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To understand how the human visual system analyzes images, it is
essential to know the structure of the visual environment. In
particular, natural images display consistent statistical properties
that distinguish them from random luminance distributions. We
have studied the geometric regularities of oriented elements
(edges or line segments) present in an ensemble of visual scenes,
asking how much information the presence of a segment in a
particular location of the visual scene carries about the presence of
a second segment at different relative positions and orientations.
We observed strong long-range correlations in the distribution of
oriented segments that extend over the whole visual field. We
further show that a very simple geometric rule, cocircularity,
predicts the arrangement of segments in natural scenes, and that
different geometrical arrangements show relevant differences in
their scaling properties. Our results show similarities to geometric
features of previous physiological and psychophysical studies. We
discuss the implications of these findings for theories of early
vision.

One of the most difficult problems that the visual system
has to solve is to group different elements of a scene into

individual objects. Despite its computational complexity, this
process is normally effortless, spontaneous, and unambiguous
(1). The phenomenology of grouping was described by the
Gestalt psychologists in a series of rules summarized in the
idea of good continuation (2, 3). More quantitative psycho-
physical measurements have shown the existence of associa-
tion fields (4) or rules that determine the interaction between
neighboring oriented elements in the visual scene (5, 6). Based
on these rules and on the Gestalt ideas, pairs of oriented
elements that are placed in space in such a way that they extend
on a smooth contour joining them will normally be grouped
together.

These psychophysical ideas have been steadily gaining solid
neurophysiological support. Neurons in primary visual cortex
(V1) respond when a bar is presented at a particular location and
at a specific orientation (7). In addition, the responses of V1
neurons are modulated by contextual interactions (6, 8–15), such
as the joint presence of contour elements within the receptive
field and in its surround. This modulation depends on the precise
geometrical arrangement of linear elements (6, 16) in a manner
corresponding to the specificity of linkage of cortical columns by
long-range horizontal connections (17, 18). Thus, neurons in V1
interact with one another in geometrically meaningful ways, and
through these interactions, neuronal responses become selective
for combinations of stimulus features that can extend far from
the receptive field core.

The rules of good continuation, the association field, and the
connections in primary visual cortex provide evidence of
interaction of pairs of oriented elements at the psychophysical,
physiological, and anatomical level. The nature of the inter-
action is determined by the geometry of the arrangement,
including spatial arrangement and the orientation of segments
within the visual scene. An important question is whether this
geometry is related to natural geometric regularities present in
the environment. It is well known that natural images differ
from random luminance distributions (19, 20), but the struc-
tural studies of natural scenes have not yet addressed the
existence of geometrical regularities. We address this issue

here by studying whether particular pairs of oriented elements
are likely to cooccur in natural scenes as a function of their
orientation and relative location in space. Our results are
focused on two different aspects of the organization of ori-
ented elements in natural scenes: scaling and geometric rela-
tionships. We will show that these two are interdependent.

Scaling measurements involve studying how the probability
of finding a cooccurring pair changes as a function of the
relative distance. A classic result in the analysis of natural
scenes is that the luminance of pairs of pixels is correlated and
that this correlation is scale-invariant (19, 20). This indicates
that statistical dependencies between pairs of pixels do not
depend on whether the observer zooms in on a small window
or zooms out to a broad vista. The scale invariance results from
stable physical properties such as a common source of illumi-
nation and the existence of objects of different sizes and
similar ref lectance properties (21). We show here that for
particular geometries, the probability of finding a pair of
segments follows a power law relation and thus is scale-
invariant. We show further that a very simple geometric rule,
consistent with the idea of good continuation, predicts the
arrangement of segments in natural scenes.

