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Abstract

Background: The segmentation of the cortical interface between grey and white matter in magnetic resonance images
(MRI) is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important
intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low
tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain.

Methods and Findings: We present an atlas-free method for segmenting the grey-white matter interface of infant brains in
T2-weighted (T2w) images. We used a broad characterization of tissue using features based not only on local contrast but
also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving
surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-
month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good
performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific
brain regions where the tissue contrast decreased with maturation, such as in the central region.

Conclusions: We presented a new segmentation method which achieved good to very good performance at the grey-white
matter interface depending on the infant age. This method should reduce manual intervention and could be applied to
pathological brains since it does not require any brain atlas.
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Introduction

Accurate reconstruction of the cortical border from MRI is an

important issue in visualization, cortical mapping and quantitative

brain analysis. It is highly challenging in infants because imaging

an immature brain encounters several difficulties (figure 1). First,

partial volume effect due to the small brain size associated with an

already complex pattern of gyrification hampers cortex edges

detection. Second, because of unmyelinated white matter, the

contrast between grey and white matter is much weaker than the

one typically found in adult MRI. Third, the human brain

undergoes important and fast changes during the first post-natal

year (e.g. the cranial perimeter increases by 0.5 cm per week). The

grey-white matter contrast is so poor in T1w MR images that T2w

MR images are preferred during the first months of life. However,

as brain matures, tissue contrast decreases with age in T2w MR

images (figure 2) whereas T1w MR images remain of poor quality

[1]. Finally, maturation is not homogeneous across the brain, some

areas showing intense myelination and proliferation of membranes

(e.g. visual and motor areas) while others have a more protracted

development (e.g. frontal areas) [2]. This inhomogeneity in

maturation produces important variation in tissue intensity in

MRI. Taken all together, these characteristics make segmentation

of brain compartments a very difficult issue during the first year of

life.

Related work on brain segmentation
One approach to overcome segmentation issues in the

developing brain is to use strong a priori information. Apart from

a recent approach based on high-level anatomical knowledge from

the subject itself [3], current neonatal brain segmentation methods

have used either atlases or training datasets. Atlases were indeed

very efficient to segment deep brain tissues [4], myelinated from

unmyelinated white matter [5] or the relatively unfolded foetal

brain [6]. As for the cortical folding patterns which are highly

variable across infant brains, methods often built up highly specific

atlases: Weisenfeld et al. [5] set up a large collection of scattered

prototypes and selected those close to the subject anatomy; Shi et

al. [7] used the highly contrasted T1w image of a one or two years-

old child as a template for segmenting the T2w neonatal image of

the same subject. When longitudinal data were not available, the

same authors [8] devised another method which non linearly

registered the to-be-segmented cortex to spatially close cortical
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segmentations from another neonate dataset. Finally, atlas-based

priors were combined with local intensity information and cortical

thickness constraint in a single level-set framework [9].

Besides, segmentation methods have to deal with spatial

variations of tissue intensity caused by inhomogeneous maturation

in neonatal brains, particularly the on-going white matter

myelination. Several authors [4,7,10] referred to the Expecta-

tion-Maximization (EM) algorithm devised by van Leemput et al.

[11], which iteratively corrects tissue for intensity inhomogeneity

in MRI. Additionally, the EM scheme removes residual local noise

based on Markov Random Field theory. Some authors have also

modeled the irregular non-Gaussian white matter intensity using a

set of non-parametric density functions [12] or split the brain into

regions [4,10]. More specifically to T2w MR images of the

developing brain, the intensity of cerebro-spinal fluid close to

cortex is similar to white matter intensity because of partial volume

effect. Thus, cerebro-spinal fluid may be misclassified as white

matter when detecting tissue near the cortical folding patterns. A

knowledge-based strategy was introduced to reduce this effect and

improve the classification [4,5].

Finally, MRI resolution is a critical issue in infant brain

segmentation. The developing brain is highly folded and the

detection of its thin and twisted convolution patterns requires high

T2w resolution. However, risk of motion in non-sedated infants

prevents from long acquisition time. A trade-off between spatial

accuracy and motionless acquisition might be a resolution near

1 mm in each spatial dimension, as it has been reported for

segmenting the cortical ribbon [4,6].

Contribution of this paper
Our purpose was the cortical surface reconstruction across a

large infant age range (chronological age from 1- to 4-month old)

without any atlas requirement. It is highly challenging in older

infants because of the persistent decrease of the grey-white matter

contrast during the first year of life due to on-going tissue

maturation.

