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Abstract. We report on a new framework to investigate the rapid brain
development of newborns. It is based on the analysis of depth maps of
the cortical surface through the study of a displacement field estimated
by surfacic optical flow methods. This displacement field show local evo-
lution of sulci directly on the cortical surface. Detection of its critical
points is performed with the Helmholtz decomposition which allow to
identify sources of the developmental process. They can be viewed as
growth seeds or in other terms points around which the sulcal growth
organizes itself. We show the reproducibility of such growth seeds across
4 neonates and make a link of this new concept to the "sulcal roots" one
proposed to explain the variability of human brain anatomy.

1 Introduction

Recent studies in MRI have described precisely the ontogenesis of the cortical
folding during early phases of development [5],[17]. Thank to these studies it
becomes now possible to follow the evolution of brain structures during the gyri-
fication, that is to say to detect potential lesions [5] or to understand step by
step the complex processes of sulci formation whose physiological basis are yet
not well deciphered [14] [15] [16]. Through postprocessing tools [5] the authors
extracted the surface between gray and white matter of preterm newborns at
critical ages (26-36 weeks). In [18] a registration algorithm is presented in order
to align cortical surfaces in longitudinal studies and to track the cortical devel-
opment. This tracking has been evaluated on sulci which are 3D structures and
very few methods have been previously performed directly on the surfaces. In
[3] a primal sketch of the cortical mean curvature allows to detect elementary
cortical folds and fold merging during brain development.

However in the study of functional brain activations a recent work [10] has
shown the possibility to follow evolving texture – MEG neural activities in the
present case – directly on the cortical surfaces through optical flow algorithms.
Moreover the knowledge of such a deformation field allows to detect local pat-
terns of growth in particular focal point around which the growth spreads [6].
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This last study gives future possibilities for validating model of cortical growth
such as the "sulcal roots" model in which atoms of future sulci are supposed to
preexist in the developing embryo [13].

The aim of our study is to propose a framework which allows to track the
changes in the sulcation of neonates along time and directly on the cortical sur-
face. The advantage of working on surfaces is twofold since there is a gain in
computation time with respect to 3D analysis and we offer a practical visualiza-
tion of displacement fields.

We will define a quantity of interest which is based on depth maps applied
projected to cortical surfaces. Then using non linear registration technique based
on iconic feature [4] we will make correspond brain surfaces of neonates and
their depth maps longitudinally. Next we apply a recent methodology to track
evolutions of scalar measures on surfaces through generalized optical flow [9].
At last we perform a helmholtz decomposition of the resulting deformation field
that will allow to identify in it robust features such as sources of growth. By this
way we will demonstrate that the evolution field of the developing brain has a
radial structure and organizes itself into growth seeds.

We evaluate the reproducibility of these growth seeds using a rigid registra-
tion of the cortical surfaces and show that we find some clusters of seeds that
can be compared to anatomical features ("sulcal roots") previously described in
the literature.

2 Optical flow on surfaces

In this part we recall the formalism introduced in [9] based on differential geome-
try to extend the computation of optical flow equation on Riemannian manifolds.
This theoretical development will allow to deduce a vector field that represents
the evolution of a scalar quantity defined on a surface (typically the depth maps
in the next application) along time.

2.1 Notations

Here are some notations :M is a 2-Riemannian manifold representing the imag-
ing support (i.e. the cortical surfaces) and I(p, t) a scalar quantity defined on a
2-dimensional surface and in time . We note eα = ∂xαp, the canonical basis –
with respect to a coordinate system xα– of the tangent space TpM at a point p
of the manifold, and TM =

⋃
p TpM the tangent bundle of M.

M is equipped with a Riemannian metric, that is there exists a positive-
definite form: gp : TpM× TpM → R. A natural choice for gp is the restriction
of the Euclidian metric to TpM, which we have adopted for subsequent compu-
tations. For concision purposes, we will now only refer to gp as g.

