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Objective: Diffusion imaging techniques such as DTI and HARDI are difficult to implement in infants because
of their sensitivity to subject motion. A short acquisition time is generally preferred, at the expense of
spatial resolution and signal-to-noise ratio. Before estimating the local diffusion model, most pre-
processing techniques only register diffusion-weighted volumes, without correcting for intra-slice artifacts
due to motion or technical problems. Here, we propose a fully automated strategy, which takes advantage
of a high orientation number and is based on spherical-harmonics decomposition of the diffusion signal.
Material andmethods: The correction strategy is based on two successive steps: 1) automated detection and
resampling of corrupted slices; 2) correction for eddy current distortions and realignment of misregistered
volumes. It was tested on DTI data from adults and non-sedated healthy infants.
Results: The methodology was validated through simulated motions applied to an uncorrupted dataset and
through comparisons with an unmoved reference. Second, we showed that the correction applied to an

infant group enabled to improve DTI maps and to increase the reliability of DTI quantification in the
immature cortico-spinal tract.
Conclusion: This automated strategy performed reliably on DTI datasets and can be applied to spherical
single- and multiple-shell diffusion imaging.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Imaging the diffusion of watermolecules byMRI enables the non-
invasive exploration of the tissues' microstructure. This is done by
making the MR signal sensitive to spin motion through the
application of diffusion gradients during acquisition [1]. To explore
the anisotropic structure of tissues, such as the fiber organization of
white matter, diffusion-weighted (DW) images are currently
acquired along several orientations of the diffusion gradients taken
on a single shell in the Q-space, for a fixed b-value, with models like
diffusion tensor imaging (DTI) and high angular resolution diffusion
imaging (HARDI). In DTI, MR measurements are performed along at
pin/Cognitive Neuroimaging
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bois).
;

least 6 orientations of the diffusion gradients. In comparison with
data averaging, increasing the number of orientations also improves
the signal-to-noise ratio (SNR) of the resulting diffusion maps. On
condition that orientations are uniformly distributed over the space
[2,3], it further enables amoreprecise spatial and angular estimationof
the diffusion model, thus improving the local estimation of the spatial
organization of tissues. But it also increases the acquisition time and
thus the risk of motion artifacts. Increasing the b-value improves the
reliability of diffusion models, but decreases the SNR. HARDI models,
such as Q-ball imaging (QBI), better explore the tissue microstructure
and anisotropy, but the acquisition of a high number of diffusion
gradient orientations is required. Therefore, a compromise between
image quality and acquisition time must be found.

Diffusion techniques are based on 2-dimensional (2D) acquisi-
tions with echo planar imaging (EPI), and slices are generally
acquired in an interleaved order. Because of diffusion gradients,
the acquisition time of a slice is of the order of 200 ms, which
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corresponds to a 10 s scan duration to cover thewhole brainwith 50
slices. If for instance 30 different orientations of the diffusion
gradients are acquired, the total acquisition time is at least 5 min
(plus the acquisition time for b = 0 images and calibration scans
required for parallel imaging). Consequently, motion can occur
during the acquisition of a slice (“intra-slice” motion) or a volume
(“intra-volume” motion), or between the acquisitions correspond-
ing to different orientations of diffusion sensitization (“inter-
volume” motion). It results in two kinds of motion-related errors:
1) artifacts within a volume (signal irregularities and potential
outliers with near-complete signal dropout that generate “black
stripes” artifacts along the slice direction, when images are viewed
from the side, or signal loss in a region of the brain, due to repeated
excitation of spins during slice selection); and 2) 3Dmisregistration
between the volumes acquired before and after the movement.
Other artifacts are also frequently observed in DW images,
independently of subject's motion, because of hardware problems
during acquisition like mechanical vibrations [4] or spike noise [5].
The impact of such corrupted data on DTI and QBI metrics has
recently been highlighted with simulations [6].

MR diffusion techniques are particularly informative to explore
the developing brain [7,8], but they are challenging in non-sedated
infants [9,10] because of their sensitivity to subject's motion. To
improve data quality, the first step is to optimize data acquisition.
Short acquisition times, relying on low orientation number, are
generally used, but at the expense of accuracy. DWI and DTI
sequences performed within a breath-hold of the mother have
been devised for fetal brain imaging [11]. Continuous scanning has
also been performed in order to acquire repeated series, whose
volumes have to be registered a posteriori [12]. Alternatively, DTI
acquisitions may be adapted in real time according to patient
motion, by continuously adjusting all applied gradients to compen-
sate for changes in head position [13], by identifying corrupted data
according to the position and themagnitude of the largest echo-peak
in the k-space [14], or by directly evaluating the quality of DTI maps,
which are estimated on-line [15]. The implementation of a self-
navigation scheme with variable density spiral acquisition gradients
has also enabled to remove both eddy current distortions andmotion
artifacts in the adult brain [16]. To deal with mechanical vibrations,
Gallichan and colleagues [4] recommended a full Fourier k-space
sampling, but this increases the minimum echo time and decreases
the slice number available per repetition time. In infants, specific
spatial distributions of diffusion orientations, which take into
account their temporal order during acquisition, have enabled to
reliably estimate the diffusion tensor even if the acquisition is
interrupted due to motion [3,17].

Another direction to deal with motion in DW images is to apply
post-processing correction strategies, which definitely help im-
prove the precision and accuracy of the metrics estimation in DTI
[18] and HARDI imaging [19]. The most common registration
technique corrects for eddy current distortions and 3Dmotion [20],
and is based on mutual information between diffusion orientation
volumes and a reference volume, with a subsequent rotation of the
B-matrix before analysis of DW images [20,21]. Integrating motion
in the signal model used for the tensor estimation seems to perform
superiorly compared with the conventional method [22]. In
pediatric patients, an automated reconstruction software has
recently been implemented [10], but it requires a dedicated
acquisition for Nyquist ghost calibration and parallel imaging
GRAPPA weight. These post-processing strategies hardly correct
for within-slice artifacts, which are frequently observed in rapidly
moving subjects like infants or due to mechanical vibrations or
spike noise. The easiest solution to deal with these artifacts is to
exclude thewhole corrupted volumes on a simple visual basis, but it
is time consuming, dependent on the experimenter and it also
potentially removes uncorrupted slices. Automatic detection of
outliers has previously been performed through linear correlation
coefficients between DW volumes [10], during a robust estimation
of the diffusion tensor [23], or by finding the local maxima on the
Laplacian of DW signals across diffusion orientations [24]. For the
correction of detected outliers, methods include removing such
voxels [23] or volumes [10], fitting the signal using linear regression
methods [4], or interpolating the Q-space signal directly on the
spherical shell [6]. Recently, an algorithm which detects and
removes outliers prior to 3D resampling, while takingmisalignment
into account, has been proposed [9]. Despite their respective
advantages, all these approaches also present some drawbacks:
rejecting instead of correcting the corrupted data, making hypoth-
esis on the diffusion model, etc.