We devised an atlas-free method because infant atlases are not

yet of easy access and atlas-based strategies are often not well-

adapted to the developing brain for several reasons. First, they

require a careful selection of the infant template, because of the

variability in brain shapes (particularly with the recent spread of

plagiocephaly [13], i.e., an asymmetrical flattening of one side of

the skull due to new sleeping habits required to prevent sudden

infant death syndrome) and in the cortical folding patterns.

Second, age-specific templates are required to deal with the fast

and differential maturation and growing of the brain. It may be

particularly tricky when the ‘‘chronological’’ age of the infant is

different from its ‘‘maturational’’ age (chronological age corrected

by gestational age at birth, for instance for full-term infants born at

37 weeks instead of 41 weeks). Finally, atlas-based approaches may

not deal properly with pathological brains [14], such as

malformations of cortical development.

Instead of the expectation-maximisation approach, we here

initially corrected for spatial intensity inhomogeneities and then

detected the cortical surface based on local priors which were not

much sensitive to intensity inhomogeneities. We dealt with the

issue of similar intensity in cerebro-spinal fluid and white matter

close to cortex by warping two surfaces from each cortical side.

These two surfaces competing with each other yield higher

robustness than a single deformable surface because they

efficiently build upon complementary information located on

both sides of the grey-white matter interface. Both surfaces

ultimately converged towards this interface whose curvature is

smoother than the outer cortical surface and which is therefore

easier to segment.

Figure 1. Infant brain maturation across age in T2w MRI. These sagittal slices show temporo-spatial variations of the on-going maturation
processes near the inter-hemispheric plane. Areas of advanced maturation can be seen in primary cortices, such as along the calcarine sulcus and the
central sulcus (yellow arrows).
doi:10.1371/journal.pone.0027128.g001
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Specifically, our method relied on strong priors from the subject

brain itself. Our first prior was the relatively steady thickness and

darker intensity of the cortical ribbon in T2w images, compared

with surrounding white matter and cerebro-spinal fluid intensities.

It was detected using morphological top hats [15]. A second prior

was the ridge segments of white matter intensity which were

present in large brain regions as much as in narrow gyri for every

level of maturation. We computed the mean curvature of

isointensity surfaces to detect white matter ridges [16]. Detections

of those priors were combined within a feature field. Finally, we

applied a surface deformation approach onto the feature field in

order to reconstruct the inner cortical surface. Mangin et al. [17]

introduced a deformation method which preserved topology and

removed local tissue noise based on Markov Random Field theory;

such method produced faithful detections of the folding patterns in

T1w MRI of adult brains. We applied this deformation approach

to two converging surfaces, initialized on each side of the inner

cortical interface and whose speeds were tuned according to both

feature intensity and neighbourhood configuration.

To evaluate this method, we considered eleven one-to-four

month-old-infants for which T2w sequences were acquired.

Besides visual inspection of the results, we used two quantitative

validations, first automatic vs. manual segmentations in 4 infant

hemispheres, and then automatic segmentation vs. manually

drawn sulcal landmarks in all infants. For the first validation,

segmentation performance was based on standard evaluation

methods [4,10] and visual inspection. It gave a general idea of the

method accuracy. To investigate this point further and also to

enlarge the evaluation scope, we took advantage of a previous

study based on sulcal characteristics in the linguistic network [18].

We compared automatic segmentations to manually drawn sulci in

every infant. Because these primary sulci are robust landmarks of

the infant brain, deviation relative to these landmarks informed us

on the robustness of our method.

Finally, separate evaluation was done for younger infants aged

less than two-month-old and for older infants aged more than two-

month-old. Because maturation trajectories are different across

cerebral areas, we expected more errors in older infants in primary

cortices that myelinate early and fast during the first post-natal

weeks. For example, the tissue contrast progressively disappears

with age in the central region, which becomes dark both in grey

and white matter. Thus, it was possible to relate segmentation

performance to maturation state because these sulci have specific

maturation profiles [19].

