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a b s t r a c t

Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investiga-
tion of tissue structure and orientation. In this paper, we present a method for real-time processing of
diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either
the linear tensor or Q-ball model. Because the Kalman filter is designed to be an incremental algorithm,
it naturally enables updating the model estimate after the acquisition of any new diffusion-weighted vol-
ume. Processing diffusion models and maps during ongoing scans provides a new useful tool for clini-
cians, especially when it is not possible to predict how long a subject may remain still in the magnet.
First, we introduce the general linear models corresponding to the two diffusion tensor and analytical
Q-ball models of interest. Then, we present the Kalman filtering framework and we focus on the optimi-
zation of the diffusion orientation sets in order to speed up the convergence of the online processing. Last,
we give some results on a healthy volunteer for the online tensor and the Q-ball model, and we make
some comparisons with the conventional offline techniques used in the literature. We could achieve full
real-time for diffusion tensor imaging and deferred time for Q-ball imaging, using a single workstation.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion magnetic resonance (MR) imaging has become an
established technique for inferring structural anisotropy of tissues
and mapping the white matter connectivity of the human brain
(LeBihan et al., 1986). The term diffusion refers to the Brownian
motion of water molecules inside tissues that results from the
thermal energy carried by these molecules. MR images can be sen-
sitized to that physiological phenomenon from the application of a
specific pair of well-known diffusion gradients together with a spin
echo pulse sequence.

Technically, using diffusion imaging to infer the three dimen-
sional displacement probability of water molecules requires the
acquisition of a set of diffusion-sensitized images along different
orientations of the space. Several mathematical models have been
designed, becoming more and more complex over the last decade
while attempting to make less and less assumptions. In this paper,
we focus on both the diffusion tensor (DTI) model (historically the
first) introduced by Basser et al. (1994) and the Q-ball model (QBI)
introduced by Tuch (2002). Despite the huge amount of assump-
tions (unrestricted environment, structural homogeneity within
voxels), the DTI model is still widely used because it can be used
ll rights reserved.
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in a clinically acceptable time (a few minutes for an entire brain
coverage) and provides useful information to the clinicians about
the average translational motion (apparent diffusion coefficient,
ADC), the anisotropy of white matter structure (fractional anisot-
ropy index, FA), and the direction encoded color map (RGB). Today,
clinical studies of brain pathologies (either neurodegenerative or
psychiatric) involve statistical analysis of ADC and FA maps. Q-ball
belongs to the class of high angular resolution diffusion imaging
(HARDI) models that aim at solving the partial voluming problem
due to the existence of several putative populations of fibres within
a voxel. Such models have been developed to address the inference
of white matter connectivity mapping from the knowledge of
local microstructural orientations of tissue (Callaghan, 1991; Tuch,
2002; Frank, 2002; Jansons and Alexander, 2003; Zhan et al., 2003;
Liu et al., 2004; Alexander, 2005; Ozarslan and Mareci, 2003; Wed-
een et al., 2005; Assaf and Basser, 2005; Anderson, 2005; Ozarslan
et al., 2006; Hess et al., 2006; Tournier et al., 2007; Jian and Vemuri,
2007; Descoteaux et al., 2007).

Compared to DTI, QBI requires from five to ten times more dif-
fusion gradient orientations with a higher b-value and therefore
cannot be considered as reliable for clinical use for many reasons.
First, clinical protocols generally involve different MR acquisitions
(T1, T2, BOLD) limitating the time allocated to diffusion imaging.
Second, the patient may move severely during the acquisition
(a frequent situation for patients impaired with Huntington dis-
ease, Parkinson disease, schizophrenia), hence increasing the risk
of aborting the scanning. The same problem arises for studies
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involving newborns who cannot be sedated: generally, less than
75% of the subjects can be exploited because they often wake up
inside the magnet, due to the level of noise. Or the patient can
be more cooperative than hypothesized first and it’s worth starting
with a high b-value DTI scan and continuing with a QBI scan if the
patient remains still.