The classical hypotheses for computing optical flow [8] leads to the equation:

∂tI + g(V,∇MI) = 0. (1)
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Since only the component of the flow V in the direction of the gradient is
accessible to estimation (aperture problem) [8], additional constraints on the
flow are needed to yield a unique solution. This approach classically reduces to
minimizing an energy functional such as in [8]:

E(V) =
∫

M

(
∂I

∂t
+ g(V,∇MI)

)2

dµ + λ

∫

M
C(V)dµ, (2)

The first term is a measure of fit of the optical flow model to the data, while the
second one acts as a spatial regularizer of the flow. The smoothness term can be
expressed as a Frobenius norm:

C(V) = Tr(t∇V.∇V) and
(∇V

)β

α
= ∂αV β +

∑
γ

Γβ
αγV γ (3)

(∇V
)
is the covariant derivative of V, a generalization of vectorial gradient.

∂αV β is the classical Euclidian expression of the gradient, and
∑

γ Γβ
αγV γ reflects

local deformations of the tangent space basis since the Christoffel symbols Γβ
αγ

are the coordinates of ∂βeα along eγ . This expression ensures the tensoriality
property of V, i.e. the invariance with parametrization changes.

2.2 Variational formulation

Deriving a variational formulation from the minimization of (2) ensures the well-
posedness of the problem – existence and unicity of the solution in a specific and
convenient function space – and allows to solve numerically the problem on
discrete irregular surfacic tessellations.

Γ 1(M) is the working space of vector fields on which functional E(V) will
be minimized. We chose a space of vector fields in which the coordinates of
each element are located in C1(M) (the space of differentiable functions on the
manifold):

Γ 1(M) =
{
V : M→ TM / V =

∑2
α=1 V αeα, V α ∈ C1(M)

}
,

with the scalar product :

< U,V >Γ 1(M)=
∫

M
g(U,V) dµ +

∫

M
Tr(t∇U∇V) dµ.

E(V) can be simplified from (2) as a combination of a constant K(t), a linear
and a bilinear form :

f(U) = −
∫

M
g(U,∇MI)∂tI dµ,

a(U,V) =
∫

M
g(U,∇MI)g(V,∇MI)dµ + λ

∫

M
Tr(t∇U∇V) dµ.
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Minimizing E(V) on Γ 1(M) is then equivalent to the following problem :

min
V∈Γ 1(M)

(
a(V,V)− 2f(V) + K(t)

)
. (4)

It has been proved in [9] that there exists a unique solution. Moreover, this
solution V to (4) satisfies:

a(V,U) = f(U), ∀ U ∈ Γ 1(M). (5)

3 Helmholtz decomposition of a vector field

Helmholtz decomposition is a classical way to decompose a vector field into
the sum of a rotational part and a divergential part as illustrated on Fig.1. This
technique allows to detect the singularities of a vector field, that is source, sink or
rotation center [12]. It has been recently used [7] in cardiac video analysis in order
to track the critical points in the heart which can lead to a better understanding
of the dynamics of the cardiac electrical activity and its anomalies. Identification
of such points for a brain growth field seems to be of highest importance to
characterize the underlying spatiotemporal evolution.

More formally we have the following theorem :

Theorem : Given V a vector field in Γ 1(M), there exists unique functions U
and A in L2(M) and a vector field H in Γ 1(M) such as :

V = ∇MU + CurlMA + H (6)
divMH = 0 curlMH = 0 (7)

Notations : In our applicationsM is a surface (or submanifold) thus it is possible
to get a normal vector in each point :

np =
∂

∂x1
∧ ∂

∂x2
.

The normal does not depend on the choice of the parametrization (x1, x2). Then
we define the divergence operator through duality :

∫

M
UdivMH = −

∫

M
g(H,∇MU)

Scalar and vectorial curl are at last :

CurlMA = ∇MA ∧ n curlMH = divM(H ∧ n)

With these formulas we have intrinsic expressions which do not depend on the
parametrization of the surface.
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Fig. 1. First line : Vector field on a cortical mesh. Second line : divergential and rota-
tional parts of the vector field. We can note that the vector field is mainly divergential
and we can identify visually that it has only sources and no sinks.

Proof : The proof of the existence of a solution follows a classical construction.
It can be shown that if U and A minimize the two functionals :

∫

M
||V −∇MU ||2

∫

M
||V −CurlMA||2

V −∇MU −CurlMA is solution of (7).

