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The description of cortical folding pattern (CFP) is challenging because of geometric complexity and inter-
subject variability. On a cortical surface mesh, curvature estimation provides a good scalar proxy of CFP.
The oscillations of this function can be studied using a Fourier-like analysis to produce a power spectrum
representative of the spatial frequency composition of CFP. First, we introduce an original method for the
SPectral ANalysis of GYrication (Spangy), which performs a spectral decomposition of the mean curvature
of the grey/white interface mesh based on the Laplace–Beltrami operator eigenfunctions. Spangy produces
an ordered 7 bands power spectrum of curvature (B0–B6) and provides an anatomically relevant segmenta-
tion of CFP based on local spectral composition. A spatial frequency being associated with each eigenfunction,
the bandwidth design assumes frequency doubling between consecutive spectral bands. Next, we observed
that the last 3 spectral bands (B4, 5 and 6) accounted for 93% of the analyzed spectral power and were asso-
ciated with fold-related variations of curvature, whereas the lower frequency bands were related to global
brain shape. The spectral segmentation of CFP revealed 1st, 2nd and 3rd order elements associated with
B4, B5 and B6 respectively. These elements could be related to developmentally-defined primary, secondary
and tertiary folds. Finally, we used allometric scaling of frequency bands power and segmentation to analyze
the relationship between the spectral composition of CFP and brain size in a large adult dataset. Total folding
power followed a positive allometric scaling which did not divide up proportionally between the bands: B4
contribution was constant, B5 increased like total folding power and B6 much faster. Besides, apparition of
new elements of pattern with increasing size only concerned the 3rd order. Hence, we demonstrate that
large brains are twistier than smaller ones because of an increased number of high spatial frequency folds,
ramifications and kinks that accommodate the allometric increase of cortical surface.
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Introduction

The description of human cortical folding remains amajor challenge
for neuroimaging due to its great complexity and variability. Beyond
an interest in gyrification itself, a better knowledge of cortical folding
would allow us to device more precise methods for inter-individual
comparisons as research reveals subtle correlations with typical and
pathological functioning (Fischl et al., 2007; Cachia et al., 2008). Sulci
have been traditionally classified from a developmental point of view
into primary, secondary and tertiary (Chi et al., 1977) according to
their order of appearance during fetal life and early childhood. But cor-
tical folding is probably a more continuous process than that suggested
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by this classification (Armstrong et al., 1995), and morphological fea-
tures resulting from successive folding phases likely intricate into the
same given fold (Paus et al., 1996). This interaction between folding
phases leads to a geometric complexity well described for the central
sulcus (White et al., 1997): sulci are not straight objects but show ram-
ifications, digitations, nodes, dimples, etc. This complexity is associated
with an important inter-individual variability (Yousry et al., 1997; Régis
et al., 2005) which complicates the construction of folding atlases, even
at a large-scale level. Eventually, as soon as mature gyrification is
achieved, it is very difficult to attribute, based on morphological features
alone, a primary, secondary or tertiary character to a given piece of a cor-
tical fold.

In the general population, human brain size is also highly variable,
with the largest adult brains having up to 2 times the volume of
the smallest ones (Milner, 1990; Whitwell et al., 2001). As for many
biological objects, the relationship between cortical surface geometry
(shape) and brain volume (size) is not simply homothetic: there
are shape modifications coming with size variations (allometry).
Across mammals, cortical surface area appears to scale proportionally
with brain volume, i.e. with a scaling exponent around 1, whereas an
isometric relationship would predict a scaling exponent of 2/3
(Prothero and Sundsten, 1984) (Fig. 1c). A similar allometric scaling
can be observed among humans, with scaling exponents in the
order of 0.8 to 0.9 (Im et al., 2008; Toro et al., 2008). Indeed, large
brains show a relative excess of cortical surface, which is accommo-
dated by an increase in folding. Several gyrification indexes have
been proposed at hemispheric (Zilles et al., 1988) or local levels
(Schaer et al., 2008; Toro et al., 2008). They measure the proportion
of cortical surface buried by folding, but are unable to distinguish
between an increase in fold depth and an increase in fold number
or ramification. Such a modification of the complexity of cortical fold-
ing pattern (CFP) with brain size is nonetheless suspected: larger
brains seem twistier (Fig. 1a). So far, there have been a few attempts
to propose a more descriptive quantitative assessment of gyrification
complexity but there is still no consensual measure, even at the
hemispheric level (Luders et al., 2004; Yotter et al., 2011). From a
theoretical perspective, several models suggest that folding in an
expanding domain should lead to the development of branching
with doubling of the spatial frequency patterns (Fig. 1b). This
phenomenon is observed with reaction–diffusion (Crampin et al.,
1999; Striegel and Hurdal, 2009) and mechanical models (Mora
and Boudaoud, 2006), but also with fractal approaches (Thompson
et al., 1996; Yotter et al., 2011). Thus, the study of the spatial fre-
quencies of CFP should provide us with an interesting new measure
of gyrification complexity.

The folded surface of a brain hemisphere can be viewed as a closed
surface of zero-genus (Dale et al., 1999) on which it is possible to map
scalar functions estimating surface characteristics such as curvature
or sulcal depth. Theses oscillatory functions can be taken as proxies
of the hemispheric gyrification that allow the study of CFP properties
through the analysis of its spatial oscillation frequencies. This spectral
approach can be used to produce a power spectrum representative of
the spatial frequencies composition of a folded surface. Such a gener-
alization of Fourier analysis is performed with the eigenfunctions
of the Laplace–Beltrami Operator (LBO), which provides a natural
approach to obtain spectral decompositions on surfaces or, more gen-
erally, Riemannian manifolds (Berger, 2003). The methods to apply
this mathematical theory to the analysis of discrete meshes have
been recently described by Reuter et al. (2006) and Lévy (2006).
Compared with the more traditional spherical harmonics decomposi-
tion (Chung et al., 2008; Hübsch and Tittgemeyer, 2008), this approach
has the advantage of a direct processing of native data without non-
linear alignment and spherical parameterization steps. Indeed, such a
parameterization induces a certain level of both distance or angular
distortions (Gu et al., 2004; Kruggel, 2008) since folding wavelengths
in the native surface are basically projected onto the sphere with a
different wavelength. Recently it has also revealed a better informa-
tion compaction than spherical harmonics (Seo and Chung, 2011). In
return, LBO-based spectral analysis requires to device an appropriate
strategy to compare individually defined decompositions (Knossow
et al., 2009).