Materials and Methods
Images were obtained from a publicly available database
(http:yyhlab.phys.rug.nlyimlibyindex.html; ref. 22) of about
4,000 uncompressed black and white pictures, 1,536 3 1,024
pixels in size and 12 bits in depth, with an angular resolution
of '1 min of arc per pixel. This particular database was chosen
because of the high quality of its pictures, especially in their
lack of motion and compression artifacts, which would other-
wise overwhelm our statistics. To obtain a measure of local
orientation, we used the steerable filters of the H2 and G2 basis
(23). By using steerable filters, the energy value at any
orientation can be calculated by extrapolating the responses of
a set of basis filters. A G2 filter is a second derivative of a
Gaussian and the H2 filter is its Hilbert transform. H2 and G2
filters have the same amplitude spectra, but they are 90° out of
phase; that makes them quadrature pair basis filters. The size
of the filters used was 7 3 7 pixels. A measure of oriented
energy was obtained by combining both sets of filters E(w) 5
G2

2(w) 1 H2
2(w) (23). This measure is repeated at every pixel of

the image to obtain the energy function for each image (n) of
the ensemble {En(x, y, w)}. To study the joint statistics of E(x,
y, w), we discretized the different orientations at 16 different
values, 0 5 (2py32, py32), 1 5 (py32, 3py32), . . . , 15 5
(29py32, 31py32), as shown in the color representation of
orientations of Fig. 1. With this information one can obtain a
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measure of the statistics of pairs of segments by calculating the
correlation (weighting the cooccurrences of segments by their
energy).

C~Dx, Dy, w, c!

5
1
N O

n 5 1

N E E En~x, y, w!En~x 1 Dx, y 1 Dy, c!dxdy,

where N is the total number of images and the integral is over
each of the images of the ensemble. We were interested in
measuring long-range correlations so we studied values of Dx,
Dy 5 {2256, 256}. The correlation matrix has dimensions
512 3 512 3 16 3 16 and each point results from averaging
4,000 integrals over a 1,536 3 1,024 domain. To simplify the
computations, for the general case, we decided to store at each
pixel, for every image, the maximum energy value E(wmax) and
its corresponding orientation wmax. An energy threshold ET

was arbitrarily set to match the visual perception of edges in

a few images. Pixels in an image were considered ‘‘oriented’’
if E(wmax) $ ET, and ‘‘nonoriented’’ otherwise. This unique
threshold value was applied to all images in the ensemble.
Thus, for each image, we extracted a binary field En

bin(x, y) 5
{0, 1} and an orientation field Angn(x, y) 5 {1, . . . , 16}. From
this binary field we can construct a histogram of cooccur-
rences: how many times an element at position (x, y) was
considered oriented with orientation w and at position (x 1 Dx,
y 1 Dy) a segment was considered oriented with orientation c.
Thus, formally, the histogram is obtained as C, taking as the
Energy function En(x, y, w) 5 1 if w 5 Angn(x, y) and En

bin(x, y) 5
1; En(x, y) 5 0 in any other case. The computation is reduced
to counting the cooccurrences in the histogram H(Dx, Dy, w, c)
with Dx 5 {2256, 256}, Dy 5 {2256, 256}, w, c 5 (0, py16,
2py16, . . . , p). From the histogram we obtained a measure of
statistical dependence. Although choosing the threshold fol-
lowed computational reasons, cortical neurons perform a
thresholding operation and, thus, the measure of linear cor-
relation (weighting cooccurrences by their energy) is not
necessarily a more accurate measure of statistical dependence.
The histogram was used for all of the data shown in Figs. 2
A–C, 3, 4, and 5. For Fig. 2D, for the particular case of collinear
interactions, we computed the full linear cross-correlation.
This computation is considerably easier because it is done for
fixed values of orientation and direction in space. The two

Fig. 1. An example of the filtering process we applied to an image. (a)
The original image. (b) The image after processing with local-oriented
filters (66). The maximal orientation was calculated at each point. The
image was converted to binary by considering char ‘‘oriented’’ only the
pixels that, after being filtered at their maximal orientation, exceeded a
given threshold. In the figure, the maximal orientation is shown by using
a color code.