These two previous functionals are convex therefore they have unique mini-
mum on L2(M) which satisfies :

∀φ ∈ L2(M),
∫

M
g(V,∇Mφ) =

∫

M
g(∇MU,∇Mφ) (8)

∀φ ∈ L2(M),
∫

M
g(V,CurlMφ) =

∫

M
g(CurlMA,CurlMφ) (9)
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4 Numerical aspects

Once proved the well-posedness of the regularized optical flow problem and the
Helmholtz decomposition, we derive numerical methods from the variational
formulations (5), (8) and (9).

Optical flow : First we consider the vector space of continuous piecewise affine
vector fields which belong to the tangent space at each node of a mesh M̂ . A
basis is:

Wα,i = w(i)eα(i) for 1 ≤ i ≤ Card
(M̂)

, α ∈ {
1, 2

}
,

where w(i) stands for the continuous piecewise affine function which is 1 at node
i and 0 at all other triangle nodes, and eα(i) is a basis of tangent space at node i.

The variational formulation in (5) yields the linear system:
[
a(Wα,i,Wβ,j)

]
(α,i),(β,j)

[
V

]
=

[
f(Wα,i)

]
α,i

(10)

where
[
V

]
are the components of the velocity field V in the basis Wα,i. The

matricial coefficient a(Wα,i,Wβ,j) and f(Wα,i) can be explicitly computed with
first-order finite elements by estimating the integrals on each triangle T of the
mesh and summing the different contributions.

∇M̂I is obtained on each triangle T = [i, j, k] from the linear interpolation:

∇M̂I = I(i)∇T w(i) + I(j)∇T w(j) + I(k)∇T w(k).,

with
∇T w(i) =

hi

‖ hi ‖2 ,

where hi is the height of triangle T from vertex i.

Helmholtz decomposition : Equations 8) and (9) hold when we replace φ by the
basis function wi so we have the two systems :

[ ∫

M̂
g(∇Mw(i),∇Mw(j))

]
i,j

[
U

]
=

[ ∫

M̂
g(V,∇Mw(i))

]
i

(11)
[ ∫

M̂
g(CurlMw(i),CurlMw(j))

]
i,j

[
A

]
=

[ ∫

M̂
g(V,CurlMw(i))

]
i
(12)

Similarly to (10) we can compute each coefficient of the matrix on each
triangle. So the two previous equations have the following expressions :

∑

T3i,j

hi

‖ hi ‖2 ·
hj

‖ hj ‖2A(T ) =
∑

T3i

A(T )V · hi

‖ hi ‖2

∑

T3i,j

(
hi

‖ hi ‖2 ∧ n

)
·
(

hj

‖ hj ‖2 ∧ n

)
A(T ) =

∑

T3i

A(T )V ·
(

hi

‖ hi ‖2 ∧ n

)
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5 Application to the growth of the neonatal brain

5.1 Preprocessing

Acquisition The dataset consists of 4 healthy infants. MR scans were acquired
two times with T2 weighted sequence on a 3T MRI system. The first acquisition
was respectively, 0.6, 0.7, 1.4 and -0.7 weeks with respect to 40 weeks of gesta-
tional age and the second one, 3.2, 4.6, 3.1 and 2 weeks. Slice resolution was 0.7
× 0.75 × 0.7 mm for subjects 1,3,4 and 0.78 × 0.6 × 0.78 mm for subject 2.

Brain segmentation The segmentation of white and gray matter in neonate MRI
is a challenging issue because of the inversion of contrast regarding adult MRI.
We have used a dedicated algorithm to overcome this problem [11]. It is based
on a characterization of tissue using features based on geometrical properties
and the evolution of two surfaces located on each side of the GM-WM interface.

Depth maps Once the cortical surfaces have been segmented we use a specific
treatment of BrainVisa [1] to compute their depth maps. They are obtained from
the geodesic distance of the surface to a binary mask of the brain that has been
dilated and eroded (respectively 5 and 2 voxels). Fig. 2 illustrates the resulting
depth maps for two cortical surfaces of the same neonate taken at two different
ages (birth, birth + 4 weeks).

Fig. 2. Depth maps of two surfaces of the same subject at two different ages (birth,
birth + 4 weeks).

5.2 Registration of cortical surfaces

We have used two kinds of registration techniques.
First We have used iconic based non rigid registration [4] to make correspond

the brain surfaces of each subject longitudinally. This method estimates a trans-
formation T between two 3D images I and J that must minimize iteratively the
following energy :
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S(I, J, C) + σ||C − T ||2 + λR(T ) (13)

where R is a quadratic regularization energy, T an intermediate transfor-
mation and σ, λ are parameters. The resulting volumic transformation is then
applied to cortical surfaces.