Materials and Methods

Infant MR Data Set
The dataset consisted of 11 healthy full-term infants from 3 to

16 weeks of chronological age (one to 4-month-olds). Infants were

Figure 2. Frequency distributions (histograms) of brain tissue signal intensity according to age (3, 9, 14 and 16 week-old). Separate
histogram modes of brain tissue disappear (black arrows) as the grey-white matter contrast decreases due to on-going maturation. GM: grey matter;
WM: white matter.
doi:10.1371/journal.pone.0027128.g002
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included in this study after their parents gave written informed

consent. MR scans were acquired with T2 weighted fast spin-echo

sequence (TE/TR = 120/5500 ms, echo train length = 17) on a

1.5T MRI system (Signa LX, GEMS, USA), using a birdcage head

coil. Scans along the axial, sagittal and coronal directions were

acquired for each infant. Spatial resolution was 1.0461.0462 mm

(number of averages = 1, matrix size = 1926192, squared field of

view = 20 cm). This set of data acquisition was approved by the

following ethical committee: « Comité de consultation pour la

protection des personnes se prêtant à la recherche biomédicale »

(CCPPRB) of Kremlin Bicêtre (France); Protocol: #05-14;

Promoter: INSERM; Main investigator: G. Dehaene-Lambertz.

Preprocessing: Brain Reconstruction And Removal Of
Skull, Cerebro-Spinal Fluid and Cerebellum

The image reconstruction algorithm, introduced in [20],

computed a single image with high isotropic resolution (approx-

imately 16161 mm) for each subject from MRI acquisition sets.

This method was automatic and its main steps were: multi-

resolution slice alignment, contrast correction between native

images, and super resolution reconstruction.

The Brainvisa toolkit [21] was used to strip the skull. We tuned

the skull stripping tool, which had been originally designed for

T1w images of the adult brain, to T2w intensity characteristics in

the immature brain. This toolkit was also used to localize the inter-

hemispheric plane. Then, most of the cerebro-spinal fluid was

removed by hysteresis thresholding. The low and high thresholds

were set manually for each infant. Indeed, most ventricular

cerebro-spinal fluid needed to be carefully detected and filtered

out because the boundaries with white matter were hardly

noticeable in the feature field. Finally, cerebellum was manually

segmented because its boundary is blurred near the cortex due to

partial volume effect. At the end of this step, we obtained a brain

mask for each hemisphere.

Building the Feature Field using Local Contrast and
Curvature Minima

We detected tissue features based on local contrast and

geometrical tissue properties. Our detectors, namely morpholog-

ical top hats and curvature minima, are local differential

measurements and are therefore not much sensitive to intensity

fluctuations across the brain. Besides, they would behave better

than any contrast-based detector in weakly contrasted regions of

the brain because they rely upon geometrical properties, namely

cortical thickness and line ridges in gyri. These features were

combined within a feature field which was intended to enhance

contrast between white matter and cortex and therefore to

increase the detection of the inner cortical surface.

Figure 3. Description of morphological operators over a MRI axial slice including a cortical gyrus. A. Case of top hat detection of grey
matter. A morphological closing is first applied to the image intensity using square elements such as the axial one shown. Results of the closing
operation, namely Closing(I), as well as the intensity profile (I), are depicted on the top left along a given sagittal cut. Top hat detection, i.e., TH(I),
which is the subtraction of I from Closing(I), is shown on the top right. The detection map over the axial slice is shown with red-white color table. B.
Case of curvature detection of white matter. Three portions of isointensity surfaces are shown on the left: a grey matter surface in black, an
intermediate surface in grey and a white matter surface in light grey. When the isointensity surface is folding up such as the white matter one,
curvature reaches minimal (negative) values. These curvature minima make up ridge lines, such as the gyral one shown on the curvature map with
blue-white color table.
doi:10.1371/journal.pone.0027128.g003
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We first computed the mean curvature of isointensity surfaces in

white matter, whose negative value was named MCWM in this

section. MCWM is a differential characteristic of specific surfaces

called isointensity surfaces. For a given intensity I, there is an

isointensity surface in every MRI volume which sets apart voxels of

lower intensity and voxels of greater intensity than I. We

computed two differential characteristics of such surface, namely

the two curvatures along its principal directions. Computation of

principal curvatures was based on the implicit definition of the

surface [16]. The mean of these principal curvatures has an

intriguing property in brain MR images: its minima (negative)

values, i.e., MCWM, correspond to ridges (gyri) of the folding

patterns in T2w MR images (figure 3B) [16].

For a better understanding, let us pick up one MR slice of the

image and a given gyrus within this slice. Now, let us imagine

white matter intensity as the third dimension of the picture. The

gyrus would be seen as a mountain with the darker cortical ribbon

being the bordering valley. Isointensity lines in white matter would

behave as the hill level sets. Mean curvature along these lines

would be smooth everywhere except at the mountain crest where it

is no longer defined (mathematical singularity). In that case,

curvature minima, e.g. MCWM, would be the line ridge of the

mountain.