Alternatively we here propose a global post-processing method-
ology for automatically correcting all motion-related artifacts in DW
images before computing the diffusion model. It is based on two
successive steps: 1) automated detection and 2D resampling of slices
corrupted by motion or technical problems (mechanical vibrations,
spike noise); 2) 3D realignment of orientation volumes misregis-
tered due to inter-volume motion and distortions stemming from
eddy current. This correction strategy was applied on DTI data
from 20 non-sedated infants, aged from 6 to 22 weeks. First, the two
steps of the methodology were validated by simulating motion
in an uncorrupted dataset. Second, we applied this strategy to all
infants, and we studied quantitatively the immature cortico-spinal
tract, because its development has already been detailed over this
age range.

2. Materials and methods

2.1. Description of the correction method

Our post-processing strategy takes advantage of a high diffusion
orientation number to correct for corrupted (also called outlier)
images. It relies on two successive steps: 2D resampling of the outlier
individual slices, followedby3D registration and correctionof the eddy
current distortions in the resulting volumes (Fig. 1). It is implemented
within BrainVISA [25] in the Connectomist toolbox [26].

2.1.1. Detection of outlier slices
To detect corrupted slices, the basic concept is to compare

the DW image for the ith orientation Oi to all the other orientations
(Oj, j ≠ i), for each slice independently. To do so, the b = 0 image is
used as a reference and, a distance between it and each DWOi image
is computed. The mutual information (MI) coefficient [27,28] was
chosen because it does not impose any particular relationship
between images (except sharing some information), which makes
the measurement independent of the grey level intensity that is
variable across diffusion orientations, and it is a reliable and robust
criterion to compare b = 0 and DW images and correct eddy current
distortions [29]. The outlier detection in a given slice s is done with a
simple criterion: slice s for the orientationOi is considered as an outlier
if its MI coefficient is not in the range: mean ± f x StdDev, where the
mean and standard-deviation (StdDev) of MI coefficients are comput-
ed over all orientations (the median values were systematically
computed and found almost equal to the means). The f factor is the
only parameter to be tuned once for a specific protocol (see below).
This strategy for outliers detection is fully automatic. Note that
several DW images (for different orientations Oi) may be corrupted
in the same slice. On the other hand, several slicesmay be corrupted
at the same diffusion orientation, which may reveal a weakness of
the gradient power amplifier or a vibration problem, in the absence
of motion.



Fig. 1. Schematic summary of the 2-step correction strategy. The successive steps to correct motion artifacts are detailed schematically.
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2.1.2. Resampling strategy of outlier slices
When an outlier is detected using the previous criterion, our

strategy consists of resampling it instead of discarding the
corresponding diffusion orientation from the set of available DW
data. Corrections are performed through resampling from the non-
outlier DW images in the Q-space. A decomposition of the DW signal
is performed over the non-corrupted orientations, by using the
modified spherical harmonics basis (SH) proposed by Frank [30]: for
acquisitions performed on a single shell q, the signal of each voxel

can be decomposed on this basis Ψ: S q u!
� �

¼ S0∑
j
SH q; jð ÞΨ j u!

� �
,

where u! represents a normed vector coding for the diffusion
orientation. This decomposition is limited to the 6th order to avoid
overfitting, and some regularization is introduced by Descoteaux and
colleagues to improve its reliability [31]. The resulting SH coefficients
are used to compute the “theoretical” signal values along the
orientations corresponding to rejected outliers. Thus, in a given slice,
corrupted DW images are replaced by these images interpolated
onto the SH basis computed from the set of non-corrupted DW
images. Such interpolation should be applied to images with
relatively high signal-to-noise ratio (greater than ~4) as the
Laplace–Beltrami regularization imposes a Gaussian noise model.

Note that the outlier detection and resampling are performed
first, independently for each slice and before the 3D volume
registration, because rapid-motion artifacts generally corrupt 2D
slices. Consequently, we cannot exclude potential contributions from
“inter-volume” motion. Nevertheless, these contributions are ex-
pected to be small in comparison with the potential impact of 2D
outliers on the 3D registration, and not thewhole volume ismodified
when only a single slice is corrupted (this hypothesis was tested by
simulations in Section 2.2.4.5). Furthermore, this approach does not
rely on strong hypothesis concerning the diffusion model, except
that it can be decomposed onto an SH basis, contrarily to a previous
approach which considered a diffusion tensor model [6].

2.1.3. 3D volumes registration of the different orientations
To correct both motion misregistration and eddy current

distortions, the volumes corresponding to the different diffusion
orientations are realigned according to an original strategy based on
mutual information. In the conventional strategy [20], all orientation
volumes are registered to the b = 0 volume, but registration may be
impaired by the difference in signal intensity from the cortico-spinal
fluid (CSF) between the b = 0 volume (high signal) and the DW
volumes (null signal). To gain in robustness, the 3D registration was
here performed in two consecutive steps. First, all orientation
volumes were registered to the first DW orientation volume
according to the maximization of 3D MI coefficients, based on an
affine transformation with shearing. Then the geometric mean

product of all DW volumes was computed: ð∏
N

i¼1
VOiÞ

1=N

, where N

represents the total number of orientations, and realigned to the
volume acquired with b = 0 s.mm−2. Second, all initial orientation
volumes were registered to this realigned product and resampled.
A further 3D rigid transformation can be optionally added to put the
corrected data into Talairach space by aligning the anterior and posterior
commissures (AC-PC) in a single axial slice (see the application
Section 2.2.5). The assigned diffusion orientations are subsequently
corrected by applying the rotation stemming from the resulting
transformation [20,21]. Since registration is based on an affine transfor-
mation with scaling and shearing, it corrects for both 3D misregistration
between volumes and eddy current distortions at the same time.
2.2. Method evaluation and validation

Correction strategies were evaluated on brain DTI images of
adults and of non-sedated infants, as these subjects are particularly
prone to motion during MR acquisitions. Five strategies were
compared: #1 no correction, #2 visual rejection of corrupted
volumes, #3 resampling of outlier slices alone, #4 3D motion
registration alone and #5 2-step correction strategy (corresponding
to strategy #3 followed by strategy #4). First, the outlier detection
was evaluated in adults' data with vibration- or motion-related
artifacts. Motion was also simulated to further validate the method
with ground-truth knowledge stemming from an uncorrupted infant
dataset: corrupted slices were introduced randomly (simulation of
random “intra-slice” and “intra-volume” motion) or around a
specific orientation (simulation of a systematic equipment vibration
effect) to test the resampling of outlier slices (strategy #3); random
translations and rotationswere also introduced to test the 3Dmotion
registration (strategy #4). Second, the two steps (strategy #5) were
combined to correct real motion on an adult whomoved on purpose.
Third, the five strategies were applied to the whole infant group, and
we focused on the cortico-spinal tract, as an example of a well-
described fasciculus, relatively mature in the developing brain.
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2.2.1. Subjects
The study was performed on two adults and 20 healthy infants

born at term (details in Table 1). The MRI protocol was approved by
the regional ethical committee for biomedical research, and all
subjects or parents gave written informed consents. Infants were
non-sedated and spontaneously asleep at the beginning of MR
imaging, but some of them moved during acquisition (see the
Results section for details). Particular precautions were taken to
minimize noise exposure, by using customized headphones and
covering the magnet tunnel with special noise protection foam.