In this article, we propose an original method for the Spectral
Analysis of Gyrification (Spangy) which produces a morphologically
relevant band power spectrum of CFP. We also report on the interest
of Spangy for the study of the relationship between CFP complexity
and brain size in the large cohort of young healthy adults of the
ICBMMRI database (Mazziotta et al., 1995;Watkins et al., 2001). Firstly,
we present theoretical and numerical aspects of the LBO-based spectral
analysis, along with relevant Spangy design choices such as definition
of curvature function, spatial frequencies, spectral bands or spectral
segmentation of CFP. Next, we derive the measuring and describing
properties of Spangy from our numerical and anatomical results in the
ICBM database. Finally, we establish the relationship between spectral
composition of CFP and brain size through allometric scaling. To our
knowledge, this is the first time that a LBO-based spectral analysis is
used to provide a relevant signature of CFP and assess gyrification
complexity.

Materials and methods

Data set

Subjects
We analyzed the 152 normal volunteers of the ICBMMRI database

(Watkins et al., 2001). Each subject had a T1-weighted scan (3D fast
field echo images, 140 to 160 slices, 1 mm isotropic resolution, TR=
18 ms, TE=10 ms, flip angle=30, Phillips Gyroscan 1.5 T scanner).
One scan was excluded because of poor quality, leading to artifacts
in the automatic segmentation step. Of the remaining 151 subjects,
86 were males and 65 were females. Ages ranged from 18 to 44 years
(mean age: 25 years, standard deviation: 4.9 years). 128 subjects were
right-handed, 14 were left-handed, and handedness was unknown for
the remaining 10.

Brain segmentation and morphometric parameters
T1-weighted images were automatically segmented with BrainVISA

T1 segmentation pipeline (BrainVisa Software) to obtain topologically
spherical mesh reconstructions of the left hemispheric hull (morpho-
logical closing of the hemispheric mask) and grey-white interface. The
reconstructions were visually inspected for segmental disruption or
excess of surface spicules, leading to the exclusion of one subject. The
hemispheric volume (HV), i.e. the volume inside the hemispheric
hull and the hemispheric surface area (HA), i.e. the area of the
grey-white interface, were computed for each left hemisphere using
the BrainVISA Morphometry toolbox. We used the mean curvature
(C) of the grey-white interface to represent CFP. It was computed
with the non-parametric estimator implemented in the BrainVISA Sur-
face toolbox, which is based on the method introduced by Desbrun et
al. (1999).

Spectral analysis of curvature

See Fig. 2 for steps summary.

Laplace–Beltrami operator and spectral theory: eigenfunction basis
computation (step 1)

Given a compact Riemannian manifold M; gð Þ, where g is a metric

tensor, we introduce L2 Mð Þ ¼ u: M→R=∫M u2bþ ∞
n o

and the scalar

product bu; v >¼ ∫M uv. The spectrum of the Laplace–Beltrami operator

(LBO) ΔM ¼ div∘∇M is discrete (Berger, 2003). We denote λ0=0≤
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Fig. 1. Modeling framework for cortical folding. a) Larger seems twistier Left: coronal section perpendicular to the ACPC line and tangential to the genu of the corpus callosum (T1‐weighted
images). Right: pial surface of the right hemisphere (Morphologist, BrainVISA). 1st row: smallest brain of the database. 2nd row: largest brain of the database. The large brain shows a more
folded cortical surface in the SFG and a more complex pattern of the SFS with an almost doubling in relative spatial frequency of the folds. SFS: superior frontal sulcus, SFG: superior frontal
gyrus, R: right, L: left. b) The doubling frequency hypothesis Theoretical model of folded surface extension extrapolated from Mora and Boudaoud (2006): first the folded surface extension
leads to an increase in the depth of the folds, secondly it comes to a point when new folds appear with twice the initial spatial frequency. c) Allometric scaling for cortical surface geometry.
Isometric scaling occurs when there is an homothetic transformation between small and large brains. The exponent of the power scaling law between 2‐dimensional (surface, shape) and 3‐
dimensional (size) parameters is 2/3. The shape is constant. Allometric scaling occurs when shape modification, such as an increase in cortical folding pattern complexity, comes with size
variation. The exponent of the power scaling law is >2/3.
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Fig. 2. Spangy process (Spectral analysis of gyrification). Step 1: The computation of the eigenfunctions (EF) of the Laplace–Beltrami operator of the cortical mesh provides the
decomposition basis for spectral analysis. Step 2: The decomposition of curvature on the eigenfunctions basis gives a series of coefficients that are characteristic of the curvature
in the spectral domain. This step is reversible, which allows spectral filtering of the curvature and thus, supports the spectral segmentation of cortical folding pattern explained
in Figs. 4 and 5. Step 3: The production of the band power spectrum of curvature from the squared coefficients relies on the band design choices detailed in Fig. 3a.
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λ1≤…the eigenvalues of−ΔM and ϕ0, ϕ1,… an associated orthonormal

basis of eigenfunctions in L2 Mð Þ that satisfy:

−ΔMϕi ¼ λiϕi: ð1Þ

Given an eigenfunction ϕi, the nodal set of ϕi is defined as
x∈M;ϕi xð Þ ¼ 0f g. The connected components of the complement of
the nodal set are called nodal domains. The Courant Nodal Domain
Theorem ensures that if ϕi is not the first eigenfunction, the number
of nodal domains is at least 2 and at most i. Moreover any function
u∈L2 Mð Þ can be decomposed in the previous basis:

u ¼
Xþ∞

i¼0

uiϕi; with ui ¼ ∫M uϕi: ð2Þ

The Parseval's formula which will be useful for normalization states
that:

∫M u2 ¼
Xþ∞

i¼0

u2
i : ð3Þ
It is possible to compute eigenfunctions on a mesh M̂ that approxi-
mates M using a weak formulation of the eigenvalue problem and the
finite elements method. If u and λ are solutions of−ΔMu ¼ λu then:

∫M g ∇u;∇vð Þ ¼ λ∫M uv;∀v∈ L2 Mð Þ: ð4Þ

We use the finite elements framework to derive a matricial expres-
sion of this weak formulation.We consider themeshM̂ composed ofN
vertices. For each vertex i of the mesh we have a function wi : M̂→R
which is continuous, linear on each triangle of the mesh and satisfying
the propertywi(j)=δij. Any function continuous and linear on each tri-
angle can be decomposed on this basis u ¼ ∑N

i¼1 uiwi where ui are real
coefficients. So Eq. (4) can be rewritten in the discrete setting, taking
v=wj for all j∈ [1:N]. And the discretized problem is then to find a vec-
tor [U]=(ui)i=[1:N] and a scalar λ such that:

∇½ � U½ � ¼ λ M½ � U½ �; ð5Þ

with the stiffness and mass matrices given by :

∇½ � ¼ ∫M̂∇wi⋅∇wj

� �
i¼ 1:N½ �; j¼ 1:N½ �

; M½ � ¼ ∫M̂ wiwj

� �
i¼ 1:N½ �; j¼ 1:N½ �

:
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More details on the computation of these two matrices are given
in Desbrun et al. (1999). The eigenvalue problem (5) can be solved
for example with the Lanczos method as in (Arnoldi Package) since
the matrices involved are sparse and symmetric positive.

