
Article
Mental compression of sp
atial sequences in human
working memory using numerical and geometrical
primitives
Highlights
d The human brain compresses spatial sequences using an

abstract language

d Language complexity modulates spatial anticipation signals

d Elementary geometrical operations can be decoded from

MEG signals

d An ordinal number code reactivates periodically according to

sequence structure
Al Roumi et al., 2021, Neuron 109, 1–13
August 18, 2021 ª 2021 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2021.06.009
Authors

Fosca Al Roumi, Sébastien Marti,
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SUMMARY
Howdoes the human brain store sequences of spatial locations?Wepropose that each sequence is internally
compressed using an abstract, language-like code that captures its numerical and geometrical regularities.
We exposed participants to spatial sequences of fixed length but variable regularity while their brain activity
was recorded using magneto-encephalography. Using multivariate decoders, each successive location
could be decoded from brain signals, and upcoming locations were anticipated prior to their actual onset.
Crucially, sequences with lower complexity, defined as theminimal description length provided by the formal
language, led to lower error rates and to increased anticipations. Furthermore, neural codes specific to the
numerical and geometrical primitives of the postulated language could be detected, both in isolation and
within the sequences. These results suggest that the human brain detects sequence regularities at multiple
nested levels and uses them to compress long sequences in working memory.
INTRODUCTION

Although non-human primates are able to learn sophisticated

behavioral rules, the human species seems to be endowed

with a deeper ability to discover the complex embedded struc-

tures that underlie the information present in the environment

(Dehaene et al., 2015; Ferrigno et al., 2020; Fitch, 2004, 2014;

Hauser et al., 2002; Jiang et al., 2018; Wang et al., 2015).

In the present research, which is part of series of behavioral

and brain-imaging studies of spatial sequence learning (Amalric

et al., 2017; Wang et al., 2019), we test the specific hypothesis

that when they learn a spatial sequence, human subjects make

use of a language-like system of nested rules of variable

complexity. Imagine you need to remember a sequence of eight

spatial locations. Remembering the sequence by storing each

item in a memory slot would be difficult, as eight exceeds the

typical working-memory span (Baddeley, 2003; Baddeley and

Hitch, 1974; Botvinick and Watanabe, 2007; Hurlstone et al.,

2014). However, if the first four items form a square and the

next four draw another square, mentally compressing this

sequence as ‘‘two squares’’ would facilitate its memorization.

In the present work, we test whether working memory is orga-

nized as a flat set of slots or as a structured language.
In previous research (Amalric et al., 2017; Wang et al., 2019),

we formalized the latter idea by proposing a hypothetical ‘‘lan-

guage of thought’’ (Fodor, 1975) for sequences, akin to a mini

computer language with primitives and rules whose combination

can express any sequence of locations on an octagon (see Fig-

ure 1). The central idea is that the successive locations are

not just encoded by their spatial coordinates, independently of

one another. Rather, geometrical primitives of rotation and sym-

metry encode the transitions between items (Figure 1C), and an

operator of repetition, akin to the ‘‘for’’ loop in programming

languages, repeats the operations a certain number of times,

possibly with variations (Table S1). As the language allows

these instructions to be nested, it can express multiple levels

of embedded repetitions and represent concepts such as

‘‘square,’’ ‘‘rectangle,’’ and ‘‘two squares’’ through a combina-

tion of numerical and geometrical information.

Our hypothesis is that whenever humans perceive a spatial

sequence, they attempt to represent it in memory by searching

for the simplest mental program that can generate it. Thus, the

difficulty of memorizing a sequence should be proportional not

to its length but to the length of its shortest generative program.

The underlying hypothesis, which has been previously proposed

and tested in many other contexts (Chater and Vitányi, 2003;
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Figure 1. Experimental paradigm and stimuli

(A) The experiment was divided into three parts: (1) in the sequence part, a fixed spatial sequence of eight locations was repeated 12 times in eachmini-block, and

(2) in the primitive part, 32 pairs of two successive locations illustrating a given primitive were presented in each mini-block; participants were asked to report

when they had identified the sequence or rule governing the pairs and to click whenever they detected a violation. Finally, (3) in the localizer block, dots were

flashed at random locations on the octagon. The data were used to train a location decoder.