This paper addresses the feasibility of real-time DTI and QBI
processing for displaying reconstructed associated maps during
an ongoing scan. This will make it possible to start the scan esti-
mating both models, to cancel the acquisition at any time, or to
sustain the scanning when the subject is still in the magnet. If
the scanning is stopped after too few diffusion gradient orienta-
tions, none of the model is exploitable. Then, according to the ac-
quired number of orientations, either DTI model, QBI model or
both can be obtained. To our knowledge, real-time processing
was previously addressed for BOLD functional imaging (Roche et
al., 2004) and EEG-fMRI fusion (Deneux and Faugeras, 2006), but
has never been proposed for diffusion imaging.

DTI and QBI models can be expressed in the light of the general
linear model framework (GLM) assuming a white noise model.
Using the GLM model does not insure the positivity of the tensor
model, and may not lead to correct Q-balls when negative diffusiv-
ity profiles occur, due to low SNR. However, the GLM model is con-
venient when employing incremental frameworks. Among
available techniques for solving least-squares linear regression
models, the Kalman filter provides an appropriate answer to the
real-time requirement, as it is an incremental solver. After the
acquisition of the entire volume for each diffusion gradient orien-
tation, this filter can update DTI and QBI maps, provide variance of
the estimate and can deliver an immediate feedback to the clini-
cian or to the expert in cognitive neurosciences.

After introducing the linear models for DTI and QBI in Section 2,
we describe the Kalman filter-based algorithm implemented in
Section 3. Then we focus on the optimization of the diffusion gra-
dient orientation set in Section 4. In Section 5, we give a setup of
the real-time protocol used and we illustrate the technique using
DTI and QBI MR data, before concluding.
2. Model fitting formulation

Let us consider the vector ~m ¼ ½m1; . . . ;mN�, acquired during the
acquisition corresponding to the diffusion-sensitized signal mea-
sured with the different diffusion gradient orientations at a given
voxel in the scanned volume. The gradient orientations oi are in-
dexed by i corresponding to the time rank during the acquisition
and are numbered from 1 to N. The choice of the orientation set will
be discussed later in Section 4. The magnitude of the sensitization is
given by the b-value in s/mm2. We also define m0 corresponding to
the unweighted signal measured with diffusion gradients off.

2.1. Tensor general linear model

The DT model states that the diffusion of water molecules can
be considered as free, yielding a Gaussian probability density func-
tion characterized by a second order tensor D. The signal attenua-
tion observed when applying a diffusion gradient along the
normalized direction o = [ox,oy,oz]T of the space and with sensitiza-
tion b is exponential (Stejskal and Tanner, 1965):

m ¼ m0e�boTDo þ l ð1Þ

where l represent the acquisition noise that usually follows a Ri-
cian distribution (Sijbers etal., 1998; Nowak, 1999). Taking the nat-
ural logarithm of this attenuation, we easily obtain the general
linear model:
y ¼ Bdþ � ð2Þ

where we define the measured vector of attenuations y =
[y1, . . .,yN]T, with yi = log(m0/mi) and d = [Dxx,Dxy,Dxz,Dyy,Dyz,Dzz]T

being the vector of the six unknown coefficients of the diffusion
tensor. B is a N � 6 matrix called the diffusion-sensitization matrix,
built from N rows b1, . . .,bN depending only on the diffusion gradi-
ent settings (Eq. (3)):

bi ¼ bi½o2
x;i;2ox;ioy;i;2ox;ioz;i; o2

y;i;2oy;ioz;i; o2
z;i� ð3Þ

�is the N � 1 vector of errors �i ¼ � lnð1þ lebioT
i

Doi=m0Þ �
�lebioT

i
Doi=m0. Theoretically, the noise model depends on the un-

knowns as well as on the Rician noise l, but we assume it is not
far from a Gaussian distribution. Studying the true distribution of
the noise must be done, but it is not the purpose of this paper that
deals with the real-time aspect of the algorithm. Moreover, the
b-value used along with DT acquisition protocols remains usually
lower than 1500s/mm2, yielding a signal to noise ratio (SNR) greater
than 10. When the SNR of an image remains higher than a typical
value of 4, the Rician distribution can be assimilated to a Gaussian
distribution without any loss of precision.
2.2. Analytical Q-ball general linear model

The Q-ball model states that the orientation distribution func-
tion (ODF) wðoÞ ¼

R1
0 pðroÞdr that gives the likelihood of having

diffusion along orientation o can be obtained by sampling a sphere
in Q-space (Tuch, 2002) which radius is set up by a high b-value
(typically greater than 3000 s/mm2) with a huge number of gradi-
ent orientations (from 160 to 500 according to the literature).
A good approximation of the ODF was proposed by Tuch using
the Funk–Radon transform (FRT). In order to obtain w(oi), the
FRT integrates the MR signal along the equator of the given orien-
tation oi.

