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The lexicon consists of a set of word meanings and their semantic
relationships. A systematic representation of the English lexicon
based in psycholinguistic considerations has been put together in
the database Wordnet in a long-term collaborative effort. We
present here a quantitative study of the graph structure of Word-
net to understand the global organization of the lexicon. Semantic
links follow power-law, scale-invariant behaviors typical of self-
organizing networks. Polysemy (the ambiguity of an individual
word) is one of the links in the semantic network, relating the
different meanings of a common word. Polysemous links have a
profound impact in the organization of the semantic graph, con-
forming it as a small world network, with clusters of high traffic
(hubs) representing abstract concepts such as line, head, or circle.
Our results show that: (i) Wordnet has global properties common
to many self-organized systems, and (ii) polysemy organizes the
semantic graph in a compact and categorical representation, in a
way that may explain the ubiquity of polysemy across languages.

A pressing issue in linguistics, philosophy, and brain science
is the formal characterization of meaning, i.e., the formal-

ization of our intuition of conceptual content. Language is a
privileged window into the mind in its proposed double role of
mediator and shaper of concepts (1), and lexical semantics, the
mapping between word form and word meanings, is a testing
ground for the problem of characterization of meaning within
the domain of linguistics. Against the classical empiricist and
reductionist interpretations of meaning as the character of the
link of individual concepts and the external world, the holistic
view proposes that mental concepts arise as an emergent prop-
erty of their interrelationships rather than as a property of their
individual experiential correspondence (2, 3). As an example of
how meanings can be related through long chains of semantic
relationships, when the words ‘‘stripes’’ and ‘‘lion’’ are presented,
one thinks of the word ‘‘tiger,’’ establishing the trajectory
lion–feline–tiger–stripes. Dictionaries also make evident the
intrinsic holistic nature of languages, as all individual entries
must be bootstrapped from other entries in a self-referential
fashion. If meaning not only results from a correspondence with
external objects, but also depends on the interrelationships with
other meanings, an understanding of the lexicon as a collective
process implies a characterization of the structure of the graph,
i.e., the global organization of the lexicon.

A word form is a label that identifies a meaning. However,
meanings are not mapped to word forms in a one-to-one fashion.
Two word forms corresponding to the same meaning are said to
be synonyms; a word form that corresponds to more than one
meaning is said to be polysemous. All known languages are
polysemous, but it is not yet clear whether the existence of
polysemy is an historical accident, a nuisance that an ‘‘ideal’’
language should avoid, or whether it may be important for
generic thought processes (4).

We will investigate the statistics and organization of the
following semantic relationships: antonymy, hypernymy (hy-
ponymy), and meronymy (holonomy) (parentheses refer to
inverse relationships). Although antonymy is well known and
needs no explanation, the other two relationships are less
familiar. A hyponym is a meaning that acquires all of the features

of its hypernym, which is a more generic concept; for example,
tree is hypernym of oak. Dictionaries make implicit use of the
hypernym relationship by defining a word as its hypernym (which
encompassed all of the basic features) and its specific attributes
(5). Meronymy is the relation of being part of; for example,
branch is a meronym of tree. Meanings can also be related
through common word forms (polysemy); for example, a body of
persons officially constituted for the transaction or superintendence
of some particular business and a flat slab of wood are two
meanings that are related through the word form board. This
relationship may seem arbitrary, accidentally linking unrelated
meanings. In many cases, however, a chain linking the two
different meanings may be established. For instance, the Oxford
English Dictionary makes the relationship between the two
meanings of the word board explicit: ‘‘A table at which a council
is held; hence, a meeting of such a council round the table.’’

The lexicon then defines a graph, where the points are the
different meanings and semantic relationships are the links. The
vertices are nouns, adverbs, verbs, or adjectives; in what follows
we will present results based on an analysis of the set of nouns.
Graph theory provides a number of indicators or measurements
that characterize the structure of a graph: the statistical distri-
bution of links, which gives an idea of the homogeneity and
scaling properties of the graph, the mean shortest distance
between any two points of the graph, which gives an idea of its
size or diameter, the clustering index, which provides a measure
of the independency of neighboring links, and the traffic, which
measures the number of trajectories passing through each vertex,
and so identifying the most active hubs. Fig. 1 shows examples of
different toy graphs and how the graph theoretic measurements
help to identify them.