After having registered the less mature cortical surface on the more mature
one we interpolate the depth maps by a nearest neighbors method. So we have
two depth maps at different time steps projected on the same surface. It becomes
now possible to track the evolution of this map from a time step to another.

Secondly we have used a coarser method to make correspond the growth seeds
across the subjects. It is based on the iterative closest point (ICP) algorithm [2]
in order to register rigidly one surface onto another one chosen as a template.
The initialization of the algorithm is done by making correspond the principal
directions of the two surfaces. We use also a nearest neighbors projection to
transform the depth maps.

5.3 Identification of growth seeds

Optical flow computation For visualization purposes we compute the optical flow
between the two depth maps on a smooth version of the more mature cortical
surface. On Fig. 3 we display the result of the computation in green and the
depth map of the less mature cortical surfaces for the subject 1.

We can see the radial structure of the vector field which has suggested the
use of the Helmholtz decomposition in order to locate points of big divergence.

Helmholtz decomposition We compute the two scalar potentials U and A involved
in the Helmholtz decomposition. On Fig 4 we show only the divergential part
of the field which is simply given by ∇U . We elicit also the local minima of the
potential U which corresponds to sources of the optical flow.

Such sources correspond to locations in the brain around which the depth
maps tend to grow.

Evaluation

– First we analyze the relative contribution of the divergential and rotational
parts to the displacement field. We can see on Fig 5 the histograms of the
norms of the divergential and rotational parts for one subject. It is interesting
to compute the ratio of the norms to get the proportion of points where the
divergential part is greater than the rotational part. We give the mean of
this ratio for each subject on table 1. It confirms that the displacement field
is mainly divergential and justify to consider only the local extrema of the
potential function U .

– On Fig 6 we display the superposition of seeds computed for four subjects
and rigidly registered on one of the four surfaces. For a better visualization
we only show clusters of seeds that belong to spheres of a given radius. We
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Fig. 3. Optical flow (green) on the smooth surface of the second time step and Depth
maps of the first time step.

S1 S2 S3 S4

Left hemisphere 0.75± 0.89 0.13 ± 0.88 0.58 ± 0.93 0.76 ± 0.95
Right hemisphere 0.61± 0.93 0.34 ± 0.91 0.35 ± 0.96 0.71 ± 0.9

Table 1. Ratio of divergential and rotational norms (Log) for 4 subjects

also represent an average depth maps defined as the mean of the four depth
maps after the nearest neighbors interpolation.

We can observe that despite the variability we can isolate a certain number of
clusters (inside spheres). They can be compared to sulcal regions previously
defined in the litterature [13] and called sulcal roots, anatomical structures
in the sulcus fundi that are supposed to be strong reproducible landmarks.
We suggest the following classification based on [13] : 1 : Centralis superior, 2
: Centralis inferior, 3 : Frontallis superior posterior or Precentralis superior,
4 : fissura intraparietalis occipitalis superior, 5 : Frontalis inferior posterior
or Precentralis inferior, 6 : Fronto-orbitalis, 7 : Temporal superior posterior,
8 : Temporal inferior posterior or Temporal inferior ascendens, 9 : Frontalis
inferior anterior.
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Fig. 4. Divergential part of the optical flow (green), potential map and local minima
of U in yellow.

6 Conclusion

We have reintroduced the concept of Helmholtz decomposition on manifolds. We
have seen how, from a vector field, to extract potential functions that represent
sources, sinks and rotation centers. We have applied this methodology to the
displacement field computed from the evolution of depth maps of neonatal brains
between the birth and four weeks later. We have shown that the displacement
field organizes itself into growth centers of growth seeds that offer a certain
reproducibility across four subjects. In future developments we propose to use a
bigger cohort to yield statistic tests and comparisons between different classes of
subjects and to identify disorders in the brain development. Moreover we plan
to apply our method for aging where we could expect to detect sinks rather than
sources in the evolution of depth maps.
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Fig. 5. Left: two histograms showing the norms of divergential part (blue) and rota-
tional part (red). Right: Log ratio of the norms.

Fig. 6. Superposition of seeds for four subjects after affine registration and clustering.
See text for legend.
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