In practice, we computed several thousand eigenfunctions (5000)
such that the spatial wavelength reaches a reasonable spatial resolu-
tion (see B).

Curvature decomposition (Step 2)
The mean curvature (C) can be decomposed in the eigenfunction

basis through formula (2). We will denote Ci :¼ ∫M Cϕi the (Fourier)
coefficients of the curvature in the eigenfunctions basis ϕi and call
raw spectrum the sequence RSC(i) :=Ci

2. We define also a normalized
spectrum of curvature:

NSC ið Þ:¼ C2
i

∫M C2
∀i≥ 0: ð6Þ

which satisfies:

Xþ∞

i¼0

NSC ið Þ ¼ 1 ð7Þ

thanks to Parseval's formula (3).
We call Total Folding Power the quantity:

TFPC :¼
Xþ∞

i¼0

C2
i ¼ ∫MC2 ð8Þ

This dimensionless parameter is independent of homothetic brain
size variation. Namely, if one has a scaling coefficient λ between M1

and M2 then CM2 ¼ 1
λCM1 and a small quantity of surface becomes

dS2=λ2dS1, and then:

∫M2
CM2

dS2 ¼∫M1
CM1

dS1 ð9Þ

Spectral frequency bands design (step 3)
In the following, we will call F(i) and WL(i) the theoretical

frequencies and the wavelengths associated to the ith eigenfunction
λi (see A for further development on spatial frequencies):

F ið Þ ¼ 1
WL ið Þ ¼

ffiffiffiffiffi
λi

p
2π

ð10Þ

As a consistency check we compared these theoretical wave-
lengths with eigenfunction-derived quantities of the same dimension,
which can be intuitively considered as empirical wavelengths and can
be computed based on the number of nodal domains through the
formula:

WLE ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Area of M
Number of nodal domains of ϕi

s
ð11Þ

The raw spectrum of curvature is a very complex type of data,
challenging to analyze and even to visualize because of its several
thousand points. Moreover, since the eigenfunctions are defined on
a per-individual basis, there is no mathematically exact matching of
eigenfunctions of the same i-order (Knossow et al., 2009; Lombaert
et al., 2011). Hence, as a dimensional reduction and smoothing step,
we merged levels of successive orders into superior grouping levels
defined by a sequence of spatial frequency F(i) marking interval
limits. The sequence was chosen in order to fulfill a model of
branching with doublings of spatial frequency. The spatial frequency
associated with the first non-constant eigenfunction was considered
as the subject's reference frequency F(1). The following interval limits
were the spatial frequencies 2kF(1). This merging strategy allowed us
to define a band power spectrum (than could be later normalized or
not) defined as:

BSC 0ð Þ ¼ C2
0 ð12Þ

BSC kð Þ ¼
Xik2
i¼ik1

C2
i with ð13Þ

ik1 ¼ argmin
i

F ið Þ−2k−1F 1ð Þ
��� ��� ð14Þ

ik2 ¼ argmin
i

F ið Þ−2kF 1ð Þ
��� ��� ð15Þ

As we computed around 5000 eigenfuntions, this merging strategy
allowed us to define 7 bands, numbered from B0 to B6. See Fig. 3 for
band design steps.

Spectral segmentation of cortical folding pattern

We define a CFP map as the binary map where sulci correspond
to regions of negative curvature and gyri correspond to regions of
positive curvature. Based on the properties of spectral decomposition,
band-by-band spectral synthesis of curvature can be performed in
a cumulative or non-cumulative way. Non-cumulative synthesis is
equivalent to band-pass filtering, and can be used to show the specific
contribution of each spectral band. Cumulative synthesis, is equiva-
lent to low-pass filtering, and can be used to show the effect of the
gradual addition of higher frequency components to the map. From
these 2 types of synthesis, we derived 2 segmentations of CFP (see
Figs. 4 and 5 for steps summary):

• First, a segmentation according to the locally dominant frequency
band: we used non-cumulative synthesis to label each vertex with
the number of the band that contributed the most to its curvature
value. The result of this segmentation process is a texture denoted
Sdom. See Fig. 4 for computation steps.

• Second, a segmentation according to the locally determinant fre-
quency band: we used cumulative synthesis to label each vertex
with the number of the band that determined whether it belongs
to the sulcal or the gyral pattern. We assessed the differential con-
tribution of each frequency band to the CFP by subtracting between
the CFP maps of two consecutive levels of cumulative synthesis. The
result of this second segmentation process is a texture denoted Sdet.
See Fig. 5 for computation steps.

Extensive formulations for these 2 types of segmentation are given
in C. For the sake of clarity, they can be both visualized with a gyral
pattern mask, hence restricting the image to the sulcal pattern. Due
to their large preponderance in patterning (see Results), second seg-
mentation is restricted to the last three frequency bands.

For each label, we computed the total surface area and the number
of parcels, i.e. sets of connected vertices that have the same con-
sidered label. The segmentation according to the locally dominant
band is rather noisy due to the use of a truncated spectrum (number
of eigenfunctionsbnumber of vertices), which produces very small
parcels (mainly isolated vertices) related to non-computed bands
(very high frequencies). We thus used an adaptive-threshold filter to
remove these noisy parcels before computation (see B). Conversely,
for the segmentation according to the locally determinant band, the
number of parcel related to each label had been directly computed on
the intermediary subtraction step.
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Fig. 3. Spectral banding. a) Spectral bands design: frequency intervals according to the doubling frequency hypothesis. The spatial resolution achieved is illustrated by the relative
size of the nodal domains of the last eigenfunction of the basis and the edges of the cortical mesh (median size brain of the database). Log-linear plot. min, median, max: brain of
minimum, median and maximum size of the database. b) Spectral sizing: brain size, bandwidth and spatial resolution (wavelength associated with the last eigenfunction of the
basis) for the whole database. WL: wavelength, EV: eigenvalue/eigenvector.
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Statistical analysis and allometric scaling

We preformed an ANOVA to assess the effect of age, sex, and hemi-
spheric volume on hemispheric surface area and spectral parameters.
The correlations between cortical surface parameters (hemispheric sur-
face area, total folding power or spectral band power) and brain size
(hemispheric volume) were tested assuming a power law:

Y ¼ bXa ð16Þ

We compared the scaling factor a in the equation with the value it
should have when the scaling is isometric, i.e. presuming that 1 or 2
dimensional parameters scale with hemispheric volume as the 1/3
or 2/3 power respectively, and that folding power is constant. The
estimation of a and b was performed using log-log linear fit.