Then, we applied morphological top hats [15] to detect the

cortical ribbon, which has a relatively steady thickness and darker

intensity than surrounding white matter and cerebro-spinal fluid

intensities (figure 3A). These characteristics of the cortex are

exactly those used to detect roads in remote-sensing applications,

i.e., a curved and narrow dark material compared with

surrounding natural landscapes. Morphological top hats have

been highly efficient to detect roads in optical and radar images

[22]. We applied this approach to the 3D case.

Specifically, top hats were based either on a morphological

closing (grey matter) or on an opening (white matter). A closing

(opening) top hat consists of detecting dark (bright) areas of the

image intensity function whose sizes fit those of pre-defined simple

shapes called structuring elements, respectively. Structuring

elements were squares in our approach. We applied a set of nine

analog top hats in nine planes whose orientations were the sagittal,

axial, coronal axes and bisecting directions. In each plane, each

top hat probed the image intensity function with a set of square

elements. Square size was set according to thickness variations of

each tissue: side-lengths of 2 or 4 mm for grey matter detection

and side-lengths of 4, 7 or 14 mm voxels for white matter

detection. Finally, we computed the maximum detection across

the nine directions and for both square sizes.

For a given square size s, top hat equations were given as

follows:

THGM
s ~ max

1ƒiƒ9
(closinge(s,hi )

(I)){I

THWM
s ~I{ min

1ƒiƒ9
(openinge(s,hi )

(I))

8<
:

I stands for MRI intensity and e(s,hi) are the 9 square structuring

elements with side length s and whose orientations hi are the

sagittal, axial and coronal axes and 6 bisecting directions.

These equations enabled to compute the weighted average of

the grey matter (white matter) outputs across all square sizes,

namely THGM (THWM), respectively.

Finally, the outputs of THGM, THWM and MCWM were

normalized (figure 4) and combined within the feature field.

Normalization was linear for mean curvature outputs and

sigmoidal for top hats. Because ridge detectors are more specific

than top hats, sigmoidal normalization levels off accuracy

Figure 4. Segmentation steps and speeds of surface deformations. Upper row: a: MR axial slice of a 9-week-old infant; from b to d: brain
mask in grey and detection outputs in white; b: MCWM; c: THWM; d: THGM; e: feature field with cortical grey matter in black and white matter in white;
tissue contrast is enhanced over the brain; f: white matter segmentation. Lower row: Speed variations in second round deformation according to
feature value f and the number of neighbors n. Shigh: high speed; Slow: low speed; Sverylow: very low speed (outer surface only); When contrast is weak,
i.e., f in [FGM, FWM], Si(f) and So(f) speeds are finely tuned according to both feature and neighbor configuration. Speed equations are given in table 1
and 2 for the inner and outer surfaces, respectively.
doi:10.1371/journal.pone.0027128.g004
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performance across detectors. The feature field was produced by

weighted average of all normalized detections, such as follows:

field~
1

2
{MCWM
� �

z
1

2
THWM{THGM

Note that white matter has positive values in the feature field while

cortex has negative values. An example of feature field is depicted

in figure 4.

Homotopic Deformation of Coupled Surfaces
Two surfaces were initialized on each side of the inner cortical

interface within the feature field. The surface model is a closed set

of connected voxel facets. It defines the interface between two

volumetric regions, namely the inner and outer volumes. The

dilation of the inner volume inflates the inner surface whereas the

dilation of the outer volume deflates the outer surface.

Surface evolution is based upon the energy minimization

framework defined in [23]. The grey-white interface is defined as

the minimum of a global energy U, which is the sum of a data

driven component UD and a regularization component UR.

According to section 4.2.3 in [23], UD is the sum of potentials

attached to order one cliques, whereas UR is constituted by Ising

model attached to order two cliques. The minimization of U is

performed using a deterministic algorithm similar to the iterated

conditional modes: during surface propagation, points are added

to the region being dilated sequentially, an addition occurring

each time it produces an energy decrease (DU,0). Although this

approach gives only a local minimum of U, it turned out to be

sufficient to obtain very good segmentation results in the adult

brain [23].

The outer surface was set by the brain bounding box.

Initialization of the inner surface resulted from a threshold of

the feature field. The threshold was computed iteratively so that

the inner surface area reached a given size. The initial inner size

was common to all subjects because well-fitted surfaces had similar

surface areas during the optimization round.

A first round of deformation was applied on both surfaces across

the feature field. It was intended to move surfaces closer to each

other while yet avoiding conflicting areas. We set two feature

thresholds which bounded those areas, namely FGM and FWM. The

inner surface inflated when feature value f.FWM; conversely, the

outer surface deflated at the same speed when f,FGM.