The general properties of the organization of social and
biochemical networks and the organization and dynamics of the
World Wide Web have been characterized with these graph
theoretic measurements, revealing common features of self-
organized systems of highly connected elements (6–9). We used
similar tools to show several global properties of the set of nouns:
(i) all semantic relationships are scale invariant, typical of
self-organizing graphs; whereas the semantic network is domi-
nated by the hypernymy tree, which works as the skeleton of the
set of nouns, the inclusion of polysemy produces a drastic global
reorganization of the graph, namely (ii) it is converted into a
small world (8, 10), where all meanings are closer to each other,
(iii) simplexes (subgroups of fully connected meanings) become
the regions of more traffic, and (iv) distances across the network
are not in correspondence with their deepness in the hypernymy
tree.

Methods
Grouping all semantic relationships in different classes is ulti-
mately an arbitrary decision, although this grouping was based
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on a long history of research in psycholinguistics (5). In Wordnet,
the relation of meronomy is actually a class of relations including
meronomy of component (i.e., branch is component-meronomy
of tree), member (tree�forest), and stuff (glass�bottle). Our study
did not discriminate between different types of meronomy;
another semantic relationship between nouns that we have not
explored in this work is the relation of attribute. The minimal
distance between vertices was computed adapting a publicly
available version of Dijkstra’s algorithm (11). For a vertex i, the
average minimal length was calculated by averaging the minimal
distance from i to all of the other vertices in the graph, �d�i �
(1/66025)�j�{Meanings} distmin(i, j). The characteristic length was

computed as the median of the distribution of average minimal
lengths across all vertices in the graph. Clustering (Cl) was
computed as the ratio of connected neighbors (CN) to the
maximal possible number of connected neighbors, given by the
formula Cl � 2�CN�[N�(N � 1)], where N is the number of
neighbors. All semantic graphs were obtained from the Wordnet
database. Semirandom graphs were generated as controls, by
adding random links to the original hypernymy graph. A differ-
ent number of random links were added to generate graphs of
equivalent number of links, to control for the different graphs
I–III, I–IV, and I–III–IV. Fig. 3a shows an example of each of
these graphs. To calculate the characteristic length and cluster-
ing of the semirandom graphs, we generated seven different
graphs for each condition and the averages are shown. Standard
deviations were not shown because in all cases they were below
1%. The traffic was computed as the limit of the exponentiation
of the graph: for an integer N and a graph g, gij

N computes the
number of trajectories of length N connecting vertices i and j. For
N 3 �, the exponentiation gN � �i�i

Nui�ui�
T (where �i is the ith

eigenvalue and ui its corresponding eigenvector) can be approx-
imated by the largest eigenvalue �1 of g (the matrix g is symmetric
and positive-definite, hence �i � 0@i, and the first eigenvalue will
be set to the largest one) largest eigenvalue is the first one) and
its corresponding eigenvector u1�, gN � �1

Nu1�u1�
T. Because the

composition of a trajectory with a loop gives a trajectory with the
same path, but longer N, this limit is guaranteed to converge to
the maximum number of paths and therefore u1� measures the
limiting behavior of trajectories throughout the graph, i.e., the
‘‘traffic’’ (11). In particular, u1i

2 represents the number of loops
passing through the i-th node, relative to the other nodes.

Results
According to the latest version of Wordnet (wordnet1.6), the
number of noun meanings is 66,025, although this number is, of
course, arbitrary and variable. In this work we will consider four
types of relationships: hypernymy (I), antonomy (II), meronomy
(III), and polysemy (IV). Antonomy and polysemy relationships
are symmetric, whereas hypernymy and meronymy have hy-
ponomy and holonomy as inverses. We will consider the set of
hypernyms–holonomys as type I relationships, antonomy as type

Fig. 1. Graph measurements. Toy graphs to show how different structures
can be identified by using different measurements (clustering, mean length or
diameter, and traffic). Both graphs have the same number of nodes and the
same distribution of links; each vertex is labeled with a color that indicates the
number of links (yellow, 1 link; green ,2 links; blue, 3 links; red, 4 links; and
orange, 6 links). Despite having the same statistics, the two graphs are
obviously different. Graph A (Upper) gives the impression of being more
compact than graph B (Lower). This difference is quantitatively measured by
the diameter, i.e., the longest of all of the shortest paths within any pair of
vertices in the graph. This path is illustrated with the red dotted line. The two
most distant points in graph A are 6 links apart, whereas the two most distant
points in graph B are 17 links apart. The characteristic length is the median (not
the maximum) of the length of all minimal paths; graph B is the longer one,
because of its structure of long branches in which long navigations are
required to go from one point to another. A second salient structure of graph
B is the pentagon-like structure of nodes linked to each other. This structure
is prominent in clustering analysis, i.e., number of connected neighbors as a
function of all possible connected neighbors. This pentagon also acts as a
center of the graph, i.e., most trajectories connecting two vertices (but not all
of them) go through it, and so these particular nodes are highly traversed.
Graph A shows that traffic and connectivity are not necessarily related. The red
node is not the most connected one; however, it is the one with most traffic
(which places it in the center of the graph). The importance of this vertex
(central to the structure of the graph) would not have been revealed without
traffic analysis. These measures allow the identification of the structure and
organization of a graph in cases (as in the lexicon) in which it is not obvious by
simple inspection and visualization.