All statistical analyses have been performed using SPSS version
16.0.

Results

Measuring properties: wavelength and spectral power

Wavelength reflects nodal domain size
The measuring properties of the proposed band power spectrum

rely on the association of each LBO eigenfunction of the basis with
a well-defined spatial frequency. Eigenfunctions of increasing order
(i.e. smaller associated eigenvalue) show an increasingly scattered
nodal domain pattern, consistent with the expected increase of their
associated spatial frequency (Fig. 3a). The consistency between the em-
pirical wavelength Ð estimated through the number of nodal domains
Ð and the theoretical wavelength Ð derived from the eigenvalue Ð is
confirmed by the strong linear correlation between the two values.
For low orders, the empirical computation is not precise, due to its
sensitivity to domain shape, coalescence and irregularity, but from the
10th order on, the relationship becomes almost exact (mean fit for
ICBM database: 0.87x+4.51, R=1), and after the 100th order, there
no longer seems to be any difference (0.97x+0.56, R=1). In spite of
a certain variability, the mean shape for the nodal domains of an
eigenfunction looks like a spot scaled by its theoretical wave length
(Fig. 3a). The wavelength not only depends on the order of the
eigenfunction but also on the size of each individual brain. Being a
one-dimensional parameter intrinsically derived from the grey/white
surface, the theoretical wavelength is expected to scale as HA1/2,
which is almost exactly what we observe in the ICBM database:
1.74 HA0.495, R=0.938. This result validates the possibility of comput-
ing frequency band statistics in the ICBM database (Fig. 3b) which pro-
vide a standard for patterns sizing.

Spectral resolution achieves mesh resolution
The spatial resolution of our spectral analysis is limited intrinsically by

the mesh resolution, and extrinsically by the number of eigenfunctions
computed in the decomposition basis. The density of vertices in the
surfaces that we used is not homogenous and changes locally depending
on the surface geometry. The mean number of vertices in our surface
reconstructions was 21418±2268, and the mean triangle edge length
was 2 mm±0.5 mm, i.e. a mean resolution of 3 mm2. The mean wave-
length of the last eigenfunction necessary to compute the proposed 7
bands is 7 mm, i.e. amean resolution of 9mm2 (see Fig. 3a for illustration,
Fig. 3b for values and Appendix B for computation). Hence, in our analy-
ses the spatial resolution of the decomposition basis was slightly larger
than that of the surface meshes. This allowed us to consider a minimal
pattern element of around 3 contiguous vertices. This resolution is rea-
sonable given that the patterns of interest in a cortical surface are hardly
to be found below half a centimeter, and also to avoid variation due to
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Fig. 4. Segmentation of cortical folding pattern (CFP) according to the locally ‘dominant’ band. a) Band-pass filtered curvature for the 6 spectral bands (1st and 2nd rows). The
contribution of the bands to the total folding power (TFP) is only 4.4% for B1+B2+B3 but 61.2% for B4+B5+B6 which explains the differences in colour intensity. b) Plots
show the decomposition of curvature at points (I) (II) and (III) obtained from the band-pass filtered series. On the right, each point of the surface is labeled with the band that
contributes most to its curvature value, i.e. the “dominant” band. Segmentation is presented for median size brain on a smoothed anatomy with a gyral mask (salmon red).
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inaccuracies in surface segmentation and reconstruction. To assess the
robustness of our results with respect to the number of vertices of
the meshes, we compared the spectrum computation before and after
mesh refining (doubling of the number of vertices) , and we did not
find any significant differences (data not shown).

Spectral power concentrates in the last 3 bands
By construction, the proposed band power spectrum gives a parti-

tion of the total folding power in intervals of doubling spatial frequen-
cies (i.e. spectral bands). The band power spectrum normalized by the
total folding power provide a spectral proportion, or in other terms,
the relative weight of each spectral band. However, the decomposition
basis necessary for the computation of 7 bands cannot account for the
full total folding power since part of it is contained in the higher
frequency levels thatwedonot compute. The normalized 7 bands spectra
of all ICBM database subjects shows that on average, our analysis
concerns around 2/3 of the total folding power (mean 65.8%, SD 1.45%).
More precisely (Figs. 4a and 6):

• B0 (the constant band) accounted for 0.35% (SD 0.14%),
• B1, 2 and 3 (the first 3 oscillating bands) accounted for 4.39%
(SD 0.79%),

• B4, 5 and 6 (the last 3 oscillating bands) accounted for 61.2%
(SD 1.43%).

This shows the quantitative predominancy of the last 3 bands,
which account for a large proportion of the total folding power and
almost the totality of the analyzed folding power (92.8%).
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Describing properties: anatomical–spectral correlations

We now show the utilization of Spangy to categorize and quantify
pattern elements back on the original cortical surface, on the basis of
spatial frequency properties.

‘Global shape bands’ vs ‘folding bands’
Low-pass and band-pass filtering provide a first insight into the

link between spectrum and cortical folding through the sequential
visualization of the contribution of each band to the curvature value
(Fig. 4) and the CFP (Fig. 5). B0 does not account for any pattern
since the 1st eigenfunction does not oscillate. B1 and B2 bands
account for patterns that are not correlated with folding but rather
with the global brain shape, like the slight concavity of the medial
hemispheric side (B1) and the bottom of the sylvian fissure (B2),
the global convexity of the lateral hemispheric side (B1), or the
convexity of the polar regions (B2). B3 not only contributes mainly
to the global brain shape with the transition between lateral and
medial sides of the hemisphere or the sylvian banks, but also to initiate
the fundi of several primary sulci, such as the posterior part of the supe-
rior temporal sulcus or the medial part of the intra parietal sulcus. As
we have shown previously, whatever the qualitative contribution to
the CFP of the first three non-constant bandsmay be, they are quantita-
tively very weak. Thus, patterns consistent with cortical folding appear
with B4 (Figs. 4a, 5a) and most substantial contributions to the CFP are
produced by B4, B5 and B6. These 3 bands will be further referred as the
‘folding bands’.