2.2.2. Data acquisition
Acquisitions were performed on a Tim Trio 3 T MRI system

(Siemens, Erlangen), equipped with a whole body gradient (40 mT/m,
200 T/m/s) and a 32-channel head coil. A DW spin-echo single-shot
EPI sequence was used, with parallel imaging (GRAPPA reduction
factor 2), partial Fourier sampling (factor 6/8) and monopolar
gradients to minimize mechanical and acoustic vibrations. Inter-
leaved axial slices covering the whole brain (50 for infants, 70 for
adults) were imaged with a 1.8 mm isotropic spatial resolution
(matrix = 128 × 128). After the acquisition of the b = 0 volume,
diffusion gradients were applied along 30 orientations with b =
700 s. mm−2 (TE = 72 ms, TR = 10 s for infants, 14 s for adults).
An adult moved on purpose in a first acquisition and remained
motionless in a second scan to get a reference unbiased dataset. For
another adult, because of technical problems, data were corrupted
with vibration-related artifacts (located in the occipital lobe over 25
slices) for orientations of the diffusion gradients along the x-axis.
From this dataset we selected 5 datasets of 25 orientations including
1 to 5 artifacted orientations.
able 1
ummary of the numbers of corrected volumes for the different strategies.

or each infant, the age and the number of volumes corrected for the four applied
trategies are specified in comparison with no correction. For all parameters, the
ean and standard deviations over the 20 infants are detailed, as well as the
inimum and maximum values.

Subjects Mean count of subjects' corrected volumes

# Age Manual Outlier
correction

3D
registration

2-step
correction

(Weeks) Rejection Dif
N0%

Dif
N1%

Dif
N1%

Dif
N5%

Dif
N1%

Dif
N5%

1 5.9 8 2.3 1.5 26.6 15.0 26.6 15.2
2 7.4 0 0.9 0.3 6.2 0.0 6.5 0.1
3 9.7 0 0.9 0.1 15.4 0.0 15.6 0.0
4 9.9 3 1.2 0.3 22.5 6.8 22.5 6.9
5 11.1 3 2.4 0.6 23.3 4.0 23.3 4.3
6 11.3 5 2.2 1.5 28.3 23.2 28.5 23.7
7 11.6 6 3.2 1.7 21.2 7.7 21.4 8.5
8 11.7 0 0.0 0.0 11.2 0.0 11.2 0.0
9 11.7 1 2.5 0.9 8.5 0.3 8.8 0.3
10 12.7 3 1.0 1.0 23.0 12.3 23.3 13.2
11 13.1 0 0.8 0.2 8.3 0.1 8.4 0.2
12 13.3 0 0.2 0.1 6.9 0.0 7.0 0.0
13 13.7 0 0.6 0.3 11.9 0.1 12.0 0.1
14 15.0 2 0.7 0.6 14.9 1.2 15.1 1.6
15 15.6 3 1.9 0.8 17.9 4.0 18.3 4.3
16 16.3 0 0.0 0.0 10.9 0.1 10.9 0.1
17 17.6 0 1.0 0.7 23.6 3.7 23.6 3.7
18 18.0 0 2.2 0.1 8.1 0.0 8.1 0.0
19 21.4 6 1.9 1.5 21.1 5.7 21.4 6.1
20 22.4 0 0.6 0.2 17.6 0.0 17.5 0.1
Mean 13.5 2.0 1.3 0.6 16.4 4.2 16.5 4.4
std-dev 4.2 2.5 0.9 0.6 7.1 6.2 7.1 6.4
min 6 0 0.0 0.0 6.2 0.0 6.5 0.0
max 22 8 3.2 1.7 28.3 23.2 28.5 23.7
T
S

F
s
m
m

2.2.3. DTI post-processing and tractography
For each set of DW images (corrected or not), the diffusion tensor

parameters were estimated in each voxel using BrainVISA software
[25]. DTI maps were generated (mean b DN, longitudinal λ// and
transverse λ┴ diffusivities, fractional anisotropy FA and color-encoded
directionality RGB). 3D tractography was performed using regu-
larized particle trajectories [32], with an aperture angle of 45° and
from a whole-brain mask excluding voxels with low FA (b0.15) or
high b D N (N2.10−3mm2.s−1), which may correspond to grey
matter or CSF ([33]). Because its reconstruction requires an accurate
matching of the slices, the cortico-spinal tract was selected with
manual regions and split between the cerebral peduncles and low
centrum semiovale for quantification of DTI parameters [33,34].
2.2.4. Validation of the correction strategies

2.2.4.1. Validation of the detection of outlier slices (strategy #3): adult
dataset. For the adult datasets (motion on purpose and vibration-
related artifacts), different detection factors f were tested, from f = 3
to f = 1. The slices automatically detected as outliers were compared
with the slices visually labeled as outliers. We computed the
percentage of false-negative detection, characterizing the outliers
missed by the automatic method, and the percentage of false-positive
detection, describing the over-detection errors.
2.2.4.2. Validation of the resampling of outlier slices (strategy #3):
simulations of motion. We further selected the data from a single
infant who had not moved at all during the acquisition (subject #8
from Table 1, middle age of 11.7w) and compared the corrected
datasets (after simulatingdifferent kinds ofmotion)with the reference
dataset (the real uncorrupteddataset). On theonehand, random intra-
slice motion was simulated by introducing different numbers (from 1
to 5 over 30) of outlier orientations in a given slice (bymaking the DW
signal aberrant). Ten random sets of corrupted orientations were
tested for each number of outliers, and 3 random slices were
independently corrected. On the other hand, vibrations and miscali-
bration of a gradient were simulated by corrupting gradient(s) around
a specific diffusion orientation: the read axis (along which the echo-
planar echo-train is collected) was considered because it is highly and
frequently on demand in MR scanners, and it may induce mechanical
vibrations due to the coupling of the gradient coil, the subject itself and
the table [4]. All slices of the corresponding volumes were considered
as outliers since such artifacts affect thewhole volume. The strength of
the vibrations was taken into account by increasing the conic angle of
the corrupted DW orientations. For our specific set of 30 orientations
(Siemens package VB15), it concerned 1 orientation (angle 0°), 2
orientations (up to 11.5° around x), 3 orientations (up to 23.5°), and 5
orientations (up to 31.5°).