Fig. 2. Scale-invariant distribution of all semantic links. The histogram shows
the distribution of meanings as a function of number of links for the hyper-
nymy–hyponymy (blue), polysemy (green), and meronymy–holonomy rela-
tionships. They all follow a power law (scale invariant) behavior, as seen by the
linear dependence in the log–log plot.
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Fig. 3. Inclusion of polysemy results in a small world organization of the semantic graph. (A) The histogram of average minimal length (see Methods) and the
plot of connected neighbors (CN) as a function of neighbors (N) is plotted for different graphs. The maximal number of CN is given by CNmax � [N�(N � 1)]/2 and
is plotted in the dashed blue line. Points close to this line are highly clustered, whereas the ones close to the horizontal axis are not. Because each graph has
different number of links, for each one (except the hypernymy tree) we generated a control graph consisting of hypernymy � random links, to match the number
of the original graphs. Data from the original plots are displayed in the two leftmost columns, and data from the semirandom graphs in the two rightmost
columns. The length and clustering are shown for the hypernymy tree (first row), hypernymy � meronomy (second row), hypernymy � polysemy (third row),
and hypernymy � meronomy � polysemy (fourth row). As can be seen, the addition of polysemy (or word forms) reduces the characteristic length as much as
the addition of random links (compare right and left columns), but with a considerable increase of clustering (even for highly connected nodes). In addition, the
inclusion of polysemy adds vertices (green dots) of high connectivity and high clustering. Those correspond to clusters of meanings that are connected through
a common word. (B) Characteristic length for all possible graphs combining the hypernymy tree and the different semantic relationships (see text). As can be
seen in the column corresponding to {I–IV}, the addition of polysemy reduces the characteristic length as much as random relations do. (C) Addition of polysemy
on top of hypernymy increases the clustering of the graph. Thus polysemy results in a clustered and compact graph, a small world.
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II relationships, meronomy–holonomy as type III relationships,
and polysemy as type IV relationships.

To address scaling in the network of meanings, we computed
the distribution of links (first-neighbor connections). Antonomy
was excluded, because each meaning has 0 or 1, or rarely 2,
antonyms. All relationships showed power-law behaviors reflect-
ing scale invariance in this graph (Fig. 2). The relationship of
hypernymy is the one with more links, relating at most 400
meanings. The word-form relationship relates up to 32 meanings
through the most polysemous word, head. The statistics of links
provides a local measure to characterize a graph, of how uniform
it is in the number of neighbors. Crystalline graphs, for example,
have a fixed number of links. The power-law distribution of
polysemy states that there are very few words that connect a high
number of meanings, rendering them as particularly important
words. It has been shown that graphs with power-law distribution
of links are very sensitive to the removal of these particular nodes
(12). Moreover, power-law distributions are a hallmark of self-
organizing systems (13), providing support to the idea that the
semantic network is dominated by autonomous and self-
referential processes, and at the same time reflecting the high
quality of Wordnet despite the necessary arbitrariness with
which it was built.

The statistics of links, however, does not fully characterize a
graph; as seen in the toy model of Fig. 1, two graphs with equal
distribution of links may be radically different. We therefore
proceeded to calculate more global and characteristic measures
of the graph: the characteristic length and the clustering. The
characteristic length is the median of the minimal distance
between pairs of vertices, and it essentially gives an idea of the
diameter of the graph, measuring how far apart from each other
two meanings typically are. Clustering is a measure of local
structure, as it results from averaging the probability of two
meanings being connected to each other given that they are both
connected to a third common meaning. It is well known that
social networks, for instance, are highly clustered: if A is friend
of C, and B is friend of C, then A and B are also likely to be
friends. Clusters define islands within the graphs, regions of very
high internal connectivity.