Complementarity between dominant and determinant band segmentations
of CFP

The 2 types (Figs. 4b and 5b) of spectral segmentation of CFP are
presented in Fig. 7 on 5 brains of increasing size (restricted to sulcal



61.2% of TFP 

4.4% of TFP  

normalization by Total Folding Power 

a) 

b) 

c) 

Small (<-1SD HV, n=20) 

Large (>-1SD HV, n=22) 

p<0.001 

NS p<0.001 

Raw band spectrum

Normalized band spectrum

Normalized band spectrum

Spectral Band Number 

R
el

at
iv

e 
S

pe
ct

ra
l P

ow
er

 
R

el
at

iv
e 

S
pe

ct
ra

l P
ow

er
 

A
bs

ol
ut

e 
S

pe
ct

ra
l P

ow
er

 

Fig. 6. Relative contribution of each band to the power spectrum of curvature. a) Raw
band spectrum (whole dataset). b) Spectral proportions (whole dataset), obtained
after normalization of the raw band spectrum by the total folding power (TFP). c) Effect
of brain size i.e. hemispheric volume (HV). Differences of spectral proportions between
small (HV below mean−1SD) and large (HV over mean+1SD) brains. Student t test.
Large brains show a relative increase in high frequencies (B6) and a relative decrease
of lower frequencies (B4). Large circle: mean value, NS: non‐significant.
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pattern): the segmentation according to determinant band in the 2nd
column, and the segmentation according to dominant band in the 3rd
column. They provide complementary information about the contri-
bution of each folding band. The segmentation according to determi-
nant band sums up the observations made on low-pass filter series
and provides a clear image of the progressive ramification of the
sulcal pattern produced by the addition of higher frequency bands.
The segmentation according to dominant band shows a similar phe-
nomenon but with significant differences in surface labeling which
show that a vertex can be added to either sulcal or gyral pattern by
one band, whereas its curvature value is mainly determined by a
higher frequency band. These discrepancies between locally determi-
nant frequency band and locally dominant frequency band are particu-
larly visible around the polar regions. Besides, as previously explained,
the segmentation according to dominant band is noisy and we applied
a band-adapted minimum threshold for size before the quantification
of surface area and number of sulcal parcels. This threshold had a very
mild effect on the regions labeled by B4, B5 and B6, leading to a mean
area reduction of respectively 6.9%, 1% and b0.1% (SD 1.5%, 0.2%
b0.1%). Nonetheless, it was sufficient to rub outmost of the irrelevantly
small spots, particularly for B4 band, rejecting an average of respectively
118, 45 and 3 spots (SD 19, 11 and 2), with a mean spot area 2 times
below the threshold. Finally, we found a strong linear correlation
between B4, B5 and B6 spectral power and labeled surface area,
respectively: 335x+3660 (R=0.783), 396x−96.3 (R=0.917),
403x+884 (R=0.961), showing that the segmentation according
to dominant band gives a faithful picture of the band power spec-
trum. The correlation was equally good between the normalized
band power and the labeled surface area reported to hemispheric
surface area.

Anatomical correlates of spectral segmentation of CFP
The sulcal pattern of the low-pass filtered CFP map at B4 level

consists in a limited set (21 elements±3) of large smooth sulcal
parcels with few ramifications (Fig. 7, 1st column). These spectrally
defined folding fields embed the main primary folds of the literature
(Fig. 8a, (Chi et al., 1977)) and are refined by B5 and B6 to produce
a more irregular and branched CFP. According to the proposed spec-
tral segmentations, the CFP can be divided into 1st, 2nd and 3rd
order elements associated respectively with frequency bands B4, B5
and B6. These 3 orders are sufficient to describe the whole CFP even
for dominant band segmentation which could have concealed up to
7 labels. Indeed, lower frequency band labeling is strictly restricted
to B3 and only concerns a few deep sections of the superior temporal
sulcus, intra parietal sulcus or insula, covering a very small percent-
age of the total sulcal area (b5%). The anatomical correlates of this
3-order segmentation are well illustrated by the analysis of the
pericentral region in 3 reference brains of increasing size (Fig. 8b).
The figure shows the straight course of the 1st order central element,
the 2 or 3 loops corresponding to 2nd order elements and the small
dimples associated with 3rd order elements, which are much more
accentuated in the largest brain. The same anatomical correlations can
be observed for gyral pattern and yet, for the whole CFP (Fig. 8c).
Hence, we show that the distribution of 2nd and 3rd order elements
of pattern is neither random nor homogeneously underlying the limits
of lower order elements, but rather parsimoniously matches the gradu-
al ramification of CFP from the previously defined 1st order folding
fields.

Spectral composition of CFP as a function of brain size

Allometric scaling of surface area and folding power
We used the hemispheric volume (HV) as a brain size parameter.

In our dataset, HV ranged from 445 cm3 to 759 cm3, i.e., a 1.7-fold
variation (Fig. 3b). The hemispheric surface area showed a positive
allometric scaling: HA=0.209HV0.961 (R=0.950, pb0.001, confidence
interval [0.935, 0.987]), i.e. large brains had disproportionately more
cortical surface than smaller brains. We found the same variation
with brain size for the sulcal pattern area and the gyral pattern area,
demonstrating the absence of allometric modification of sulcal versus
gyral proportions: sulcal pattern area = 0.127HV0.951 (R = 0.953,
pb0.001, CI [0.926, 0.976]); gyral pattern area=0.0828HV0.972 (R=
0.898, pb0.001, CI [0.934, 1.012]). Total folding power also showed
a positive allometric scaling, consistent with the fact that large brains
are not simply scaled-up versions of smaller ones: total folding
power=8.16×10−3HV0.781 (R=0.784, pb0.001, CI [0.73, 0.832]).
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We used these allometric exponents as references for the scaling ex-
ponents found for subdivisions of the hemispheric surface (1st,
2nd and 3rd order elements of CFP) and total folding power (B4, B5
and B6).
Spectral allometry: different brain sizemeans different spectral proportions
As they accounted for more than 90% of the analyzed folding