A first linear model of the FRT has been published in Tuch
(2004) corresponding to the raw algorithm. This algorithm pro-
vides a linear relationship between the vector of magnetization
acquired over the spherical shell in Q-space, and the vector of
probabilities of the orientations over the sphere in the image space.
Due to the large dimensions of the associated reconstruction ma-
trix, the processing time may become very long, thus making the
Q-ball model unexploitable in real-time.

More recently, Descoteaux proposed an elegant analytical refor-
mulation of the FRT using the Funk–Hecke theorem for decompos-
ing the ODF onto a symmetric, orthonormal and real spherical
harmonics basis. The reader is invited to read Descoteaux et al.
(2007) for the full details about the method as we will only briefly
describe this development. Compared to numerical QBI, the analyt-
ical QBI reconstruction is faster, more robust to noise, and requires
less gradient directions for stable reconstruction. Most information
is contained in harmonic order 6 or less, with a large majority for
lowest orders, providing an efficient data compression of the ODF
information. Similar results were also described in Anderson
(2005) and Hess et al. (2006).

Decomposing the diffusion signal onto a basis of spherical har-
monics (SH) is quite natural since the acquisition is performed on a
spherical shell and because the original Q-ball model is obtained
from the FRT that uses spherical coordinates. However, as the dif-
fusion signal is supposed to be real and symmetric, a modified real
and symmetric SH basis is used (Eq. (4)). h and / represent the
colatitude and the azimuth respectively of the unit vector o taken
on the surface of a spherical shell in Q-space. Pm

l ðxÞ is the associ-
ated Legendre function of degree l and phase factor m. The indices
k and (l,m) are such that k = (l2 + l + 2)/2 + m and �l 6m 6 +l,
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Ym
l ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl�mÞ!
ðlþmÞ!

s
Pm

l ðcos hÞeim/;

Ykðh;/Þ ¼

ffiffiffi
2
p

ReðY jmjl ðh;/ÞÞ if � l 6 m < 0
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l ðh;/Þ if m ¼ 0

ð�1Þmþ1 ffiffiffi
2
p

ImðYm
l ðh;/ÞÞ if 0 < m 6 l

8><
>: ð4Þ

A N � K matrix B corresponding to the discrete sampling of the dif-
fusion signal along the N diffusion gradient orientations oi and ta-
ken onto the spherical shell at a given b-value can be associated
to the orthogonal SH basis using the K = (l + 1)(l + 2)/2 first spherical
harmonics (Eq. (5)):

B ¼

Y1ðh1;/1Þ � � � YKðh1;/1Þ
..
. . .

. ..
.

Y1ðhN ;/NÞ � � � YKðhN;/NÞ

0
BB@

1
CCA ð5Þ

Let cDWI = [c1, . . . ,cK]T be the K � 1 vector of coefficients cDWI
k of the

spherical harmonics decomposition of the diffusion signal (Eq. (6)):

mðh;/Þ ¼
XK

k¼1

cDWI
k Ykðh;/Þ ð6Þ

Descoteaux proposed a robust estimate of the vector cDWI using a
Laplace–Beltrami regularization that decreases the occurence of
negative peaks in the recomposed diffusion signal for high SH
orders, though it cannot guarantee the absence of negative
peaks (Eq. (7)). The Laplace–Beltrami operator corresponds to
the Laplacian operator in spherical coordinates and is simply given
by a K � K diagonal matrix L which elements are equal to
l(k)2(l(k) + 1)2. k is a regularization factor that controls the smooth-
ing effect of the estimator,