For both the simulated random motion and the vibrations, the
corrected datasets (with resampling of the outlier slices—strategy#3—
or by exclusion—strategy #2) were compared with the acquired
reference dataset. First, the resampled DW signal within each voxel of
the outlier slices was compared with the reference signal in order to
investigate the impact of the number of outliers and of the kind of
motion (random or vibration) on the resampling performance. Mean

normalized deviation was computed as 1
Nvoxel

∑
voxel

Sreference−Sresampled

Sreference

����
���� ,

where N is the number of voxels in the outlier slice excluding voxels
in the surrounding noise. The percentages of voxels with signal
values different for more than 5% or 10% of the reference were
evaluated. Second, we assessed the errors in the estimation of the
direction of the main tensor eigenvector e v! : the averaged angle
between the reference and the corrected eigenvectors was computed
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as 1
Nvoxel

∑
voxel

arccos
ev!reference•ev!reference

ev!reference

�� ��� ev!reference

�� ��
 !

. Since these errors may

depend on the local accuracy of the tensor model and on the ratio
between the first, the second and the third eigenvalues, we segregated
the voxels according to FA values: three independent classes of voxels
were considered with FA in the range [0.1–0.3], [0.3–0.5] and [0.5–1].
Third, we focused on the corrected FA maps generated from the 30
diffusion orientations after resampling or exclusion of outliers, and we
reported differences within slices relatively to the reference FAmap in
terms ofmean normalized deviation and percentages of voxels with FA
values differing bymore than 5% and 10% as previouslymentioned. For
each measure, the average values and standard deviations were
computed over all the considered slices and over all the corrupted
sets of orientations within a given number of outliers.
2.2.4.3. Comparison of methods to correct outlier slices (strategy #3):
adult dataset. Our method to correct outliers was qualitatively
compared with a widely-used approach (RESTORE [23]). Because
the steps for outlier detection and 3D motion registration are not
applied in the same order in these two approaches (outliers are
first corrected with our method, and secondly excluded with
RESTORE), we focused on data without 3D motion by considering
the adult dataset corrupted with vibration-related artifacts for
1 orientation.
2.2.4.4. Validation of the 3D motion registration (strategy #4):
simulations of motion. First, we checked whether eddy current
distortions were finely corrected by strategy #4 by registering in 3D
the uncorrupted DW volumes to the product of DW images. MI
coefficients were computed between the b = 0 and DW images, and
were compared between the initial and the registered DW images
using a paired t-test across all slices and all diffusion orientations.

Second, specific translations and rotations were introduced in the
initial uncorrupted dataset for a given diffusion orientation in order
to assess the strategy robustness in case of motion. Increasing shifts
(from 1 to 5 mm) and angles (from 1 to 5°) were applied
independently along the three spatial axes (x, y and z). According
to strategy #4, the shifted volumes and the initial dataset were
independently registered to the product of DW images based on
mutual information, in such a way that eddy current distortions were
corrected in the sameway and that both datasets were resampled. As
in the previous Section (2.2.4.2), the resulting registered datasets
were compared in terms of DW signal (mean normalized deviation,
percentages of voxels with values differing by more than 5% and
10%), direction of the main eigenvector (averaged angle errors for
voxels with FA in the range [0.1–0.3], [0.3–0.5] and [0.5–1]), and FA
within slices (mean normalized deviation, percentages of voxels with
values differing by more than 5% and 10%).
2.2.4.5. Validation of the 2-step correction strategy (strategy #5):
simulation of motion and adult dataset. First, we tested whether it is
justified to perform first the outlier detection step, before the 3D
volume registration. In the uncorrupted infant dataset, we intro-
duced both an outlier volume for a specific orientation (as in
Section 2.2.4.2) and a 3D motion for another volume (as in
Section 2.2.4.4), because motion that corrupts 2D slices generally
leads to the 3D misalignment of next DW volume.

Second, in the adult dataset with intentional movements, the two
steps (strategy #5) were combined to correct motion artifacts. For
both the corrected and the uncorrected datasets, errors in terms of
DW signal, direction of the main eigenvector and FA were computed
relatively to the reference dataset without motion and compared in
order to evaluate the correction effects.
2.2.5. Evaluation of the correction strategies: optimization
over the infant group

2.2.5.1. Implementation of motion correction strategies. For each infant,
experimenter JD performed visual rejection of corrupted volumes
(strategy #2): whole volumes were rejected if they presented typical
signal dropout (“black stripes” when viewed from the side), while
volumes with minor irregularities in the diffusion signal were kept
(see Fig. 2 for examples).

For the automatic detection of outlier slices (strategies #3 and
#5), the choice of the f factor was based on the distributions of MI
coefficients (between the b = 0 image and the non-corrected DW
images) across all diffusion orientations. Histograms computed for
typical subjects and slices were screened to decide which criteria to
use for the detection of corrupted data (factor f). Examples are
presented in Fig. 3.1 for two specific infants. For the quiet infant
(Fig. 3.1.a) all MI coefficients were always in the range mean ± f x
StdDev for f = 3, but not for f = 2. For the moving infant (Fig. 3.1.b)
the distributions were more spread because of a drifting effect of MI
coefficients due to inter-volume motion (Fig. 3.2.): MI coefficients of
corrupted DW data were far from the distribution peak, and the
factor f = 3 enabled to detect these outliers. These observations
were similar across all infants and slices, so a value f = 3was applied
to detect the most corrupted slices.

Besides, a resampling of DW images was performed for all
strategies (even if no correction or registration was performed) in
order to align the anterior and posterior commissures (AC-PC) in a
single slice. This realignment aimed to provide a consistent color
coding on directionality RGB maps across all infants, despite the
variability in brain positions that resulted from how the infant fell
asleep. For strategies #4 and #5, this resampling was applied jointly
with the 3D-motion registration by composing the two transforma-
tions. After the AC-PC placement all orientation volumes resulted in
60 slices, the first and last of which being possibly cut or empty when
the anterior and posterior commissures were already well-aligned in
the initial brain orientation. Thus only the 40 central slices were
consideredwhen a global estimation of the corrections over the brain
was required.