Fig. 2. Scaling behaviors for different geometrical configurations. (A) The
number of cooccurrences between two segments in the relative positions
within the line that the orientation of the first segment spans is shown for
different orientations of the second segment. This measure was averaged
over all possible orientations of the first segment. The collinear configu-
ration is the most typical case and displays a scale invariant behavior as
indicated by the linear relationship in the log–log plot. (B) The strength of
the correlation and the degree to which it can be approximated to a power
law are more pronounced for the particular case in which the reference line
segment is vertical. (C) The same measure when the two segments are at a
line 90° apart from the orientation of the first segment. In all three cases,
black corresponds to iso-orientation, red to 22.5° with respect to the first
segment, green to 45°, blue to 67.5°, and yellow to 90°. (D) Full crosscor-
relation as a function of distance for Laplacian filtering (red circles),
oriented filters in the collinear vertical direction (black circles), and for both
cases after shuffling the images. The Laplacian filtered image is decorre-
lated, as can be seen from the fact that it shows the same structure as its
shuffled version (cyan circles). Collinear configuration shows long-range
correlations, which follow a power law of exponent 0.6 (blue line, y 5 x20.6)
and are not present when the image is shuffled (green circles).
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measures shown (Laplacian correlation and collinear correla-
tion) were obtained according to the formulas:

C~r! 5 O
x,y

O
Dx2 1 Dy2 5 r2

ELap~x, y!ELap~x 1 Dx, y 1 Dy!

2 SO
x,y

ELap~x, y!D2

,

for Laplacian filtering, and

C~r! 5 O
x,y

E~x, y, 0!E~x 1 r, y, 0! 2 SO
x,y

E~x, y, 0!D2

,

for collinear oriented filtering.
A quantitative signature of scale invariance is given by a

function of the form C 5 r2a (power law) where C is the
correlation, r the distance, and a constant. If the scale is changed
r3 lr 5 r9 the function changes as C(r) 5 l2ar2a 5 kC(r9) where
k is a constant. A power law is easily identified as a linear plot
in the log–log graph, which is clear from the relation log(C) 5
2alog(r).

The axis of maximal correlation (Fig. 5b) was calculated as
follows. For each pair of orientations (w, c), a measure of
cooccurrence was calculated integrating across 16 different lines
of angles of values (0, py128, 2py128, . . . , p) over distances of
[240, 40] of the center of the histogram. Thus, for an angle u
and orientations (w, c) the measure of cooccurrence is:
Pw, c(u) 5 Si 5 240

40 H(cos(u ) * i, sin(u) * i, w, c). We then
calculated the direction of maximal correlation umax(w, c) and
grouped all angles with common relative orientation w 2 c 5 j.
We had 16 different values for each j and from these 16 different
values we calculated the mean P(u, «) 5 , umax(c, c 1 «) . c

and the standard error. To calculate the mean energy as a
function of relative orientation (Fig. 3) we integrated the
histogram in spatial coordinates for each pair of orientations in
space, and, as before, the different pairs where grouped accord-
ing to their relative difference in orientation to calculate a mean
value and a standard deviation, Ew, c 5 *x 5 2100

100 *y 5 2100
100 H(x, y,

w, c)dxdy and E(w) 5 ^E«, « 1 w&«. The code was parallelized by

using MPI libraries and run over a small Beowulf cluster of Linux
workstations.

In general, horizontal and vertical directions had better sta-
tistics because there are more horizontal or vertical segments
than oblique in the images; these special orientations are also the
most prone to artifacts from aliasing, staircasing, and the en-
semble choice. Because we are interested in this study in the
correlations as a function of relative distance and orientations,
all of the quantitative measurements were performed by aver-
aging overall orientations. However, the results shown still held
true for each individual orientation.

Results
All 4,000 images used in this study were black and white, 1,536 3
1,024 pixels in size, and 12 bits in depth. We used a set of filters
to obtain a measure of orientation at each pixel of every image
of the database (23). The filters were 7 3 7 pixels in size and thus
provided a local measure of orientation. The output of the filter
was high at pixels where contrast changed abruptly in a particular
direction, typically by the presence of line segments or edges, but
also corners, junctions, or other singularities (Fig. 1). If the
output of the filters were statistically independent, then we
would expect a flat correlation as a function of (Dx, Dy, w, c). In

Fig. 3. The number of cooccurring pairs of segments as a function of their
relative difference in orientation (j 5 c 2 w). These values were obtained after
integrating the histogram of cooccurrences in space for different angular
configurations. Each point in the graph (j) corresponds to the average and the
standard deviation of the 16 different configurations obtained by choosing
one of the 16 possible values for the first orientation (w) and then setting c 5
(w 1 j)(modulo16).