cDWI ¼ ðBTBþ kLÞ�1BTm ð7Þ

Replacing the diffusion signal by its decomposition on the modified
SH basis in the original Funk–Radon transform and using the Funk–
Hecke theorem, Descoteaux demonstrated that the decomposition
cODF of the ODF on the same SH basis can be obtained analytically
from the reconstruction Eq. ((8)), where P is the K � K Funk–Hecke
diagonal matrix with elements Pkk = 2pPl(k)(0) (Pl(k)(x) is the associ-
ated Legendre function of degree l(k)),

cODF ¼ PcDWI ð8Þ

From the knowledge of the decomposition cODF, we can obtain the
ODF value for any orientation o calculating the composition (9):

wðoÞ ¼
XN

k¼1

cODF
k YkðhðoÞ;/ðoÞÞ ð9Þ

One of the main advantages of this analytical reconstruction of the
Q-ball model comes from the simple input parameters used to con-
trol the algorithm: the SH order K tune up the level of details al-
lowed in the ODFs and the regularization factor k controls the
level of smoothness of the ODFs while preventing the apparition
of negative peaks. Further investigation must be done concerning
this factor in order to understand accurately its role, compared to
the regularized scheme proposed by Tournier et al. (2007).

Eq. (8) can easily be reversed to get the equation of the equiv-
alent general linear model (10):

m ¼ BþcODF þ � with Bþ ¼ ðPðBTBþ kLÞ�1BTÞy ð10Þ

where � is the vector of Rician acquisition noise that we assume to
be Gaussian in order to stay in the ordinary linear least-square
framework. The ()� stands for the Moore–Penrose pseudo-inverse
operator. The SH order K must be chosen according to the level of
SNR in the diffusion-weighted data. The higher the order, the more
likely the presence of negative peaks in the ODFs resulting from the
noise. In Descoteaux et al. (2007), the SH order was empirically set
to K = 4, leading to (K + 1)(K + 2)/2 = 15 coefficients to be estimated
per ODF. Another obvious advantage of the analytical Q-ball model
is the drastic reduction of one of the dimension of the reconstruc-
tion matrix to an order comparable to that of the DT reconstruction
matrix. It is therefore much more suitable for real-time processing.

3. Kalman filtering

The Kalman filter is a recursive solver that optimally minimize
the mean square error of the estimation (Kalman, 1960). It has
been widely used in computer vision dedicated to robotics for esti-
mating the state of a dynamic system from partial and noisy obser-
vations (Ayache, 1991; Welch and Bishop, 1991). Because of its
recursive nature, it is a suitable method for updating the DTI or
analytical QBI model parameters after the acquisition of each
new diffusion-sensitized volume. Moreover, the Kalman filter pro-
vides, at each time frame, an estimated covariance of the parame-
ter estimate that can be used to automatically stop the ongoing
scan when the maximum variance falls below a minimum
threshold.

In Section 2, we obtained two general linear models for DTI and
QBI of the form y = Ax + �. The Kalman filter exploits any new mea-
sure y for updating the unknown parameters x, usually called the
state vector.

Assume that after the ith acquisition, a current estimate x̂ði� 1Þ
is available. Given the new MR measurement y(i) and the vector
a(i) = [Ai1, . . .,AiP]T corresponding to the ith row of the matrix A,
the innovation mðiÞ ¼ yðiÞ � aðiÞTx̂ði� 1Þ is calculated. The Kalman
filter then updates the parameters using the recursion correspond-
ing to the two prediction and correction steps (11):

kðiÞ ¼ ð1þ aðiÞTPði� 1ÞaðiÞÞ�1Pði� 1ÞaðiÞ;
x̂ðiÞ ¼ x̂ði� 1Þ þ mðiÞkðiÞ;
PðiÞ ¼ Pði� 1Þ � kðiÞaðiÞTPði� 1Þ ð11Þ

where the vector k(i) is usually called the Kalman gain. P(i) repre-
sents an estimate of the normalized covariance matrix of x given
the information at time i. The unnormalized covariance of x̂ðiÞ is
equal to r̂ðiÞ2PðiÞ using the recursion (12):

r̂ðiÞ ¼ i� 1
i
½r̂ði� 1Þ þ mðiÞ2ð1þ aðiÞTPði� 1ÞaðiÞÞ�1� ð12Þ

The initial guesses x̂ð0Þ, P(0) and r̂ð0Þ can be respectively set to the
null vector, the identity matrix and zero.

