef-

fects during anaesthesia (Purdon et al., 2013). While future

experimental research is desirable to disentangle these facets,

our findings suggest that the presence of independent physio-

logical sources of information may enhance generalization as

it is unlikely that all of their measurements will be corrupted

at the same time on new data.

But do our results imply that less important variables were

useless? Not necessarily. Many evoked markers enjoy a high

degree of neuroscientific validation and intuitively support

clinical reasoning. The P3 markers, for example, belong to

the most studied indices of consciousness in the EEG litera-

ture and are commonly used in brain computer interfaces

settings (Lulé et al., 2013). They have been related to pro-

cessing novelty in bottom-up information, the global neur-

onal workspace, access consciousness, and context-updating

(Donchin and Coles, 1988; Pins, 2003; Sergent et al., 2005;

Dehaene et al., 2006; Polich, 2007). Considering such mar-

kers for MVPA may, thus, improve interpretability.

Additionally, evoked markers indexing auditory novelty

have been shown to be rather specific than sensitive (King

et al., 2013b). Likewise, it could be the case that candidate

markers of conscious access, e.g. P3b, may be more relevant

to distinguish MCS+ from MCS– patients (Naccache, 2018).

Although being de-emphasized by the DOC-Forest, evoked

markers may still have contributed positively. Indeed,

excluding all evoked markers from the Paris 1 to Paris 2

generalization actually reduced DOC-Forest performance

marginally (AUC = 0.71, 95% CI: 0.618–0.807, SD =

0.049). One could, therefore, argue that, evoked markers

should be considered for MVPA of DOC whenever avail-

able, alongside a few robust markers.

EEG markers of consciousness are
shared between protocols and
contexts

In the field of clinical neuroscience, cross-validation is com-

monly used to assess MVPA performance. However, it has

been shown that cross-validation can give positively biased

performance estimates (Saeb et al., 2017; Varoquaux et al.,

2016; Varoquaux, 2018; Woo et al., 2017). Beyond cross-

validation, here, we demonstrated significant, positive gen-

eralization to independent EEG data from a different EEG

protocol recorded by an independent research group

(Fig. 4) and did not observe considerable deviations from

cross-validation scores. Generalization from the Paris to the

Liège dataset even showed marginal improvements over

cross-validation. As noted previously, this could not be ex-

plained by the absence of evoked markers. Precluding the

possibility of random selection bias, this may suggest that

either the signal quality or the diagnostic information may

have been more favourable on the Liège data. Interestingly,

compared to the best markers, i.e. alpha band power and

its fluctuations, the advantage of the DOC-Forest was only

marginal by a few AUC points. In contrast, the other re-

maining univariate models (based on theta band permuta-

tion entropy and theta wSMI) did not generalize

significantly. Thus, our findings demonstrate that single

markers can yield reasonable stand-alone classifiers but

also expose the difficulty of anticipating which marker

will actually succeed. Fortunately, MVPA potentially

solves this selection problem with greater success by learn-

ing predictive profiles of markers. Indeed, we observed that

DOC-Forest was more robust than individual markers

when using different combinations of EEG configurations

for training and testing. Likewise, we observed that univari-

ate classifiers collapsed earlier and faster than the DOC-

Forest as we experimentally corrupted the training data

(Fig. 5).

The significant generalization from task to resting state

EEG deserves separate consideration. It is conceivable that

EEG markers related to the so-called functional axis of

consciousness (Sergent et al., 2017), are accessible during

task and resting state EEG. Accordingly, changing states of

consciousness should impact markers of global house-keep-

ing functions such as alpha band power, global long-range

connectivity or signal complexity, irrespective of the con-

text. For instance, for a patient with locked-in syndrome

we observed EEG patterns similar to healthy persons

during rest (Rohaut et al., 2017) and here we also demon-

strate the discrimination of two cognitive motor dissoci-

ation patients from UWS patients from their resting state

EEG. This can be explained by that fact that we observed

significant generalization from task to resting state EEG by

several EEG makers, principally for alpha band power

(Fig. 3B, right).

Practical implications and
suggestions

How long should EEG recordings be to yield a useful

feature space for machine learning?

Our results suggest that reasonable results can be achieved

with a short duration EEG recording (30 s to 3 min). This
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potentially broadens the scope of protocols usable in prac-

tice and encourages development of fast, time-resolved, eco-

nomic screening tasks.

How many EEG sensors should be used?

When high-density nets are available, using the full config-

urations turns out to be beneficial for model fitting.

However, results based on 16 sensors from a 10-20 mon-

tage scheme are already encouraging. As a consequence,

this supports the idea that data can be successfully

pooled over various EEG systems even when the number

of electrodes differs.

Which EEG protocol should be used?

Both univariate and multivariate analysis suggested that

EEG markers of consciousness are accessible using task

and resting state data. This suggests that protocols can be

liberally combined in clinical practice and encourages the

development of simpler and faster screening routines as

compared to a full-blown cognitive experiment encompass-

ing hundreds of trials.

Can classification models generalize to data from

other sites?

Our findings demonstrate prospective generalization to new

data from younger cohorts and data from other research

laboratories. The use of robust methods is particularly rec-

ommended to alleviate problem of changing marker distri-

butions between datasets.

When should multivariate analysis be preferred to

predict diagnosis?

Multivariate classification is more resilient to changes of

marker distributions across datasets, be it because

of noise in the signals or in the training labels, differences

of populations or differences in EEG configurations

and protocols. Beyond optimizing accuracy, multivariate

classification models therefore yield more dependable clas-

sification performance.

How to extract biological insight from machine

learning models

Here we demonstrate how the careful inspection of multi-

variate variable importance scores supplements the univari-

ate analysis in qualifying interdependencies between EEG

markers. While such insight may also be obtained from

model coefficients of linear models, the variable importance

metric as used in this study is not limited to linear relation-

ships and does not necessitate explicit definition of non-

linear effects or interaction effects.

Besides these specific points, we want to emphasize that

we did not find one single globally best biomarker and that

using machine learning tools to robustly combine theoret-

ically heterogeneous markers is the recommended strategy.

Conclusion
In the current study, we demonstrate that electrophysiolo-

gical markers of consciousness can be robustly exploited

across contexts and protocols by relying on robust machine

learning techniques. In this context, the proposed feature-

extraction method based on multiple summary statistics

was particularly useful as it permits one to abstract away

specific sensor layouts, recording protocols and local EEG

methodologies. Future work will have to demonstrate if the

here-proposed ‘robust tool for detecting state-of-conscious-

ness in brain-injured patients’ can be extended to a ‘robust

neurophysiological marker of conscious state’. It will have

to be demonstrated that the proposed model can generalize

to other loss of consciousness scenarios, such as sleep or

anaesthesia. We wish that our findings and our publicly

released strategy for classification will contribute to build-

ing large datasets that could eventually enable intensely

data-driven, cross-centre approaches to treatment of se-

verely brain-injured patients and understanding the

neural-underpinnings of conscious processing.
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