Fig. 4. Plot of the spatial dependence of the histogram of cooccurring pairs
for different geometrical configurations. (a) The probability of finding a pair
of iso-oriented segments as a function of their relative position; a pair of
segments at relative orientation of 22.5° (b), 45° (c), 67.5° (d), or 90° (e). ( f)
Cocircularity solution for a particular example of two segments. The solutions
to the problem of cocircularity are two orthogonal lines, whose main have
values (c 1 w)y2 or (c 1 w 1 p)y2. For the example given, w (red segment) 5
20°, c (blue segment) 5 40°, and the two solutions (green lines) are 30° and
120° (all angles from the vertical axis).
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polar coordinates (r, u, w, c), the two problems that we address
are naturally separated: the scaling properties result from study-
ing how the histogram depends on r (distance), whereas the
geometry does it from the dependence of the histogram on u, w,
and c.

We studied the number of cooccurring pairs of segments as a
function of their relative distance for different geometries (Fig.
2 A–C). The different geometric configurations correspond to
the different orientations of the segments and their relative
position within an image. We first studied the number of
cooccurrences as a function of distance in the line spanned by the
orientation of the reference segment, averaged across all possi-
ble orientations of the reference line (Fig. 2 A). When both
segments have the same orientation, we observe a scale invariant
behavior, indicated by a linear relationship in the log–log plot
(see Materials and Methods). Also it can be seen from this plot
that collinear cooccurrences are more frequent than any other
configuration. Fig. 2B shows the probability of cooccurrences is
higher for the vertical orientation, and that scale invariance
extends over a broader range.

The scaling properties are qualitatively different for segments
positioned side-by-side, along a line orthogonal to the orienta-
tion of the first segment (Fig. 2C). Iso-oriented pairs were again
the most frequent, but their cooccurrence in the orthogonal
direction to the orientation of the first segment (Fig. 2C, black
line) does not appear to be scale invariant. This is reflected by
the presence of a kink as opposed to a straight line (power law)
in the log–log plot, indicating well-defined scales with different
behavior.

It is worth comparing the scale of interactions one observes by
using different kinds of filters. Before filtering images, the
luminance shows correlations, which follows a power law behav-
ior (19, 20). After applying a Laplacian filter (equivalent to a
center-surround operator, which measures nonoriented local
contrast), the image is mostly decorrelated (Fig. 2D, red circles)
(24, 25). This is seen in the exponential decay of the correlations,
and in the fact that the correlations show similar behavior after
a pixel-by-pixel shuffling of the image (Fig. 2D, cyan circles). The
strength and scaling of the correlations across the collinear line
changes radically when an oriented filter is used. In this example,

to make a direct comparison between the various filters, we
weighted each pair of segments by their energy value (linear
crosscorrelation, instead of applying a threshold as in the earlier
calculations). This calculation was done for the vertical reference
line orientation, which showed long-range correlations (Fig. 2B,
black circles), over much longer distances than observed with the
Laplacian filter. Moreover, these correlations were not present
when measured in the shuffled images (Fig. 2, green circles). It
is clear from the above analysis that, when oriented filters are
used, strong correlations that extend over large distances are
revealed. The next question is how these correlations depend on
the relative orientation of the line elements, and whether these
dependencies have any underlying geometry. We first calculated
the total number of cooccurrences as a function of the relative
difference in orientation. Cooccurrences decreased as the rela-
tive orientation between the pair of segments increased, being
maximal when they were iso-oriented and minimal when they
were perpendicular (Fig. 3).