2.2.5.2. Comparison of motion correction strategies. In each infant we
quantitatively evaluated and compared the correction strategies by
computing the MI coefficients between b = 0 image and DW image
for each slice and diffusion orientation. For each orientation the MI
coefficients were also averaged over the 40 central slices. For each
correction strategy, the MI coefficients were compared with the
coefficients from the initial images. For strategy #2 we reported non-
null or 1% larger differences. For strategies #4 and #5 we only
reported differences larger than 1% or 5% because the 3D realignment
always implied small corrections for eddy current distortions
(differences between 0 and 1%). For strategies #3, #4 and #5, we
also computed an apparent number of corrected volumes (by
dividing by 40 the number of corrected slices within the 40 central
slices) in order to facilitate the comparison with strategy #2 which
excluded whole volumes. Besides, our 2-step approach was qualita-
tively compared with RESTORE method in terms of RGB maps.

2.2.5.3. DTI quantification over the infants group. Because the range of
ages was restricted to a short developmental period, linear models
between DTI parameters in the cortico-spinal tract and age provided
the best fits across the infants group as compared with quadratic
models. For each correction strategy, we computed correlation
coefficients R, as well as mean, minimal and maximal values over
the group, and standard deviations after taking into account the
significant linear age-related effects. For the strategies comparison,
note that lower standard deviations mean better registration across



Fig. 2. Automated resampling of corrupted slices. DW images of a 21.4 week-old infant are presented for different slices and different orientations of the diffusion gradients
without any correction (first row) and after resampling for the detected outlier slices with f = 3 (second row). Slices are presented in axial (a, b) or coronal views (c–e: arrows in
c and d respectively correspond to slices in a and b). Corrupted slices resulting from fast motion during the volume acquisition (a–d) were finely resampled whereas minor
irregularities in the diffusion signal (arrow in e) were not corrected. Strategy #2 performed in the same way (visual rejection of volumes a–d, but not of volume e).
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babies, and thus better motion correction. Higher FA values also
mean better delineation of the fasciculus according to surrounding
tissue and less partial volume effect.

3. Results

3.1. Validation of the correction strategies

3.1.1. Validation of the detection of outlier slices (strategy #3):
adult datasets

In the dataset from the adult who moved on purpose, no more
than 4 orientations per slice were corrupted. For detection factors f
higher than 2.4, the percentage of false-negatives was around 60%,
and no false-positive was detected. Then the false-negative percent-
age decreases and the false-positive percentage increases with
decreasing factor, and both percentages were balanced at 40% for
f = 1.2. The false-negative percentage did not pass the 10%
threshold for reasonable f factors (f N 1). For this dataset, the false-
negative percentage was quite high in comparison with the false-
positive percentage.

In the adult dataset corrupted with vibration-related artifacts,
similar patterns were observed. The false-negative percentage was
below 10% for false-positive percentage equal to 15% for 1 corrupted
orientation (f = 3), and around 50% for 2 to 5 corrupted orientations
(f = 1.8 to 1.2). Furthermore, the values for balanced false-negative
and false-positive percentages increasedwith thenumber of corrupted
orientations, from 30% to 42% for 2 to 5 orientations (f = 2.1 to 1.6).
Consequently, the performances of the detection approach were
reasonable but decreased with the degree of data corruption.

3.1.2. Validation of the resampling of outlier slices (strategy #3):
simulations of motion

Considering the infant dataset where motion-related artifacts
were introduced, the slices that were corrected for random outliers
presented a mean normalized deviation in DW signal of 5.1% ± 0.6%
in comparison with the reference and on average over the different
outlier numbers. 34% ± 4% (resp. 11% ± 3%) of voxels within the
corrected slices showed signal differences higher than 5% (resp.
10%). The number of random outliers had no influence on these
deviations (Fig. 4.a). Concerning the resampling of outliers stem-
ming from vibration-related artifacts, the mean normalized devia-
tions and the percentages of voxels with differing signals were
higher and increased with the number of outliers (Fig. 4.a).

In terms of angular errors in the main eigenvector direction
(Fig. 4.b), the strategy of outliers resampling performed better than
the strategy of outliers exclusion, both for randomly distributed
outliers and for outliers along a specific orientation in the case of
vibrations. Errors were particularly small when resampling the
random outliers (for instance, for 5 outliers: 5.0° ± 0.5° for voxels
with FA in [0.1–0.3]; 2.7° ± 0.6° for voxels with FA in [0.3–0.5];
1.9° ± 1.1° for voxels with FA in [0.5–1]). On the contrary, errors
were quite large when excluding the outliers along the x-direction
(up to 18.9° ± 0.6° for 5 outliers for voxels with FA in [0.1–0.3]),
suggesting that the exclusion strategy was not appropriate to correct
important vibrational artifacts. Because the tensor estimation is
based on the whole set of 30 orientations, errors increased with the
number of outliers. Larger errors were observed when resampling
the vibration outliers in comparison with the random outliers,
highlighting the impact of orientation distribution over the space.
Finally, angular errors differed according to FA ranges, with higher
errors in low-FA voxels where the tensor model estimation was less
reliable (for instance, for the resampling of 5 vibration outliers:
7.6° ± 0.7° for voxels with FA in [0.1–0.3]; 4.1° ± 0.9° for voxels
with FA in [0.3–0.5]; 2.8° ± 1.0° for voxels with FA in [0.5–1]).

For both the random motion and vibration outliers, errors in FA
estimation were of the same order of magnitude as errors in DW signal
(Fig. 4.c). No significant differencewas observed between the strategies
of outliers resampling and exclusion in terms of mean normalized
deviations to the reference (up to 8% ± 0.3%) and percentages of voxels
with differing FA values (5%: up to 51% ± 1%; 10%: up to 27% ± 1%). As
for angular errors in the main eigenvector direction, these deviations
increased drastically when the outlier number increased from 1 to 5
(Fig. 4.c). This reflects the high dependence of the tensor estimation on
the acquired number of orientations. For an equivalent number of
outliers, the mean normalized deviations and the voxel percentages
were again higher for outliers along a specific orientation (vibrations)
than for outliers along orientations randomly distributed over the
whole space (random motion) (Fig. 4.c).

All these results together suggest that artifacts due to technical
problems (vibrations) may impair the robustness of DTI quantifica-
tion more than a reasonable random motion. Even if the strategy of
exclusion is less sensitive than the signal geodesic interpolation on
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Fig. 3. Variations of MI coefficients across the diffusion orientations. 3.1. Examples of MI distributions are presented for different slices of two infants (quiet infant in Figure 3.1.a,
moving infant in Figure 3.1.b), with the mean (diamond signs) and the intervals mean ± f × StdDev for f = 2 (empty triangle signs) and f = 3 (filled triangle signs). 3.2. For
three infants, averaged MI coefficients are plotted over the 30 orientations for the strategy without correction (blue dots, strategy #1) and for the strategies with resampling of
outlier slices (green diamonds, strategy #3), with 3D registration (yellow triangles, strategy #4), and with the 2-step correction (red dots, strategy #5). The first infant (a: #8 from
Table 1) was quietly asleep whereas the two others (b, c: #1 and 19 from Table 1) moved a little during acquisition (the orientations rejected with strategy #2 are highlighted
with stars). In comparison with the other corrections, the 2-step strategy enabled to drastically homogenize the MI coefficients over the 30 orientations.
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the diffusion shell, errors cannot be avoided when the signal
sampling is missing around a specific orientation. In our analyses,
resampling outliers according to the spherical harmonics basis
appeared as the most reliable strategy.