4. Optimized diffusion gradient orientation set

Contrary to functional scans where the time order of the stimuli
cannot be modified, diffusion scans can play with the set of diffu-
sion gradient orientations in random order, provided it has a uni-
form distribution of the orientations in the tridimensional space,
for obtaining an accurate tensor or Q-ball estimation.

The optimum orientation count is still debated in the literature
(Jones, 2004). Increasing this number directly improves the SNR of
the ADC, FA and ODF maps, at the price of a longer scan time and
knowing that it is not always possible to predict how long a subject
will remain still in the magnet. Three different strategies can be
followed: the first strategy consists of acquiring only a small uni-
form set of orientations, during which the patient will probably
be quiet; this strategy is likely to prevent any motion problem,
but will give poor estimate of the diffusion models as it relies
only on a few measurements; the second strategy consist of
acquiring a large uniform set of orientations taking a longer time;
consequently, the risk of motion is drastically increased and the
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acquisition may be stopped before the 3D space is uniformly ex-
plored; the third strategy is a compromise between the uniformity
of the orientation set and the amount of data required to get a ro-
bust estimate of the DT or QBI models; the orientation set is made
up of a large number of orientations which are not perfectly uni-
formly distributed, but whose partial subsets can provide a rela-
tively correct sampling of the 3D orientation space.

We have chosen the third strategy and we have implemented
the sequence of orientations proposed in Dubois et al. (2006),
which yields the ‘‘best” spatial distribution of the orientations,
should the acquisition be terminated before completion. We pres-
ent the design of a set of 42 orientations dedicated to the DT model
that has a great clinical impact, but this strategy could also be ap-
plied to the QBI model that is less compatible with clinical applica-
tions, as it requires longer scans not compatible with restless
Fig. 1. Interaction weights aij between orientations i and j assuming a set of 42
orientations divided into 3 subsets of 14 orientations; the minimum interaction
weight a was set to 0.5; the more distant in time the orientations are, the more
reduced is their interaction.

Fig. 2. Comparison of conventional and optimized sets of 42 orientations; the surfac
corresponding to subsets restricted to the 14 or 28 first orientations; the conventional
uniform when it is incomplete; the optimized set must be employed during real-time s
subjects. The method is inspired from the classical repulsion model
of charges distributed on a sphere (Jones et al., 1999; Papadakis
et al., 2000) where the orientations are free to pivot and to repulse
each other, through electrostatic forces. The equilibrium is reached
when the orientations are uniformly distributed, which corre-
sponds to the minimum of the global energy of the system.

Dubois proposed a modified electrostatic model where the
repulsive potential Eij between two orientations oi and oj is of
the form Eij ¼ aijE

0
ij. E0

ij corresponds to the standard electrostatic-
like potential (13). It takes into account the symmetry of the diffu-
sion signal by summing two potentials between the couples of
orientations (oi,oj) and (oi,�oj ) that are equivalent from a physical
point of view about the diffusion process. In practice, all the orien-
tations were initially randomized and the global energy minimiza-
tion was performed using a gradient-descent algorithm,

E0
ij ¼

1
koi � ojk

þ 1
koi þ ojk

ð13Þ

aij ¼ a
s�1

NS�1 ð14Þ

The interaction weight aij was designed such that the whole se-
quence of 42 orientations consists of a series of smaller meaningful
subsets of 14 uniform orientations, while all clusters complement
each other with additional orientations (Eq. (14)). The parameter s
represents the index of the smallest subset that orientations oi