The next observation concerns spatial structure. The proba-
bility of finding cooccurring pairs of segments was not uniform,
but rather displayed a consistent geometric structure. If the two
segments were iso-oriented, their most probable spatial arrange-
ment was as part of a common line, the collinear configuration
(Fig. 4a). As the relative difference in orientation between the
two segments increased, two effects were observed. The main
lobe of the histogram (which in the iso-oriented case extends in
the collinear direction) rotated and shortened, and a second lobe
(where cooccurrences were also maximized) appeared at 90°
from the first (Fig. 4 a–e). This effect progressed smoothly until
the relative orientation of the two segments was 90°, where the
two lobes were arranged in a symmetrical configuration, lying at
45° relative to the reference orientation. Thus, pairs of oriented
segments have significant statistical correlations in natural
scenes, and both the average probability and spatial layout
depend strongly on their relative orientation. Remarkably, the
structure of the correlations followed a very simple geometric
rule. A natural extension of collinearity to the plane is cocircu-
larity. Whereas two segments of different orientations cannot
belong to the same straight line, they may still be tangent to the
same circle if they are tilted at identical, but opposite, angles to
the line joining them. Given a pair of segments tilted at angles
c and w, respectively, they should lie along two possible lines, at
angles (w 1 c)y2 or (w 1 c 1 p)y2, in order to be cocircular (Fig.
4f ). This is the arrangement we observed in natural scenes. The
measured correlations, given any relative orientation of edges,
were maximal when arranged along a common circle. To quan-
tify this we calculated the orientation of the axis where cooc-
currences were maximal. We did that for different relative
orientations and compared it to the value predicted by the
cocircularity rule (Fig. 5). This is particularly remarkable in that
the comparison is not a fit, because the cocircularity rule has no
free parameters.

Discussion
We have shown that there are strong, long-range correlations
between local-oriented segments in natural scenes, that their
scaling properties change for different geometries, and that their
arrangement obeys the cocircularity rule. The filters we used for
edge detection in our images were an oriented version of
Laplacian-like filters in that they were local but had elongated,
rather than circularly symmetric, center-surround structures.
This change is analogous to the difference between filters in the
lateral geniculate nucleus (LGN) and simple cells in the primary
visual cortex. Thus, given that Laplacian filtering decorrelates
natural scenes (24), it was surprising to find the long-range
correlations and scale-invariant behavior of the collinear con-
figuration. It is important to remark that our measure of
correlation does not differ only in the type of filters used

Fig. 5. Quantitative analysis of the spatial maps. Orientation of the axis
where cooccurring pairs of oriented elements of relative orientation (j 5 c 2
w) are maximized. The axis of maximal probability was calculated relative to
the orientation of the segment in the center (c). This was done for the 16
possible orientations of (and the corresponding values of w 5 (c 1 j)(modu-
lo16), and we computed for each the mean and standard error. The solid line
corresponds to the solution predicted by the cocircular rule.
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(elongated vs. circular symmetric), but also in the fact that we
measured the correlations along a line containing the pair of
segments. Long contours are part of the output of the Laplacian
filters and thus the image should show correlations that might be
hidden when integrating them across an area—essentially be-
cause a curve has zero area and thus the correlations along a
curve are not significant when integrated over the two-
dimensional field of view. The findings of long-range correla-
tions of oriented elements extends the notion that the output of
linear local-oriented filtering of natural scenes cannot be statis-
tically independent¶ and shows that those correlations might be
very significant through global portions of the visual field for
particular geometries.

The cocircular rule has been used heuristically to establish a
pattern of interactions between filters in computer vision (1,
27–29), and psychophysical studies suggest that the human visual
system utilizes a local grouping process (‘‘association field’’) with
a similar geometric pattern (4). Our finding provides an under-
lying statistical principle for the establishment of form and for
the Gestalt idea of good continuation, which states that there are
preferred linkages endowing some contours with the property of
perceptual saliency (2). An important portion of the classical
Euclidean geometry has been constructed by using the two
simplest planar curves, the line and the circle (30); we show here
that those are, in the same order, the most significant structures
in natural scenes.

We have reported the emergence of robust geometric and
scaling properties of natural scenes. This raises a question as to
the underlying physical processes that generate these regulari-
ties. Although our work was solely based on statistical analysis,
we can speculate on the possible constraints imposed by the
physical world. In a simplifying view, we can think of a natural
image as composed by object boundaries or contours, and
textures. Collineal pairs of segments are likely to belong to a
common contour; thus, our finding of scale invariance for
collineal correlations is in agreement with the idea that scale-
invariance in natural images is a consequence of the distribution
of apparent sizes of objects (21). Parallel segments, on the
contrary, may be part of a common contour as well as a common
texture, which would explain the two scaling regimes we ob-
served. Cocircularity in natural scenes probably arises because of
the continuity and smoothness of object boundaries; when
averaged over objects of vastly different sizes present in any
natural scene, the most probable arrangement for two edge
segments is to lie on the smoothest curve joining them, a circular
arc. These ideas, however, require an investigation that is beyond
the scope of this paper.