3.1.3. Comparison of methods to correct outlier slices (strategy #3):
adult dataset

For the adult dataset with vibration-related artifacts for 1
orientation over 25, our approach could provide correct RGB maps
contrarily to RESTORE (Supplementary Fig. 1).

3.1.4. Validation of the 3D motion registration (strategy #4):
simulations of motion

Eddy current distortions were finely corrected when the initial
dataset was registered to the product of DW images, as assessed
visually and by the increase in MI coefficients between b = 0
images and DW images (paired t-test across slices and orientations:
t = 14 p b 0.001).

Correcting the 3D-motion after introducing translations or
rotations on purpose to the uncorrupted dataset triggered relatively
small errors in comparison with the reference, and there were no
influence of the motion kind or amplitude (for up to 5 mm and 5°).
These errors were smaller in comparison with the outlier resam-
pling, in terms of DW signal (on average over all translations and
rotations, mean normalized deviations: 2.7% ± 0.5; percentage of
voxels with differences N5%: 14% ± 4%; percentage of voxels with
differences N10%: 5% ± 2%), tensor main eigenvector direction
(angle errors: 0.18° ± 0.01° for voxels with FA [0.1–0.3]; 0.09° ±
0.01° for voxels with FA [0.3–0.5]; 0.09° ± 0.08° for voxels with FA
[0.5–1]) and FA estimation (mean normalized deviations: 2.1% ±
0.2%; percentage of voxels with differences N5%: 14% ± 2%;
percentage of voxels with differences N10%: 5% ± 1%). On the
contrary, translating a single volume by 5 mm and not correcting it
can lead to large angle errors in the tensormaindirection (FA [0.1–0.3]:
9.1° ± 1.2°; FA [0.3–0.5]: 4.8° ± 1.9°; FA [0.5–1]: 6.7° ± 11.6°).
Consequently, correcting such 3Dmotionwith our approach appeared
to be worthwhile and efficient.

3.1.5. Validation of the 2-step correction strategy (strategy #5):
simulation of motion and adult dataset

When both a corrupted volume and a 3D-moved volume were
simultaneously introduced in the uncorrupted infant dataset, the
outlier detection step finely detected the corrupted volume, whereas
the 3D-moved volume was not detected for translations up to 5 mm.
Less than 3 peripheral slices were detected for rotations up to 5°
(1 slice for 1° and 2° rotations, 2 slices for 3° rotations), except for 5°
rotation along z (14 slices detected). Since smaller amplitudes of 3D
motion are generally observed in infants, this simulation justified to
perform the outlier detection step before the 3D volume registration.

For the adult dataset moved on purpose, the deviation errors
computed according to the reference unmoved dataset were
relatively high in terms of DW signal (mean normalized deviation:
18%; percentage of voxels with differences N5%: 73%; percentage of
voxels with differences N10%: 51%), tensor main eigenvector
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Fig. 4. Validation of the outliers resampling strategy. Deviations from the reference are presented after resampling or excluding 1 to 5 random or vibration-related outliers
introduced in an uncorrupted dataset. For deviations in DW signal (Figure 4.a) and in FA (Figure 4.c), mean normalized deviations are presented (left column in %), as well as the
percentages of voxels presenting differences larger than 5% (middle column) and 10% (right column). For angle errors in the tensor main direction (Figure 4.b), three classes of
voxels are considered according to FA (left column [0.1–0.3], middle column [0.3–0.5], right column [0.5–1]).
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direction (angle errors: 38° for voxels with FA [0.1–0.3]; 41° for
voxels with FA [0.3–0.5]; 43° for voxels with FA [0.5–1]) and FA
estimation (mean normalized deviations: 38%; percentage of voxels
with differences N5%: 90%; percentage of voxels with differences
N10%: 80%). The 2-step correction strategy enabled to significantly
reduce these errors for DW signal (mean normalized deviation: 10%;
percentage of voxels with differences N5%: 62%; percentage of voxels
with differences N10%: 35%) and tensor main eigenvector direction
(angle errors: 31° for voxels with FA [0.1–0.3]; 32° for voxels with FA
[0.3–0.5]; 33° for voxels with FA [0.5–1]). For FA estimation, the
errors remained high (mean normalized deviations: 32%; percentage
of voxels with differences N5%: 89%; percentage of voxels with
differences N10%: 80%), probably because the corrected dataset did
notmatch entirely the reference dataset, whichwas not corrected for
3D motion and eddy current distortions. These results highlighted
the correct performances of our correction approach but also the
difficulty to compare successive acquisitions that present intrinsic
variability: spatial variability due to varying head position, and signal
variability caused by different technical tuning.

3.2. Comparison of the correction strategies over the infant group

High-quality DW images were acquired in all infants (mean SNR
measuredonb = 0 image in frontalwhitematter: 184 ± 32). Because
of small movements during sleep, we visually detected some motion
artifacts in 10/20 infants, concerning 1 to 8/30 orientations (see Fig. 2).
For strategy#2, it led to amean visual rejection of 2 ± 2.5 orientations
over all infants (range: 0–8, Table 1).

3.2.1. Evaluation of the correction of outlier slices (strategy #3)
The detection of outlier slices performed finely with a factor

f = 3 and detected all visually corrupted slices (Fig. 2). In all
infants, no more than 5 orientations per slice were resampled by
this strategy, which means that the SH decomposition was
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performed over at least 25 orientations according to our acquisi-
tion sampling scheme. Over all orientations and in all infants,
strategy #3 modified 1.3 ± 0.9 volumes (range: 0–3.2 volumes)
(Table 1, strategy #3), which was less than the visual rejection. The
corrections were small since only 0.6 ± 0.6 volumes on average
showed differences in MI coefficients higher than 1%.

The number of automatically resampled volumes was highly
correlated with the number of visually rejected volumes across
infants (correlation coefficient for non-null differences R = 0.68; for
differences higher than 1% R = 0.89), showing that both methods
did perform comparably, but the slices visually rejected and those
automatically resampled were not exactly the same. Indeed, the
visual method rejects the whole volume when it appears visually
corrupted, whereas the automated method only resamples part of
the volume, i.e., the corrupted slices. Conversely, the latter method
also corrects for small flaws detected in slices of non-rejected
volumes, which are wrongly not taken into account by the
experimenter in the visual exclusion step, e.g. at the bottom of the
brainstem or at the top of the brain. Altogether, the automated
resampling of outlier slices modified on average a smaller number of
volumes, and has the advantages to be automated and independent
from the experimenter, therefore fully reproducible. In addition, it
allows us both to keep uncorrupted data within each volume, and to
detect and correct subtle artifacts that are not readily visible on
visual inspection.