and oj belong to, and the parameter NS is total number of subsets.
The parameter a represents the minimum interaction weight set
to 0.5 in our case. Thus, the more distant in time the orientations
are, the more reduced is their interaction. Fig. 1 depicts the interac-
tion weight for any couple of orientations of the optimum 42 orien-
tation set. Thus the orientations 1–14 have a strong interaction,
meaning that a high constraint is put on the uniformity of the first
subset. The orientations 15–28 have a smaller interaction with
other orientations 1–14, meaning that the uniformity constraint is
slightly released to let the algorithm converge towards a solution
where the orientations 1–28 remain almost uniformly distributed.
Last, the orientations 29–42 have an even smaller interaction with
orientations 1–28. The uniformity constraint is another time re-
leased to enable the convergence of the algorithm, but still suffi-
cient to ensure an almost uniform distribution of 42 orientations.
e meshes of the full distributions are represented as well as the surface meshes
set is more uniform than the optimized set when the full set is acquired, but less
can that can be interrupted at any time.
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Using such interaction weights, the first subset of 14 orienta-
tions is almost uniformly distributed and corresponds to the min-
imum number of diffusion orientations to be explored in order to
be able to estimate the DT model. Then, if the subject is sufficiently
still in the magnet to enable the acquisition of the second subset,
the set formed by the 28 orientations is such that the 14 further
orientations are complementary to the first 14 orientations, and
the distribution of the 28 orientations remains almost uniform
on the sphere. The same situation is also true if the signal can be
sampled along the 14 orientations of the last subset. At the end,
the distributions of 14 and 28 orientations calculated from this
method are much more uniform than those obtained from the con-
ventional method, leading to more robust estimates of the DT
model, even if the acquisition must be stopped after the acquisition
of the first subset. The optimized and conventional full orientation
sets remain relatively similar (see Fig. 2) despite the optimized full
set is a bit less uniform than the full conventional set.

5. Results and discussion

5.1. DTI and QBI acquisition settings

The real-time diffusion Kalman filter was evaluated on an adult,
under a protocol approved by the Institutional Ethical Committee.
The data were acquired on a 1.5 T Signa Excite II MRI system (GE
Healthcare, Milwaukee, USA), endowed with a whole body gradi-
ent (40 mT/m, 150 T/m/s), a parallel electronic chain with 8 linear
channels and an 8-channel receive-only high resolution brain coil
antenna coupled with the 1-channel whole body antenna for trans-
mission. A single-shot echo-planar diffusion-weighted spin echo
pulse sequence, using a diffusion module based on the twice refo-
cusing technique proposed by Reese et al. (2003) that compensates
the Eddy currents to the first order, was used to perform two
acquisitions for validating the real-time solvers.

The pulse sequence settings were b = 700 s/mm2, 42 optimized
gradient orientation set, matrix 128 � 128, 60 slice locations, par-
tial Fourier factor of 75%, field of view FOV = 24 cm, slice thickness
Fig. 3. Real-time processing of ADC/FA/RGB maps using the DTI Kalman filter during a
columns 1/2/3 correspond to iteration 6, 14 and 42; the last column shows the result o
TH = 2 mm, TE/TR = 66.2 ms/12.5 s for the DTI scan and b = 3000
s/mm2, 200 conventional gradient orientation set, matrix
128 � 128, 60 slice locations, partial Fourier factor of 75%, field of
view FOV = 24 cm, slice thickness TH = 2 mm, TE/TR = 93.2 ms/
19 s for the QBI scan. The scan times were 9 min48 s and
72 min50 s, respectively, for the DTI and QBI scans. The SNR of
the diffusion-weighted data was equal to 11 at b = 700 s/mm2
and equal to 3 at b = 3000 s/mm2.

5.2. Real-time standard diffusion maps

At each iteration of the DTI scan, an approximation of the diffu-
sion tensor is available for each voxel of the brain using the QBI
dedicated Kalman filter (Eq. (2)). Therefore it is possible to process
its eigensystem online and then to estimate the ADC/FA/RGB maps.
Columns 1–3 of Fig. 3 depict the evolution of these maps during
the ongoing scan. For comparison, the 4th column shows the result
of a standard offline singular value decomposition. There is no
qualitative difference with the 3rd column processed using the
Kalman filter.