The geometry of the pattern of interactions in primary visual
cortex parallels the interactions of oriented segments in natural
scenes. Long-range interactions tend to connect iso-oriented
segments (17, 18), and interactions between orthogonal seg-
ments, which span a short range in natural scenes, may be
mediated by short-range connections spanning singularities in
the orientation and topographic maps in the primary visual
cortex (31). The finding of a correspondence between the
interaction characteristics of neurons in visual cortex and the
regularities of natural scenes suggest a possible role for cortical
plasticity early in life, in order for the cortex to assimilate and
represent these regularities. This plasticity might be mediated by
Hebbian-like processes, reinforcing connections on neurons
whose activity coincides (i.e., their corresponding stimuli are
correlated under natural visual stimulation). Such plasticity
could extend to adulthood to accommodate perceptual learning
of novel and particular forms (32).

Although we find coincidences between the pattern of
interactions in V1 and the distribution of segments in natural
scenes, the sign of the interactions plays a crucial role.
Reinforcement or facilitation of cooccurring stimuli (positive
interaction) results in Hebbian-like coincidence detectors,
whereas inhibiting the response results in Barlow-like detec-
tors of ‘‘suspicious coincidences’’ that ignore frequent co-
occurrences (33). Interestingly, the Hebbian idea and the
decorrelation hypothesis represent two sides of the same coin.
From our measurements of the regularities in natural scenes,
and previous studies on the higher order receptive field
properties in primary visual cortex, it appears that both types
of operations exist. The response of a cell in V1 is typically
inhibited when a second f lanking segment is placed outside of
its receptive field along an axis orthogonal to the receptive
field orientation. This interaction is referred to as side-
inhibition, which is strongest when the f lanking segment has
the same orientation as the segment inside the receptive field
(13, 15, 34). In the present study, we found that iso-orientation
is the most probable arrangement for side-by-side segments in
natural scenes, which therefore constitutes an example, in the
domain of orientation, of decorrelation through inhibition.
This inhibition may mediate the process of texture discrimi-
nation (13, 16, 35). The property of end-inhibition has also
been interpreted as a mechanism to remove redundancies and
achieve statistical independence (36). The finding that re-
sponses of V1 neurons are sparse when presented with natural
stimuli (37) and models of normalization of neuronal re-
sponses in V1 tuned to the statistics of natural scenes¶ also
supports the idea that the interactions in V1 play an important
role in decorrelating the output from V1. This is consistent
with the general idea that one of the important functions of
early visual processing is to remove redundant information
(38–40), and suggests that interactions in V1 may continue
with the process of decorrelation that is achieved by Laplacian
(24) and local-oriented filtering (41, 42).

But the visual cortex also can act in the opposite way,
reinforcing the response to the most probable configurations.
This is seen in the collinear configuration, which is the one that
elicits most facilitation, and therefore illustrates how V1 can
enhance the regularities in natural scenes. The fact that those
correlations are significant over the entire visual field and
are highly structured suggests that this is not a residual, or
second-order, process. The opposing processes of enhance-
ment of correlations and decorrelation may be mediated by
different receptive field properties that can exist within the
same cell. The same f lank can inhibit or facilitate depending
on the contrast (26, 43), suggesting that V1 may be solving
different computational problems at different contrast ranges
or a different noise-to-signal relationship. The dialectic be-
havior of visual cortex shows that the interplay between
decorrelation (extraction of suspicious coincidences) and en-
hancement of a particular set of regularities (identification of
form) may be mediated by the same population of neurons.
Although the decorrelating process may be required to operate
in the orientation domain to solve the problem of texture
segmentation, particular sets of coincidences, which are re-
peated in the statistics, such as the conjunction of segments
that form contours, need to be enhanced in the process of
identification of form.
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