A second round of deformation achieved the final convergence

of the two surfaces. Coupled speeds were applied on outer surface

deflation and inner surface inflation. Propagation stopped when

the surfaces met, ideally at the inner cortical border.

In this round, deformation speed was regulated for dealing with

conflicting regions, i.e., areas with irregular feature contrast. When

speed was low (Slow) at a given target location for either the inner

or outer surface, say because of adverse feature contrast, speed was

high (Shigh) for the other surface to favor its propagation towards

that location. Thus, there was an indirect speed coupling between

the inner and outer surfaces.

Speed was monitored by setting a ‘‘potential to move’’ P at each

surface location, similar to gravitational potential energy in

physics. At each deformation step, potential P was decreased

according to speed (S), i.e., DP = P0 * (S/Shigh). Initial potential P0

was the same across all surface locations. When P reached zero,

propagation was triggered. Only one deformation step was enough

for high speed in order to cancel potential and trigger propagation.

However, when speed was low, potential decrease DP amounts to

a fraction of P so that a few iterations were required for

propagation. P was reset to P0 after propagation.

Within the energy minimization framework, propagation speed

is positive if and only if there is an energy decrease. This rule was

strictly fulfilled for the inner surface. However, a very low but

positive speed (Sverylow) was applied when DU$0 for the outer

surface, in order to let the surface propagate over residual cerebro-

spinal fluid voxels; Thus, the deflation of the outer surface did not

Table 1. Speed of the inner surface.

Number of neighbors (n)

Feature value (f) n,NI(f) NI(f),n,N n.N

f,FGM No speed (0) Low speed (Slow)

FGM,f,FWM No speed (0)
Si(f )~Slowz Shigh{Slow

� � f {FGM

FWM {FGM

� �2

f.FWM High speed (Shigh)

Speed (Si) as a function of the number of neighbors (regularization) and feature value (f) with NI fð Þ~N|
FWM{f

FWM {FGM
. See text for details.

doi:10.1371/journal.pone.0027128.t001

Table 2. Speed of the outer surface.

Number of neighbors (n)

Feature value (f) n,NO(f) NO(f),n,N n.N

f,FGM High speed (Shigh)

FGM,f,FWM Very low speed (Sverylow)
So(f )~Slowz Shigh{Slow

� � FWM{f

FWM {FGM

� �2

f.FWM Very low speed (Sverylow) Low speed (Slow)

Speed (So) as a function of the number of neighbors (regularization) and feature value (f) with NO fð Þ~N|
f {FGM

FWM {FGM
. See text for details.

doi:10.1371/journal.pone.0027128.t002
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stop when it reached a local energy minimum but only when it

overlapped the inflating inner interface.

Speed range was common to both surfaces and speed variations

depended upon both the feature value f and the number n of

surface neighbors to the given target location. Speed variations are

summarized in figure 4 and tables 1 and 2.

Speed of the inner surface is high when it is likely white matter,

i.e., f.FWM. When contrast is weak, i.e., f in [FGM, FWM], Si(f)

speed is finely tuned according to both feature and neighbor

configuration. Equation is given in table 1. When it is likely grey

matter, i.e., f,FGM, surface deformation is either stationary

(speed = 0) or small (speed = Slow) only when there is enough

surface neighbors (n.N).

As for the outer surface, speed is high when it is likely grey matter,

i.e., f,FGM. When contrast is weak, i.e., f in [FGM, FWM], So(f) speed

is finely tuned according to both feature and neighbor configura-

tion. Equation is given in table 2. When it is likely white matter

(f.FWM), speed is set to either low (Slow) or very low value (Sverylow), to

let the surface propagate over residual cerebro-spinal fluid voxels.

Finally, a topological constraint was added to the outer surface

before propagation towards a given surface location (for both

rounds of deformation). This requirement, which is called

homotopy [23], preserved the spherical topology of the surface

under deformation and prevented from tricky segmentation errors

such as image handles. We applied our constraint to the outer

surface which initially was the surface of a box and therefore had a

spherical topology. Therefore, the spherical topology of the outer

surface was held along the deformation process.

The topological constraint was assessed at each target location

before a given step of deformation. Let us call T the target

location, S the neighboring voxels belonging to the deformation

surface and B the voxels which belonged to the background

neighborhood of T. Sets B and S make a partition of T

neighborhood. We then counted the number of connected sets

of voxels in S and B. If S and B were both made of one and only

one connected component, the topological requirement was

fulfilled and the deformation towards T was triggered.