3.2.2. Evaluation of the 3D motion registration (strategy #4)
To correct for 3D motion and eddy current distortions, the

registration to the mean geometric product outperformed the
conventional registration to b = 0 image in all infants except 3. It
corrected 16.4 ± 7.1 volumes on average over all infants when
considering MI differences larger than 1% (range: 6.2–28.3)
(Table 1). This expected large number of corrected volumes is due
to the correction of eddy current distortions, performed even when
the infantdidnotmove at all. But thosecorrectionswere actually small,
since this number fell to 4.2 ± 6.2 volumes (range: 0–23.2) when
considering MI differences larger than 5%.
Fig. 5. Evaluation of RGB maps quality in infants. RGB maps are presented for the same t
according to DW images obtained 1) without correction, 2) with visual rejection of corru
5) with our 2-step correction strategy and 6) with RESTORE approach. The 2-step strate
assessment. With RESTORE (6), images appeared smoother, but the comparison remained
referential). Some motion artifacts remained, particularly in b (arrows).
3.2.3. Evaluation of the 2-step correction strategy (strategy #5)
Combining the resampling of outlier slices and the registration

for 3D motion and eddy current distortions (strategy #5) modified a
similar volume number than the 3D registration alone (strategy #4):
16.5 ± 7.1 volumes on average over infants for differences larger
than 1% (range: 6.5–28.5); 4.4 ± 6.4 for differences larger than 5%
(range: 0–23.7) (Table 1). In comparison with the other approaches,
this strategy enabled to drastically homogenize the MI coefficients
over the 30 orientations in moving babies, while it implied no
changes in quiet babies (Fig. 3.2): the standard deviation over the 30
orientations (normalized by the mean) was the smallest with
strategy #5 for most infants (except for 2 for whom differences
were less than 0.2%).

This strategy further improved the quality of resulting DTI maps,
as outlined by RGBmaps (Fig. 5). When outlier slices were either not
rejected or resampled (strategies #1 and #4), remaining artifacts
were seenwith a color-code corresponding to corrupted orientations
(see arrows in Fig. 5b). The red color (right/left orientation)
corresponds to the read echo-train axis that often shows
artifacts because it is highly solicited when the DW orientation is
along the x-gradient axis. When 3D motion registration was not
performed (strategies #1, #2 and #3), the bundles' delineation was
blurred and questionable (see arrows in Fig. 5c), particularly in the
sub-cortical white matter and the corpus callosum. In quiet infants,
all RGB maps were relatively similar, except that the correction of
eddy current distortions (strategies #4 and #5) enabled to reduce
artifacts over the whole brain and obvious discrepancies at the
frontal and occipital borders (see arrows in Fig. 5a). Finally, the 2-
step strategy provided the maps with the highest quality (Fig. 5.5),
appearing more reliable and less artifacted than maps obtained after
correction with RESTORE (Fig. 5.6).

3.2.4. Impact of the correction strategies: focus on the developing
cortico-spinal tract

In all infants, the cortico-spinal tract was finely reconstructed by
tractography, similarly with all five correction strategies. All
strategies also globally provided equivalent quantification of mean
hree infants as in Fig. 3.2 (a: quiet infant; b, c: moving infants), and were computed
pted volumes, 3) with resampling of outlier slices, 4) with 3D registration of motion
gy (5) corrected most artifacts (arrows) and provided the best RGB maps on visua
difficult because of differences in orientations (images were not resampled to AC-PC
,
l
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Fig. 6. Comparison of correction strategies through DTI parameter quantification. DT
parameters (fractional anisotropy FA, mean b DN, longitudinal λ// and transverse
diffusivities λ

┴
) were computed in the cortico-spinal tract, reconstructed according to

DW images obtained as in Fig. 5. For each strategy, the mean values are presented
over the infant group (filled symbols, with standard deviations corrected fo
significant age-related effects in plot bars), as well as the minimal and maxima
values (empty symbols).
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and maximal parameters over the infant group, on average in the
tract section, but standard deviations were the smallest with the 2-
step correction strategy because of higher minimal values (Fig. 6).
Furthermore, the age-related increase in FAwasmore accurate when
motion registration was performed (strategies #4 and #5: R = 0.62;
strategies #1/2/3: R = 0.53/0.48/0.48). The detected increase in
anisotropy (+0.004/week of age), and the decreases in mean
diffusivity (−4.10−6mm2.s−1/week of age) and transverse diffu-
sivity (−6.10−6 mm2.s−1/week of age) were in good agreement
with previous studies [33]. Altogether this suggests that the 2-step
strategy (strategy #5) was the most reliable approach to reconstruct
the immature cortico-spinal tract and to quantify DTI parameters on
average over the tract.

4. Discussion

DTI and HARDI techniques are sensitive to motion in two ways.
First, because they are based on 2D acquisition, motion artifacts may
be observed on isolated slices. In addition, misregistration can occur
between DTI volumes because of the successive acquisition of several
diffusion orientations, and because of eddy current distortions in EPI
images. It seems intuitively important to correct images corrupted
by such motion-related artifacts before estimating the diffusion
models. Actually, it has been shown that the contributions of motion
and noise are of the same order of magnitude at 3T, and that both are
influenced by the choice of sampling scheme [18]. Motion is
generally due to the subject, some of which being more susceptible
to move than others, like infants, children and patients. But artifacts
can also result from technical problems: in many MRI systems,
instabilities of the gradients can lead to spikes [5], and the table may
vibrate due to low-frequency mechanical resonances, which are
stimulated by the low-frequency gradient switching associated with
the diffusion-weighting [4]. This leads to corrupted data along
specific gradient orientations.

We proposed in this study a post-processing approach relying on
two successive and uncorrelated steps, which were first validated by
introducing selected motion artifacts or discrepancies on different
datasets, and comparing the corrected datasets with reference ones.
It was further tested on DW data obtained in non-sedated infants,
who frequently move during MRI acquisition: it successfully
corrected sets corrupted by motion, while it had lower influence
on uncorrupted data.

For intra-slice motion, we implemented an original method to
detect and resample corrupted slices. For the outlier detection, a
distance measure was defined to compare any DW slice and the
corresponding b = 0 slice. A natural distance could be a correlation
coefficient, but no linear relationship exists between the b = 0 and
the DW signals which are variable across diffusion orientations [35].
Since mutual information (MI) does not rely on any relationship on
the grey level intensity [29], it was a more reliable criterion in order
to detect putative outliers for each slice independently. Furthermore,
b = 0 image was selected as a reference to compute MI coefficients.
If it is corrupted, this stepwould fail: using a DW image (for a specific
orientation) would bias the detection for closed orientations, and the
product of all DW volumes may be corrupted if a single DW image is
artifacted. Nevertheless, this may not be a limiting issue: in the
context of single-shell diffusion imaging, b = 0 image is required
anyway to compute the diffusion model, and in multi-shell imaging
it is unlikely that all b = 0 images would be corrupted.