power, we limited the following analysis to the folding bands. The
largest proportion of the variance in spectral band power was related
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Fig. 8. Anatomical–spectral correlations. a) Primary folding fields correspond to B4 low-pass filtered CFP. Comparison between typical B4 low-pass filtered CFP and primary folds
adapted from Chi et al. (1977). SFS: superior frontal sulcus, IFS: inferior frontal sulcus, PrCS: pre-central sulcus, CS: central sulcus, PoCS: post-central sulcus, PoSTS: posterior branch
of the superior temporal sulcus, IPS: intra-parietal sulcus. b) Spectral segmentations of the central region: 1st, 2nd and 3rd order elements of CFP. Schematic interpretation of the
segmentations is given in the 1st row (the number of 3rd order elements is arbitrary as it increases with brain size). 2nd row shows the segmentation according to determinant
band. 3rd row shows the segmentation according to dominant band. For each brain, the segmentation is presented on the native (left) and totally smoothed (right) anatomy
with a gyral mask (salmon red). min, median, max: brain of the database of minimum, median and maximum size. PrCG: pre-central gyrus, CS: central sulcus, PoCG:
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to brain size variation (R2=61% in a centered model) with no signif-
icant effect of age, sex, or handedness. Normalized band spectrum
revealed a significant effect of brain size on spectral proportions
(Fig. 6c). Large brains (standard score for HV>Mean+1SD) showed
a significantly larger proportion of B6 high spatial frequencies than
small brains (standard score for HVbMean–1SD) and conversely,
they showed a smaller proportion of B4 low spatial frequencies
(pb0.001 in both cases). The proportion of B5 medium spatial fre-
quencies was not significantly different between the large and small
brains. To further investigate the relationship between brain size
and curvature band power spectrum, we compared the scaling of
each spectral band power with the scaling of total folding power
(Fig. 9a). We found no correlation between brain size and folding
power for B4, an allometric exponent similar to that of total folding
power for B5 (0.753±0.052 versus 0.781±0.051) and a higher allo-
metric exponent of for B6 (1.213±0.061 versus 0.781±0.051). This
shows that in large brains the larger proportion of B6 spatial frequen-
cies compared with B4 and B5 is due to an increased contribution of
these high frequencies to CFP rather than to a decrease of B4 ones.
It also explains the stable proportion of B5 frequencies since total
folding power is the normalization constant. In other terms, B4 con-
tribution to the CFP is independent of brain size i.e. isometric scaling,
B5 contribution follows the average increase of folding power with
brain size i.e. positive allometric scaling, and B6 contribution increase
faster than average i.e. the positive allometry is stronger for the
higher spatial frequencies.

CFP complexity increases with brain size
How do the different behaviors of each folding band translate in

terms of CFP? The computation of surface area and number of sulcal
parcels for each label of the segmentation according to dominant
band is presented in Fig. 9b and c. The variation of surface area with
brain size for each order of CFP elements showed a specific behavior
similar to that of frequency band power: increase of area with brain
size is very slow for 1st order (B4), parallel to surface extension for
2nd order (B5) and faster than expected for 3rd order (B6). This result
was robust and not sensitive to filter suppression of the noisy parcels.
The number of parcels was independent of brain size for 1st and 2nd
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Fig. 9. Allometric scaling for cortical folding pattern (CFP) extension: larger brains are twistier because of an increased number of high spatial frequency elements. Data are shown
in Log-Log plot, linearizing the power-law model Y=bXa. ∗∗∗ show noteworthy correlation (R2>0.04) and significant model fit (pb0.01). a) Band spectral power scaling. Isometry
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order i.e. constant in spite of surface extension, while the number of
parcels increased for 3rd order (Fig. 9c). This result was of course
sensitive to filter suppression but we found the same behavior for
each order with the segmentation according to determinant band that
provides an even clearer image of the progressive ramification and do
not require filtering (Fig. 9d). We found no significant differences
between the analysis restricted to the sulcal pattern and that of the
whole CFP. Hence, the proposed spectral segmentation allows the char-
acterization and quantification of the increase in CFP complexity with
brain size, demonstrating that it consists in a high frequency add-on
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of folds and ramifications, as suspected by visual comparison of smaller
and larger brains of the dataset (Figs. 7 and 8b).

Discussion and conclusion

The proposed Spectral Analysis of Gyrification (Spangy)methodology
achieves a categorical and quantitative analysis of cortical folding pattern
(CFP) both in the frequency domain through a band power spectrum
and in the image domain with an anatomically relevant spectral seg-
mentation. The computation is directly performed on native cortical
meshes without the need for spherical parameterization or template
normalization.

Sensitivity to data quality and preprocessing

The choice of the mean curvature of the grey-white interface as
the best proxy of CFP could be questioned. Other continuous scalar
functions defined on a cortex derived surface mesh could have been
elected. Cortical thickness has been analyzed in a recent work (Cho
et al., 2012), but is likely not a good CFP proxy. Actually, the mean
curvature defines two gyral and sulcal patterns of almost equal
areas on the grey-white interface, but not on external cortical surface
(i.e. pial surface) where the CFP is very unbalanced. Future work with
Spangy will try to use this external surface or even an intermediate
surfaces such as that proposed in Van Essen et al. (2001). It would
also be of interest to look for invariants between spectra computed
on the same brains but with different surfaces or folding proxies
(Gaussian curvature, sulcal depth, etc.). Besides the choice of the sur-
face, the quality of data sets and preprocessing tools could affect the
analysis, as in all sensitive morphometric tools. Indeed, if secondary
mesh refinement (computational vertex density augmentation) does
not seems to impact much on results, a primary higher mesh resolution
could bring new spatial frequencies components out of the background
noise. However the accuracy of brain segmentation methods is a major
determinant of the correct divisions of sulci that could affect any
morphometric result and thus should be tested through different soft-
wares (BrainVisa, FreeSurfer, FSL for instance) or even software releases
(Gronenschild et al., 2012). In particular we are currently checking to
which extent our results on global CFP allometric scaling and local seg-
mentation are reproducible with new datasets and new Morphologist
Releases.

The model behind the frequency bands

The frequency-doubling model that we used to design frequency
bands is a corner stone of the analytical properties of Spangy. This
choice fits well with physical models of folding, and presents several
convenient properties we did not observe with other models.