Method Optimization and Robustness
The eleven brains in our infant dataset have been used as

follows. We designed and trained our method based on two infant

brains (4 and 11 week-old). The method was then optimized and

tested on another set of three brains (7, 10 and 16 week-old).

During optimization, speed parameters were set as follows:

Slow~
1

4
Shigh; Sverylow~

1

12
Shigh and N = 22 for both surfaces,

where N is a regularization threshold. FWM and FGM were set to

12% and 8% of highest and lowest feature values, respectively.

The same parameters were used in all infant brains.

We believe that most segmentation parameters are weakly

dependent on acquisition parameters. Top hat size s is mostly

based on cortical thickness. The regularization factor N, related to

neighborhood, accounted mostly for local tissue noise. If noise

increases in some MR image, user would rather pre-process the

data instead of tuning N, by applying some smoothing filter such as

anisotropic diffusion filtering.

Figure 5. Validation against sulcal landmarks. A: Mesh cuts overlaying an axial slice; Sulcal landmark in yellow, and the automatic (in red) and
manual (in blue) cortical segmentations. Yellow arrows are vectors normal to the sulcal surface, along which distances to segmentations are
computed. B: Manually delineated sulci (in yellow) and the underlying inner cortical mesh (in blue) in a 7 weeks old infant. C: Frequency distributions
of distances from sulcal landmarks to manual segmentations for the four selected infants aged 3, 7, 11 and 14 weeks old (in blue), to automatic
segmentations of the younger infant group G1 (in red) and to automatic segmentations of the older infant group G2 (in green). Correlation
coefficients between manual and automatic distributions are shown for both G1 and G2 groups. SMG: supra-marginal gyrus; Planum: planum
temporale; STS: superior temporal sulcus.
doi:10.1371/journal.pone.0027128.g005
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Evaluation Measurements
To evaluate this method, we first compared automatic segmen-

tations with manually segmented left hemispheres of four infants (3,

7, 9 and 14 week-old). Three out of these four infant brains have not

been used during the training and testing stages (see previous

section). We appraised segmentation results with standard evalua-

tion tools, i.e., the Dice coefficient and the surface reconstruction

error [4,10]. It gave a general idea of the method accuracy.

Second, we compared automatic segmentations to manually

drawn sulci in all eleven infants. Because these primary sulci are

robust landmarks of the infant brain, deviation relative to these

landmarks informed us on the robustness of our method.

Furthermore, results of these two evaluations were analyzed

separately for younger infants (G1 group; 5 infants from 3 to 9

week-old) and older infants (G2 group; 6 infants from 10 to 16

week-old).

Manual segmentation of brain hemisphere. Four brain

hemispheres were manually segmented. They were selected to

span the whole age range, ie, 3, 7, 9 and 14 week-old. White

matter segmentation was done in every axial slice and then

checked in coronal and sagittal slices. We chose to assess our

segmentation method across the whole hemisphere instead of a

few slices per subject for the following reasons: first and foremost,

grey-white matter contrast is changing across the brain because of

tissue maturation (for instance, low contrast in medial occipital

and central regions). Second, the complex geometry of the cortical

folding patterns may impede deformation-based methods, such as

in elongated and narrow gyri. Thus, evaluation across whole

hemisphere gives useful information on how the algorithm deals

with the full cortical geometry and the spatial variations of tissue

signal. Finally, we used additional landmarks, i.e., manual sulcus

drawings, to further evaluate our method in every brain.

Dice coefficient. The similarity between automatic (A) and

manual (M) white matter segmentations was measured using the

Dice similarity coefficient [24]; It measured the overlap between

two regions and was given by Dice Coef. = 2*(A > M)/(A+M).

Global accuracy at the grey-white interface. Distance gap

between automatic and manual surfaces was a measure of the

segmentation accuracy at the grey-white matter border and was

therefore computed at each surface voxel. Because the grey-white

interface includes both cortical and subcortical areas, we measured

segmentation performance both over the whole interface and

specifically over the cortical areas for which our algorithm was

initially designed.

Measurements at sulcal landmarks. We measured the

distance between segmentations and manually segmented sulci in each

infant brain (figure 5A). Distance from manual segmentation to sulcal

landmark was used as a reference. Automatic segmentation was

compared with manual segmentation based on their respective

distance to these landmarks. Deviation from this reference informed

us on the performance of our method. Under-segmentation at a given

landmark, e.g. an incomplete gyrus, would increase the distance to

landmark relative to reference. Conversely, over-segmentation, e.g., a

missed sulcus, would decrease the distance to landmark relative to

reference. We considered only left hemispheric segmentations because

only left hemispheres were manually segmented.