We studied the changes in clustering and characteristic length
resulting from the inclusion of the different semantic relation-
ships to study their impact on the organization of the graph. We
used the hypernymy tree as a base graph, and we generated eight
different graphs that result from adding the different semantic
relationships to the hypernymy tree (graph {I}). The graph {I,II}
has all links of hypernymy and antonymy, the graph {I,IV}
hypernymy and word-forms and so on. The graph {I,II,III,IV}
contains all of the possible links. All of the graphs have the same
number (66,025) of vertices. Overall, as links are being added to
a graph of fixed number of vertices, the characteristic length
decreases and the clustering increases; however, the particular
distribution of links may have very different effects on the length
as well as the clustering of the graph (10). To provide a measure
of normalization, we generated semirandom graphs by adding
random links to the hypernymy graph. For each semantic graph,
we generated a corresponding semirandom graph with the same
number of links, which works as a control comparing the effect
of adding the specified links to just adding random links.

Fig. 3 B and C summarizes the averaged results for the eight
graphs, and Fig. 3A provides details for four individual examples:
the hypernymy tree alone (first row), the hypernymy and mer-
onomy relationships (second row), the hypernymy and polysemy
relationships (third row), and the hypernymy, meronomy, and
polysemy relationships (fourth row). The characteristic length of
the graph of hypernymy � meronomy links (approximately the
maximum of the histogram of characteristic length, first column,
second panel) is significantly larger than that of the graph
constructed by adding the same number of random relationships

to the hypernymy tree (second panel, third column). In com-
parison, the addition of polysemous relations results in a graph
(third column, first panel) of characteristic length comparable to
the one that results from adding random relationships to the
hypernymy graph (third panel, third column). The fourth panel
shows that adding meronomy after the inclusion of polysemy
does not result in considerable changes. The impact of adding
antonyms to the graph is very low, as can be seen in the averaged
results of Fig. 3B. Although this essentially results from the fact
that there are very few (1,849) antonym relationships, a small
number of links may have a profound impact on the global
organization of the graph (10).

Summarizing the exhaustive inspection of the effect of the
different relationships revealed that the most important changes
in characteristic length result from adding the polysemy rela-
tionship (Fig. 3A). In addition, the inclusion of polysemy pro-
duces a considerable number of vertices (green dots) with high
connectivity and clustering (points close to the blue line, second
column third panel). On average, the inclusion of polysemy
reduces the characteristic length from 11.9 to 7.4 and increases
the clustering from 0.0002 to 0.06. In a way, the inclusion of
polysemy creates what is known as a small world (10), a clustered
short-range graph.

Given that polysemy has a profound impact on the clustering
and characteristic length, we investigated the effect of polysemy
in the relationship between mean distance and deepness in the
hypernymy tree (minimal distance to the root). In the hypernymy
graph, the way to go from one meaning to another is climbing up
and down the tree. For example, to go from dog to oak, one
would follow the trajectory: dog–canine–carnivore–placental–
mammal–chordate–animal–life form–plant–woody plant–vascular
plant–tree–oak. As predicted, the mean distance from a node to
the rest of the vertices progresses as one goes deeper in the tree.
Moreover, the vertices are correlated with a slope of 1, indicating
that for every step down in the tree, a vertex is on average one
more link apart from the rest of the nodes (Fig. 4, blue). When
polysemy is added, this correlation, though still present, becomes
very weak (Fig. 4, red).

Fig. 4. Correlation between mean distance and deepness in the hypernymy
tree. The figure displays a scatter of average minimal distance versus depth in
the hypernymy tree with and without the inclusion of polysemy. In the
hypernymy tree (blue), distance scales with E with a tight correlation (r �
0.902). After adding polysemy (red), the correlation is very weak (r � 0.54),
showing the hierarchy of hypernymy has low impact in distance between
meanings in the full semantic graph.
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A complementary measure of global organization in a graph
is the traffic through any given vertex, counting the number of
trajectories between other vertices passing through it (see Meth-
ods and ref. 11). When polysemy is not present, different
taxonomic groups are the meanings with more traffic. This result
is a consequence of the presence of a large number of related
genera: in a tree structure the root is the center of traffic only
if the branches are homogeneous; otherwise, highly connected
child-vertices take over. The most active vertices in the graph
{I–II–III} correspond to meanings with high number of hyp-
onyms (Fig. 5 Middle, blue dots). This is essentially because all
of the corresponding hyponyms have to pass through their
hypernymy to navigate to the rest of the graph. When polysemy
is added the distribution of vertices with high traffic forms
clusters (Fig. 5 Top, red dots) corresponding to central abstract
meanings such as head (red arrow), line (pink arrow), or point

(orange arrow). Interestingly, these three clusters correspond to
the groups of meanings of the most polysemous words, respec-
tively, head (P � 30), line (P � 29), and point (P � 24). Moreover,
traffic becomes essentially independent of connectivity (Fig. 5
Middle, red dots). In this case, a good local indicator of traffic is
the number of connected neighbors as shown in Fig. 5 Bottom.
Thus, after the inclusion of polysemy, the heavy clusters (a large
group of vertices all connected to each other through a polyse-
mous word) become the center of traffic.