First, it provides an objective method to compare different subjects.
Inter-subject matching of same-order eigenfunctions is a difficult prob-
lem, which complicates full ordinal comparisons between extended
raw spectra (Knossow et al., 2009; Lombaert et al., 2011). Nonetheless,
the proposed large frequency bands are equivalent to a large scale
smoothing in the frequency space resulting in inter-subject relative
frequency matching between bands of the same order. These bands
are intervals of identical relative frequencies, meaning that they corre-
spond to the same ratio of the fundamental frequency of each brain
(i.e. the frequency given by the first non-null eigenvalue) even if they
are composed by frequencies of different absolute values. This funda-
mental wavelength, which is empirically proportional to HA1/2, can be
seen as the geodesic length of the hemisphere (Lefèvre et al., 2012). In
simpler terms, Spangy depicts CFP with a scale of brushes adapted to
object size: larger touches are required for larger brains.

Second, it segregates the “folding bands” that clearly contribute to
CFP from those that seem to account for global shape. This property
could not be anticipated and we still have no model explaining the
apparition of sulcal patternswith B4 (23F(1) to 24F(1) spatial frequency
range). Since this range is quantitatively large and the density of
eigenfunction still rather low in this part of the spectrum, there is prob-
ably no exact frequency threshold above which CFP arises. This uncer-
tainty concerning exact delineation of spectral folding frequency
domain pleads for future implementation of intelligent models such
as machine learning algorithms for CFP fundamental frequency assess-
ment or for frequency clustering, with or without anatomically labeled
learning data base. Nonetheless, the present strategy designs a convinc-
ing first folding band from which frequency doubling models make
sense. Besides, our primary interest in CFP analysis with higher bands
should not overshadow the clear association of low frequency bands
with curvature variations related to global shape. Recent works suggest
that the information gathered into these low frequencies may be rele-
vant, at least for global shape classification (Niethammer et al., 2007;
Lai et al., 2009), although their power is quantitatively small compared
with that of the folding bands.

Third, it leads to a realistic segmentation of pattern ramifications.
This property may directly result from the branching model that is
behind the frequency sequence. Our results with spectral segmentation
of CFP clearly show that this hypothesis is consistent with anatomical
data and conversely support the validity of models predicting a fre-
quency doubling with folding expansion. Interestingly, the bandwidth
of the folding bands broadly accommodates the variation of dominant
wavelength of same order elements of pattern between different
regions of the brain. This appears clearly on the ‘determinant band’
segmentation (Fig. 5), where the first order patterns seem to be tighter
in polar regions and wider in central ones.

From the frequency domain to the image space

Categorization
The segmentation proposed is free from anatomical or developmen-

tal a priori. Labeling is based only on spatial frequency characteristics of
local curvature variations, or more precisely on how these local varia-
tions integrate into the whole pattern, since spectral analysis is not a
local analysis. Our results on the central region show that we can distin-
guish two types of gradual contribution of the folding bands: firstly the
termination of elongated elements of pattern, secondly the ramification
of pattern both from an existing element and de novo. Termination
labeling is of little anatomical meaning and rather due to strong impact
of depth on surface basedwavelength (see below). Conversely, ramifica-
tion labeling is an interesting achievement. Indeed, starting from spec-
trally defined primary folding fields, Spangy segmentation categorizes
2nd and 3rd order of ramification or complexification of CFP (Fig. 8a,
subsection "Anatomical correlates of spectral segmentaion of CFP") in a
way that only developmental chronological follow-up had authorized
up to now (Chi et al., 1977). To our knowledge, no other strictlymorpho-
logical analysis has achieved this type of result so far.

Recent closely related mathematical tools such as fractal modeling
(Yotter et al., 2011) allow estimation at global, regional and local scales,
of a fractal dimension for the cortical surface thanks to spherical har-
monics, but the authors have not applied their methodology to the seg-
mentation or even the description of normal CFP. More intuitively,
Laplacian smoothing has been presented as a possible tool for categori-
zation of sulcal pattern elements since supposed tertiary folds seem
to disappear earlier in the process than secondary, and so on (Cachia
et al., 2003). However, it is a continuous process depending on a scale
parameter t whose relevant values vary from a fold to another and
across subjects. It is also interesting to note that this process is not
mathematically equivalent to filtering even if smoothing a map u till
time t can be expressed from eigenvectors and eigenfunctions of
Laplace–Beltrami Operator (same notations as in 2.2.1):

St uð Þ ¼
Xþ∞

i¼0

uie
−λi tϕi ð17Þ
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which is different from a truncated expression of Eq. (2):

TN uð Þ ¼
XN
i¼0

uiϕi ð18Þ

In many regions more intricate than the central region, local
categorization of CFP elements is probably unattainable directly in
the image space. The proposed spectral analysis integrates the
whole pattern information in the frequency space for band power
spectrum computation, but returns part of it locally in the image
space with the segmentation according to the locally dominant
frequency band. Hence, we are able to propose a spectral based seg-
mentation even in complex regions such as prefrontal cortex for ex-
ample (see Fig. 7). Regional implementation of our spectral strategy
on a patch of mesh corresponding to an anatomical (e.g. frontal
lobe) or a functional area (e.g. Broca) would be of interest. None-
theless performing global or local inter-subject analysis of the seg-
mentations is not a trivial objective, which relies on relevant
parameterization or registration of the surfaces and computation of
statistical parametric maps. Furthermore, full demonstration of con-
cordance between spectral and developmental labeling of elements
of CFP goes far beyond the scope of the present work and will cer-
tainly need further investigation, for instance on longitudinal data
of developing brains.

Quantification
Spangy provides two types of quantitative information. First,

the wavelength intervals associated with B4, B5 and B6 give a size
for 1st, 2nd and 3rd order elements of CFP that can be seen as a
surface-based or geodesic wavelength. Such a surface-based measure
depends both on the local depth and the local width of the associated
fold. Very few object-based morphometric data are available for
cortical folds. The BrainVISA morphometric toolbox allows depth
assessment for well-validated sulci models (Cykowski et al., 2008)
but provides no ramification-based segmentation. Nevertheless, the
magnitude order for central sulcus is consistent with B4 associated
wavelength range (Mangin et al., 2004). Object-based definition and
computation of other size parameters such as volume-based (Euclidian)
or surface-based (Riemannian) wavelengths would be of great interest
to compare with the measures provided by Spangy (Lefèvre et al.,
2012). Indeed, accurate CFP morphometry could open the field of a
new quantitative characterization of folding during development,
aging or in congenital malformations such as lissencephaly (too few,
too large folds) of polymicrogyria (too many, too tight folds) (Richman
et al., 1975). Yet sizing of CFP elements is not enough for folding charac-
terization, which requires assessing the global composition of CFP for
each category. This composition is the second quantitative information
provided by Spangy. Band power is probably the best assessment of
each spatial frequency interval contribution to the CFP since spectral
segmentation goes with certain loss of information: locally, an element
of pattern can only be related to one band even if several folding orders
are intricate Additionally, the proposed segmentations allow a count of
categorized fold elements and ramifications back in the anatomical
space. Ultimately, forthcoming research may provide normative chart
of Spangy-derived parameters useful to understand abnormal brain
development or aging and perhaps design new diagnostic criteria.