With this setting-up, the detection was fully automated and
reproducible, and the factor f was the only parameter to be tuned
once for a specific protocol. The detection was performed on a slice-
by-slice basis. Given the acquisition time of a slice (200 ms), intra-
slice motion generally corrupts the whole slice: artifacts may not be
visible in some regions of the brain; nevertheless it does not imply
that the signal sampling is reliable in such regions. Besides,
vibration-related artifacts corrupt clusters of voxels within a slice,
but it remains difficult to limit the borders of the regions with
impaired signal. Consequently methods which correct the artifacts
locally (either on a voxel-by-voxel basis [9,23] or with a moving
average window) may fail to correct the wholeness of such artifacts,
and rejecting thewhole slicemay bemore reliable. In this study, only
a qualitative comparison between our method and RESTORE was
performed, but it appeared that using the diffusion tensor model was
quite unsuccessful to detect outliers in both infants and an adult
dataset locally corrupted for a specific orientation of the diffusion
gradients. Combining the two approaches (MI criteria on the whole
slice and local constraint on signal intensity) would be a perspective
to improve the outlier detection.

Resampling of the detected outliers can be performed from the
non-outlier DW images, either in the image space, or in the Q-space.
The former strategy is not adequate because the tissue local
microstructure can change significantly between neighboring slices:
interpolating the signal can introduce incoherence, partial voluming
effects, and consequently lead to the mixture of heterogeneous
populations of fibers. Resampling the corrupted data in the Q-space
is more robust. In a recent study Sharman and collaborators [6] also
considered this correction strategy after manual detection of the
outliers. Two smoothing steps were used: a first spatial smoothing in
the image space, using a Gaussian filter, which can only be applied to
low b-values acquisitions and a second Q-space smoothing applied
to the five closest neighbors using aweightedmean, which restricted
the smoothed estimates to a very small quantity of DW data
and imposed that they remain of good quality. Following smoothing,
Q-space interpolation was performed directly on the spherical shell
in the native DW signal space [6]. In our approach, the resampling of
outlier slices relied on the decomposition of the DW signal on the
modified spherical harmonics basis [36], which is a natural basis on
the sphere. Contrarily to the geodesic resampling approach [6], it
made use of all non-corrupted data, rather than on a restricted
neighborhood. Thus, it required a smaller number of valid data to
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compute a robust diffusion model estimation, and increased
robustness to local corruption on the spherical shell, for instance
when DW data contained artifacts around a specific orientation
because of gradient system instabilities. Since using a non-
parametric model may lead to overfitting of the signal, the spherical
harmonics decomposition was limited to the 6th order. In addition, a
Laplace–Beltrami regularization term was used to better deal with
noise removal and avoid any kind of overfitting with spurious spikes
that may be present in the signal acquired on a shell of the Q-space.
The resampling was validated for 1 to 5 outlier orientations over 30,
leading to small errors in diffusion signal (~5%, Fig. 4a) in
comparison with acquired images. But it may fail in case of severe
motion when most orientations are corrupted, and then prospective
strategies that adapt the acquisition according to the subject's
motion should be preferred [13].

This correction approach is well indicated for any DW acquisition
involving spherical samplings. It can be applied not only to the
tensor model, but to most HARDI andmultiple shell models since the
spherical harmonics decomposition can be generalized to acquisi-
tions with multiple q samplings [36,37]. For such protocols, our
method would be particularly useful because the long acquisition
times lead tomoreprobablemotion. Besides, the regularization relying
on the Laplace–Beltrami operator makes the decomposition implicitly
robust to noise, and the novel implementation using a modified
LMMSE approach [38] also makes it robust to Rician and non-central
Chi noise, which is observed in high b-values acquisitions.

In comparison with the strategy based on visual rejection of
whole corrupted volumes, our method presents several advantages.
It is fully automated and quick, independent from the experimenter,
and is performed slice-by-slice rather than volume-by-volume,
which is a particularly suitable when a single slice is corrupted. By
introducing outliers on purpose in a set initially not corrupted by
motion, we observed that filling in the missing data was equivalent
to rejecting these data in terms of FA estimation, but it performed
better when considering the estimation of the main eigenvector
direction, particularly for outliers along a specific orientation
(vibration). Furthermore, over the whole infant group, the final
numbers of corrected volumes were smaller, and the resulting DTI
maps were equivalent for both strategies. The main advantage of
filling in the missing data was to make the number of DW
measurements constant from voxel-to-voxel before the computation
of the DTI model. Nevertheless it remained that the number of
recovered orientations differed across slices. Besides, as the accuracy
of the SH decomposition estimation increases with the spatial
distribution of the diffusion orientations, it is important to combine
our correction method with DW acquisition strategies that optimize
the spatial orientation distribution according to the acquisition time
and the motion hypotheses [3,17].

Our 2-step correction strategy also included a 3D realignment of
orientation volumes, misregistered by inter-volume motion and eddy
currentdistortions. The implemented registrationwasbasedonmutual
information with the mean product of DW images, which appeared to
bemore robust in comparisonwith the conventional registration based
onb = 0 image, andgave reliable results for simulated translations and
rotations along the three axis and on real data.

The combination of both the resampling of outlier slices and the
registration between orientation volumes was critical [9]. However
one may wonder which step should be performed first. On the one
hand, if an orientation volume still presents irregularities in the
diffusion signal, it will be difficult to realign it in 3D. On the other
hand, the resampling of corrupted slices may be wrong if the volume
is spatially shifted in comparison with the reference. We performed
the outlier resampling first, because this step is made slice-by-slice,
andwould thus bewronganyhowshould the slices be tilted previously
by the 3D registration.Moreover, the initial 3Dmisregistration thatwe
observed between volumes in all infants was verified to be small
enough to guarantee the reliability of the outlier slice resampling.

5. Conclusion

The 2-step correction strategy was validated on datasets with
various motion- and vibration-related artifacts, and it was success-
fully applied to DTI data of the infant brain. Since no hypothesis on
the diffusion model is made, it can be used to correct any dataset
acquired over a single shell in the Q-space (e.g., DTI and HARDI local
models) and could be easily extended to multiple-shell acquisitions.
So it is worth applying this correction in all DW data with potential
sources of artifacts. As an example, it here enabled to reliably study
the developing cortico-spinal tract, in agreement with previous
studies of unmoved datasets [33].

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.mri.2014.05.007.
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