Discussion
Graph Theoretical Analysis. Our results have been based on three
measurements used to characterize the structure of a graph:
characteristic length, clustering, and traffic. Although the first
two measurements have been widely used to understand the
organization of different networks, the latter has been less

Fig. 5. Polysemy converts meanings related through the most polysemous words in the hubs of the graph. The value of the first eigenvalue (a measure of traffic,
see Methods) for the graphs with all relations (red) and without polysemy (blue) as a function of distance (Top), connectivity (Middle), and number of connected
neighbors (Bottom). (Top) The word forms produce clusters (marked with the arrows), which correspond to the most polysemous words: head (green arrow),
point (pink arrow), and line (orange arrow). (Middle) Traffic is independent of connectivity after the inclusion of polysemy (red dots). In the hypernymy tree,
however, the points with most hyponyms, and thus the most connected ones, become hubs. (Bottom) After the inclusion of polysemy, the nodes with more traffic
are the ones with most connected neighbors, which form big clusters of fully connected nodes. These two graphs present examples in which the traffic is
dominated by the most connected nodes (without polysemy) or to the heavy clusters (with polysemy). The transitions between the graph without and with
polysemy is highlighted by arrows in Middle and Bottom marking the highest values for traffic as a function of connectivity and connected neighbors,
respectively.
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explored, among other reasons, because traffic and connectivity
are often strongly connected. However, in many examples of
biological or social networks, the measure of traffic through a
vertex (a global measure that establishes how centered it is within
the graph) may be more relevant than connectivity. Fig. 1 shows
a toy graph in which a node (c) with only four connections is the
one with more traffic, given that all trajectories connecting a
vertex in two different quadrants of the graph go necessarily
through node c. Clearly, the presence of such a central node
would not be revealed without a traffic analysis. In our analysis
of Wordnet, we have observed a nontrivial relationship between
traffic and connectivity after the inclusion of polysemy, which
produces the following changes: (i) the characteristic length
decreases and (ii) the graph becomes clustered; these two
properties define a small-world network. Finally, (iii) the pol-
ysemous clusters (which do not include the most connected
vertices) become the hubs of the graph.

Beyond the strict analytic content of the present study, we
would like to discuss a number of possible implications of our
results regarding the neural correlates of concepts.

Implications for polysemy. The existence of polysemous words
has remained a central challenge to artificial language (14). With
a one-to-one mapping of meanings to words, decoding meanings
from word forms would be, of course, a trivial problem. Why
then are all languages polysemous? Our investigation of the
impact of different relationships within the lexicon (Wordnet)
on its global organization shows that inclusion of polysemy
drastically reorganizes the semantic web so as to render it a
small-world network, where meanings are typically closer to each
other and central concepts (which are the most polysemous, and
also the most familiar; ref. 15) become the center of more
trajectories, the hubs of the lexicon. This finding formalizes the
proposal that polysemy may be crucial for metaphoric thinking,
imagery, and generalization (4), and establishes a possible role
for polysemy.

Implications for mental navigation. Different lines of research
have provided evidence of mental navigation in the semantic
network, implying that our observations of global graph prop-
erties might be important for the understanding of the mental
representation of meaning (16–20). Word-priming studies have
demonstrated that when subjects are asked to judge whether a
string of letters is a word, judgments occur more rapidly after a
semantically related item than an unrelated item (21). Subliminal
presentation of a word can also improve reaction times when a
subsequently presented word is semantically related to the first
one (22, 23). An ambiguous (polysemous) word primes the
different meanings associated with it (24). Finally, classical
models of lexical retrieval have shown that the reaction time to
a given word is decreased if it has a number of neighbors with
similar orthographic or phonological mapping (25, 26). Thus the
relation of polysemy may be extended to a word-form neighbor
relationship, and consequently two meanings may be related
through similar (but not necessarily identical) word forms. This
adds yet another dimension to the possible organization of the
set of meanings so as to provide it with a more efficient lexical
retrieval mechanism. Irrespective of the specifics of the neuronal
implementation, we can reason that the small-world property is
a desirable one in a navigation network, given that it strikes a
balance between the number of active connections and the
number of steps required to access any node. Moreover, taking
mental navigation for granted, we would also expect that the
hubs of network traffic should display distinct and recognizable
physiological features, as well as a statistical bias for priming in
association and related tasks. Despite the tentative nature of
these suggestions, they provide a number of experimentally
testable hypotheses to further the understanding of mental
navigation processes.
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