Fig. 4 shows the evolution of the mean square error between the
real-time estimates and the offline estimate according to the itera-
tion index during the scan. The mean square error was plotted for
the ADC and the FA indices over the entire brain. The two curves
are monotically decreasing to a quasi-null value proving that the
Kalman incremental solver can efficiently replace the standard sin-
gular value decomposition. The curves also highlight the impor-
tance of the order of the orientations: the main slope happens
during the acquisition of the first subset of 14 orientations, assess-
ing the quality of the estimate after the first subset and making it
exploitable by the clinicians. The decrease of the error is then more
moderated, improving progressively the quality of the estimate.

The use of an optimized orientation set speeds up the conver-
gence of the estimation that can be considered exploitable by clini-
cians from the 14th iteration. The time required to perform one
iteration of the DTI Kalman filter over the full brain is less than
8 s on a 3.2 GHz linux station, which is lower than the repetition
n ongoing DTI scan at b = 700 s/mm2 with 42 diffusion gradient orientations; the
f the standard offline processing.



Fig. 4. Mean square error between the online estimates of the ADC and the FA and
the offline estimate according to the iteration index; the curves highlight the
importance of the optimization of the orientation set, depicting main slopes during
the acquisition of the first subset of 14 orientations that was built to be almost
uniformly distributed.
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time TR = 12.5 s of the scan. Consequently, there is no additional de-
lay between two consecutive acquisitions, making this protocol
truly real-time.

5.3. Real-time orientation distribution function maps

The Q-ball online Kalman filter was used for processing ODFs
during the ongoing QBI scan. Contrary to the DTI scan where the
orientation set was optimized, the QBI scan was performed with
a conventional orientation set. A symmetrical spherical harmonics
basis of order 4 was chosen and the Laplace–Beltrami regulariza-
Fig. 5. Real-time processing of a Q-ball ODF map using the QBI Kalman filter during an
bottom row displays a direction encoded color map (left) on which is drawn a region of i
and the corresponding map of Q-ball ODFs (right) processed with the offline routine; th
ODF map calculated with the online Kalman filter.
tion factor was set to 0.006 as proposed in Descoteaux et al.
(2006). The choice for the SH order is crucial because using higher
SH orders increases the number of SH coefficients to be estimated,
and consequently increases the number of iterations of the Kalman
filter required to converge. The ODFs are reconstructed along 400
normalized uniform orientations using a normalization for map-
ping the minimum and maximum values to 0 and 1, respectively,
before rendering the shapes of the ODFs. The QBI dedicated Kalman
filter (10) provides, at each step and for each voxel of the brain, an
estimate of the decomposition of the ODF onto a symmetric spher-
ical harmonics basis from which it is easy to obtain the values for
any orientation o of the space (Eq. (9)).

The top row in Fig. 5 shows the evolution of the ODF map during
the Kalman recursion on a region of interest contained in the sub-
cortical white matter, and exhibiting some fibre crossings as well
as voxels with homogeneous fibre populations. At the beginning
of the acquisition, the Q-ball renderings depict isotropic ODFs that
become progressively anisotropic during the acquisition. As for
DTI, there is no qualitative difference between the ODF maps ob-
tained from the online Kalman filter or from the offline Q-ball algo-
rithm given by Eq. (8). However, it is quite interesting to observe
that after only half the acquisitions, the ODF shapes are close to
their final shapes. This observation is directly linked to the SNR
of the diffusion-weighted images that remains low at the current
field of 1.5 T for a huge b-value of 3000 s/mm2. Increasing the num-
ber of measurement points does not necessarily improve the angu-
lar resolution of the reconstructed ODFs when the SNR is too poor.
This highlights the capability of the online Kalman solver to be-
come a valuable methodological and investigational tool for deter-
mining the adequate number of orientations to be used, as well as
for setting the adequate voxel size and b-value.