H.G. manually drew the central sulcus, the superior temporal

sulcus, the inferior frontal sulcus, Broca’s rami, the planum temporale,

as well as the sulci bordering the supra-marginal gyrus (figure 5B).

This set of sulci is spread across the lateral parts of both

hemispheres and includes structures with different maturation

trajectories [19]. Drawings of sulci were validated by an expert

neuroanatomist (L.H.P.). These sulci are robust landmarks which

extend over a large amount of the lateral cortex and comprise

cortical regions at different maturational stage. The central sulcus

and Heschl’s gyrus are primary cortices, thus being more mature

than other regions [19]. They are also of different size. The central

sulcus and the STS are large whereas Broca’s rami are small and

inconstant at these ages [18]. Thus this set represents quite well the

characteristics of the infant brain.

Specifically, distance was computed between every landmark

voxel and a given segmentation. The set of distances was then used

to build a distribution of distance frequencies. Frequency

distributions were averaged over all manual segmentations to

provide with a reference distribution at a given landmark (blue

curves in figure 5C). Frequency distribution for automatic

segmentation was then compared to this reference distribution

using the correlation coefficient.

Some of these histograms, including those related to manual

segmentations, had heavy tails. It can be explained by the

increasing distance between segmentation and landmark in the

sulcal regions closer to the skull where the folds widen.

Results

Validation against Manual Segmentations of Brain
Hemispheres

We first evaluated our method by comparing automatic

segmentations with manual segmentations of four whole left

hemispheres. White matter segmentations are shown in figure 6.

Surface reconstructions are presented in figure 7, together with

manually segmented hemispheres.

Figure 6. White matter segmentation across age. Segmentations
are shown in red over axial MRI slices. Despite highly folded patterns,
segmentation is accurate at the cortical border for younger infants (3, 7
and 9 weeks); however, segmentation at the subcortical boundary
needs improvement (yellow arrow). As for infants older than two
months old (14 weeks), segmentation performance decreases in a few
areas because of on-going maturation, such as along the calcarine
sulcus and the central sulcus (yellow arrows).
doi:10.1371/journal.pone.0027128.g006
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The Dice coefficient mean and standard deviation were equal to

0.87+/20.05 over cortical areas (0.83+/20.04 including subcor-

tical tissue): in G1 (5 younger infants from 3 to 9 weeks old),

Dice = 0.89 (0.85 including subcortical tissue); in G2 (6 older

infants from 10 to 16 weeks old), Dice = 0.82 (0.79 including

subcortical tissue).

The surface reconstruction error was 0.36+/20.67 mm across

the cortical border (0.51+/21.1 mm including subcortical inter-

face): in G1, error = 0.33 mm (0.49 mm including subcortical

interface); in G2, error = 0.47 mm (0.53 mm including subcortical

interface). In each group, standard deviation of errors was equal to

the whole dataset deviation.

An overview of the method performance is shown in figure 7,

which compares 3D renderings of automatic segmentations with

manual ones and points to locations of inaccuracy. Visual inspection

of the surface reconstruction identified only minor errors for the two

youngest hemispheres (,2 months old in the two first rows of

figure 7): a few inaccuracies (<1.5 mm) at the temporal pole, along

the calcarine fissure, as well as within the post central gyrus; less

intense but more diffuse errors in the anterior part of the frontal

lobe. As for the two older infants ($2 months in the two last rows in

figure 7), inaccuracies spread across prefrontal regions, the temporal

pole, the medial occipital regions, and along the central sulcus.

Validation against Sulcal Landmarks
There was a good performance for the younger group (G1,

correlation = 0.98+/20.01): frequency distributions of G1 seg-

Figure 7. Validation of automatic segmentations against manual segmentations in 4 left hemispheres from infants with increasing
ages (3 to 14 weeks). The two left columns show 3D renderings of the cortical surface reconstruction for automatic and manual segmentations.
Color outlines surface curvature: gyri in red and sulci in blue. Method inaccuracy, i.e., distance from automatic to manual segmentation, is shown in
the right column. Color map shows accuracy in blue and inaccuracy in red (in mm, up to 1.5 mm). Thus, yellow-red areas in the right column point to
locations of segmentation inaccuracy. Inaccuracy patterns can further be analyzed in the two left columns by comparing the automatic surface to the
manual one at those locations. See also in figure 1 for MRI slice samples of these four babies.
doi:10.1371/journal.pone.0027128.g007
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mentations are very close to those of manual segmentations

(figure 5C). G1 distribution peaks match the manual ones, which

are estimates of the half size of the sulcal width.