Beyond gyrification indices, a new measure of gyrification pattern
complexity

In this work we propose a first application of the new approach
provided by Spangy to answer the question of the relationship
between brain size polymorphism and CFP complexity variation.
The allometric relationship between brain size (hemispheric volume)
and hemispheric surface area has been already reported (Toro et al.,
2008). Some results even suggest that this allometry is not spatially
homogeneous and that local gyrification indices increase more in
some brain regions, prefrontal area for instance, than in others
(Toro et al., 2008; Schaer et al., 2008). These indices inform us on
the amount of buried cortical surface but are not able to distinguish
between profuse shallow folds and rare deep ones. Hemispheric
total folding power gives roughly the same information than hemi-
spheric gyrification index: both are highly correlated (R=0.8) but
equally blind to shape and gyrification pattern. The band power spec-
trum provided by Spangy precisely unwraps this black box: the allo-
metric increase of total folding power does not divide up equally
between bands. Spangy reveals 3 orders of pattern elements of
increasing spatial frequency bandwidth, which vary differentially
with brain size. This phenomenon is well observed in our results on
ICBM data set:

• The contribution to CFP of B4 low spatial frequencies is constant in
terms of both spectral power and number of pattern elements.

• The contribution of B5 medium spatial frequencies increases with
the same allometric exponent than total folding power but with a
number of pattern elements still constant.

• The contribution of B6 high spatial frequencies shows both a much
higher allometric exponent and an increased number of pattern
elements.

Eventually, the increase of gyrification complexity can be seen
as the allometric scaling of gyrification pattern, i.e. the extension of
CFP both by ramification and by addition of disconnected new ele-
ments. To our knowledge, this is the first objective and quantitative
demonstration of this phenomenon suspected by radiological obser-
vations. Larger brains are definitely twistier because of increased
number of barbells, dimples and kinks of high spatial frequencies
that accommodate the allometric increase of cortical surface to be
buried.
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Appendix A. Definition of spatial frequencies

In one dimension, the eigenvalue problem (1) becomes

u″ xð Þ ¼ −λu xð Þ ∀x∈ 0; L½ � ðA:1Þ

and the solutions are obtained through the sine and cosine functions
depending on boundary conditions (Dirichlet or Neumann for instance).

An eigenfunction can be expressed on the form cos πnx
L

� �
or sin πnx

L

� �
with n an integer that gives the number of oscillations of the

eigenfunction and the corresponding eigenvalue is λn ¼ πn
L

� �2
. The

frequency is classically defined as the inverse of the period or wave-

length 2π
πn=L

and therefore equals
ffiffiffiffiffiffi
λn

p
2π

. In two dimensions we can have

explicit formula in the case of a rectangular domain of size L and l and
the eigenfunctions can be expressed in a decoupled way, for instance
for Neumann boundary conditions:

cos
πmx
L

� �
cos

πny
l

� �
∀ x; yð Þ∈ 0; L½ � � 0; l½ � ðA:2Þ

and the corresponding eigenvalue is λn ¼ πm
L

� �2 þ πn
l

� �2
. Even if the

concept of spatial frequency is ambiguous in 2D and depends on the
oscillations along each direction x and y, we will consider that

ffiffiffiffiffiffi
λn

p
has the dimension of a spatial frequency.
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Appendix B. Computation of resolution and thresholds

For a given spatial resolution of a mesh, let d be the average edge
distance between two contiguous vertices. Then, the average sign
inversion spot (an isolated point of different sign than its neighbors)
is around π(d/2)2 mm2 large (small disc of d mm diameter). For a
given eigenfunction basis spatial resolution, let WL be the wavelength
associated with last eigenfunction of the basis. Then, it is associated
with an average size spot of π(WL/4)2 area (small disc of WL/2 mm
diameter).

For the adaptative thresholding in 3, we have made a similar
reasoning: a noisy parcel in band k is roughly approximated by a
circular shape of radius Rk. So we have the relation for the charac-
teristic size :

2Rk b
1
2
WL 1ð Þ
2k

ðB:1Þ

which implies that the area of the parcels satisfies:

Ak b
π2

16
WL 1ð Þ
2k

� �2
ðB:2Þ

The adaptative threshold for each spectral band k is therefore
given by the right term in the previous equation.

Appendix C. Extensive formulations of the spectral segmentations

We give here the formula for the segmentation according to the
locally dominant frequency band:

Sdom pð Þ ¼ argmax
k>0

sign C pð Þð Þ
Xik2
i¼ik1

Ciϕi pð Þ
0
@

1
A∀p∈M ðC:1Þ

The sign of the curvature indicates whether we are in a gyrus or a
sulcus.

For the segmentation according to the locally determinant frequency
band, we start by computing the differential contribution of each fre-
quency band to the CFP by subtraction between the CFP maps of two
consecutive levels of cumulative synthesis:

∀p∈M SMk pð Þ ¼ a−b where ðC:2Þ

a ¼ 1 if
Xik2
i¼1

Ciϕi pð Þ > 0 else a ¼ 0 ðC:3Þ

b ¼ 1 if
Xik−1
2

i¼1

Ciϕi pð Þ > 0 else b ¼ 0 ðC:4Þ

Then, we follow the procedure explained graphically in Fig. 5:
We start from SMk for k=6 (third row, first column) which counts
3 labels −1 (blue), 0 (gray) or 1 (red). A vertex with label l will be
assigned another label 3 l. Then we consider SMk for k=5 (third
row, second column) and to each vertex with label l not previously
re-labeled we assign the label 2 l. The last step is achieved for k=4
where all vertices not re-labeled previously will keep their label l.
Finally, the resulting segmentation Sdet is represented with a gyral
mask (last row) and counts 3 labels: -3 (green), -2 (cyan) and ‐1
(dark blue). Formally we have the formula:

Sdet pð Þ ¼ kSMk pð Þ1 −3;−1j j½ � kð Þ
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