Fig. 6 depicts the evolution of the mean square error between
the real-time estimate of the SH coefficients and the offline esti-
mate. Three plots shows the evolution of this error for the SH or-
ders 0, 2 and 4 according to the iteration index of the Kalman
solver, inside the region of interest specified by the yellow
ongoing QBI scan at b = 3000 s/mm2 with 200 diffusion gradient orientations; the
nterest inside the white matter, containing fibre crossings and homogeneous voxels,
e top row and the bottom right shows the iterations 1, 50, 100 and 200 of the same



Fig. 6. Mean square error between the online estimates of the SH coefficients and
the offline estimate according to the iteration index for the SH order l = 0 (top,
SH01), l = 2 (middle, SH02-06) and l = 4 (bottom, SH02-15); the error decreases
monotically for the zeroth order corresponding to the isotropic diffusion part of the
ODF whereas the second and fourth order errors start from a low value, increase
during the first 30 iterations, before decreasing and stabilizing continuously; the
amplitude orders of the maximum errors is comparable to the magnitude orders of
the SH coefficients, i.e. bigger for the second order than for the fourth order.
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rectangle in Fig. 5. The error associated to the SH coefficient of or-
der 0 quickly decreases during the first 50 iterations. The behav-
iour of the errors for the SH order 2 and 4 is quite different: a
transition phase occurs during the 30 first iterations where the er-
rors starts with low values, then reach maximum values before
decreasing monotically. Due to the use of a conventional orienta-
tion set, the mean square error does not depict an initial important
slope of the errors, as it would have been the case with an opti-
mized orientation set. That will be investigated in a future study.
With the conventional orientation set, the evolution is more contin-
uous and we can see that, after the iteration 100, the SH coefficients
remain quite stable. No more orientational information is provided
by the following iterations that only improves the estimates in
terms of SNR. A question of interest would be determine that min-
imum number of steps required to estimate the analytical Q-balls.
It is probably strongly dependent on the spherical harmonic order.
In practice, we have limited the SH order to 4 corresponding to the
processing of 15 parameters, and the poor SNR (inferior to 3) lead
us to perform at least 100 acquisitions before convergence. In a
future study, we will investigate more accurately the relationship
between the number of iterations and the SH order.

The time required for performing one iteration of the QBI Kal-
man filter on a single slice is approximately 1.5 s, which would re-
quire 90s to process the entire brain. This processing time exceed
the repetition time TR = 19 s of the scan and cannot be performed
in true real-time, but only in deferred time. However, we must
underline that the time devoted to the processing of the SH decom-
position cODF represents no more than 20% of the global processing
time. The rest of the time is spent for composing the ODF from the
SH coefficients as well as for constructing the triangulated surfaces
required for visualization purposes. It is important to say that at
this point of the development, the C++ code can still be optimized
and will be parallelized in the coming future on a grid of processors
in order to be able to process the entire brain in real-time. More-
over, this grid of processors will enable any kind of correction
between iterations of the Kalman solver. For instance, a co-
registration between the current diffusion-weighted volume and
the reference T2 volume could be implemented to correct for
motion of the patient at each step of the Kalman filter, and a cor-
rection of the susceptibility artefacts could be also implemented
if a mapping of the B0 field inhomogeneities is performed before
the DTI or QBI acquisition. As we used a single-shot diffusion-
weighted echo-planar twice refocusing spin echo sequence for this
study, no correction of the Eddy current distortions are needed, be-
cause the double refocusing compensates the Eddy currents to the
first order, thus providing data without geometric distortions.
6. Conclusion

We have developed an incremental Kalman filter-based frame-
work dedicated to real-time diffusion MR imaging. This framework
addresses both diffusion tensor and Q-ball models, and enables
processing the standard DTI/QBI maps, in real-time during an
ongoing scan. The methodology developed in this paper is very
suitable for clinical use when a quick feedback is required during
the acquisition or when the cooperation of the subject is not cer-
tain. More quantitative evaluations of the difference between on-
line and offline reconstructions must be performed for validating
this approach, as well as studying more deeply the underlying
model of noise present in the QBI data where the SNR is known
to be very low (Basu et al., 2006; Landman et al., 2007; Fillard et
al., 2007; Assemlal et al., 2007), which was not the main purpose
of this paper. This real-time framework seems also to be a promis-
ing methodological tool suitable for tuning up the diffusion param-
eters like the number of orientations, the number of wavevectors
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as well as their values (Khachaturian et al., 2007), the regulariza-
tion factor, and the spherical harmonics order. A future extension
of this work entails online fibre tracking. To that end, we plan to
modify the diffusion Kalman filter in order to process incremental
connectivity maps during ongoing diffusion scans.
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