There was a relative decrease of performance for the older

infant group (G2, correlation = 0.88+/20.08). In G2, we observed

a few heavy tailed distributions which can be explained by missing

parts of gyral white matter (under-segmentation), most probably

near gyral crowns (Central and Broca’s distributions, figure 5C).

Inaccuracies near the central sulcus and in Broca’s region were

also reported during visual inspection in the previous section.

Discussion

In this article, we presented a segmentation method imple-

mented for T2w images of the developing infant brain and we

carried out an extensive validation. In addition to global

evaluation based on standard tools, additional segmentation

appraisal was provided in many brain regions with both

inaccuracy maps for manually segmented hemispheres and

measurements with robust landmarks in every subject.

Validation methods confirmed a good performance of the

proposed approach in infants younger than 2 months old (G1).

Only a few residual errors remained in anterior prefrontal regions,

across the post-central gyrus, along the calcarine fissure, and at the

temporal pole. Our Dice coefficient value (0.89) was higher than

Prastawa et al.’s coefficient [10] but these authors computed a

refined segmentation which additionally classified myelinated and

unmyelinated white matter; It was equal to Shi et al.’s one [8] who

used a dedicated phased array coil. Besides, our cortical interface

accuracy was higher than in Xue et al. (reconstruction error:

0.73 mm in [4]); however, these authors extracted both the inner

and the outer cortical surfaces and reported higher accuracy at the

outer border than at the inner cortical surface.

Segmentation performance decreased in older infants (G2).

Evaluation differences in younger and older infants are concordant

with our own observations (figure 1 and 2). The decrease in the

Dice coefficient and surface reconstruction accuracy (hemisphere-

based evaluation) together with the decrease in the correlation

coefficient (landmark-based evaluation) strongly suggest that there

is a significant loss of tissue contrast between the second and the

fourth month of life.

To our knowledge, our method is one of the only two published

methods dealing with infants older than two months. Furthermore,

the other one, by Shi et al [25], was related to longitudinal data

which are yet unusual in infant imaging.

Visual inspection revealed that inaccuracies spread across

prefrontal regions, the temporal pole, the medial occipital regions,

and along the central sulcus. Validation using sulcal landmarks

confirmed under-segmentation in the pre-central and post-central

gyri, the supra-marginal gyrus and the inferior prefrontal regions,

most probably at the gyral crowns. Two opposite effects may

explain these segmentation errors. First, primary cortices mature

before associative cortices, i.e., the sensory-motor regions along

the central sulcus and the primary visual cortex along the calcarine

fissure are more mature than most other parts of the brain [2,26].

Thus, segmentation was hampered in these regions because the

tissue contrast was decreasing and tissue intensity weakened.

Second, there is a posterior-anterior maturation axis and both

prefrontal regions and the temporal pole are among the most

immature regions [27]. Thus, the thin cortical ribbon and the

underlying unmyelinated white matter produced narrow gyri in

T2w MRI in which partial volume effect is strong and tissue

contrast is poor.

Future directions would include the use of multispectral data for

increasing tissue contrast, such as T1w and T2w MRI [25], as well

as an interactive user interface to deal with segmentation

inaccuracies. We believe that user expertise could greatly improve

the segmentation performance with a fair amount of time because

segmentation inaccuracy was restricted to a limited set of brain

regions [14].

To conclude, we presented a new method for segmenting the

grey-white matter interface of infant brains. It was based upon a

broader characterization of tissue properties in T2w MRI of the

developing brain. Local contrast features were combined with

geometrical tissue properties, i.e., line ridge segments in white

matter and steady cortical thickness. Tissue contrast, which is

lower in the most mature brain regions in T2w images, was

enhanced in our designed feature field. Moreover, two converging

surfaces, located on each side of the inner cortical border, reduced

localization errors in areas with weak feature contrast. This

method was automatic to the extent that, apart from its

preprocessing step, a common set of parameters was used over

the whole data set. Besides, no brain atlas was required, which

could be particularly useful for pathological brains where lesions or

malformation (e.g. dysplasia, corpus callosum agenesia) occurred.

These brains might be too far from normal atlases to be

successfully segmented using top-down information. Finally, this

method achieved high performance at the grey-white matter

interface for babies younger than two months old and would

require manual correction only in a limited set of brain regions

(the most mature) for older infants.
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