(B) Nine eight-location sequence templates were used in the sequence part. Presentation order is indicated by arrows. Actual sequences were generated by

varying the starting point, rotation direction, and/or symmetry axis.

(C) The pairs of locations illustrating each of the 11 primitive rules presented in the primitive part. Arrows indicate the first and the second element of each pair.
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Feldman, 2000; Leeuwenberg, 1969; Li and Vitányi, 1993; Mathy

and Feldman, 2012; Romano et al., 2013), is that the brain oper-

ates as a ‘‘compressor’’ of incoming information that searches

for the minimal description of incoming stimuli and that minimal

description length is therefore a good predictor of psychological

complexity. Hereafter, we refer to minimal description length of

a sequence as the ‘‘language-of-thought complexity’’ or LoT

complexity.

In a first behavioral study, we tested the hypothesis that partic-

ipants encode spatial sequences using the proposed language

of geometry (Amalric et al., 2017). Participants saw the beginning

of a spatial sequence on the vertices of a regular octagon and

had to predict the next locations. The results indicated that

LoT complexity was a good predictor of behavior. Specifically,

the more compressible a sequence was, the more subjects

were able to anticipate on the upcoming item, even in the first

trial, when they had never seen the entire sequence. Further-

more, error rate increased linearly as a function of LoT

complexity, and the error patterns were compatible with the

nested structure of the expression postulated by the formal lan-

guage. Another group (Yildirim and Jacobs, 2015) also showed

how a similar compositional language for spatial sequences

could account for the transfer of abstract sequence knowledge

from the visual to the auditory modality.

In a follow-up experiment (Wang et al., 2019), we measured

fMRI activity while participants followed the same eight-location

sequences with their gaze. Activity in the dorsal part of inferior

prefrontal cortex correlated with the amount of compression,
2 Neuron 109, 1–13, August 18, 2021
while the right dorsolateral prefrontal cortex (dlPFC) encoded

the presence of embedded structures. Those brain regions be-

longed to a network involved in mathematical thinking and that

is distinct from, but close to, the areas involved in natural lan-

guage processing (Amalric and Dehaene, 2017). Although the

content of sequences could not be decoded from fMRI signals,

multivariate pattern analyses provided indirect evidence that

the activity patterns in dorsal prefrontal cortex became increas-

ingly differentiated as the sequences were learned.

fMRI is notoriously insensitive to the fine-grained timing of

neural activity and thus failed to directly probe the precise tem-

poral unfolding of language-like rules our theory predicted. In the

present study, we therefore probed the existence of an abstract,

language-like representation of geometrical sequences using

magneto-encephalography (MEG), a sensitive technique with

high temporal resolution.We used time-resolvedmultivariate de-

coding (King and Dehaene, 2014) and representation similarity

analysis (RSA) (Kriegeskorte et al., 2008) in order to examine if

the postulated geometrical and numerical primitives could be

decoded at the precise moment when the postulated language

of geometry suggests they should be deployed. Thus, we

exposed human participants to several repetitions of geomet-

rical sequences of variable LoT complexity. To ensure that

they memorized the sequence, we asked them to click as soon

as they had identified the repeating sequence and to detect oc-

casional sequence violations. We then tested if MEG signals

were sensitive to the postulated numerical and geometrical prim-

itives. We identified markers of an anticipated representation of
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Figure 2. Behavioral performance and

impact of sequence complexity

(A–F) For primitives and sequences, graphs show

(1) the encoding time (i.e., the mean number of

repetitions participants had seen before they

identified the rule or the sequence) (A and D) and

(2) the performance in violation detection as the

mean response time to violations (top, B and E)

and the proportion of missed trials (bottom, C and

F). Error bars indicate the standard error of the

mean (SEM). For geometrical sequences, linear

regression lines indicate the effect of theoretical

sequence complexity. The red dotted lines were

obtained excluding the irregular sequence from

the regression.
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the sequence items and assessed their modulation by sequence

LoT complexity. Moreover, we exposed participants to multiple

exemplars of each primitive operation in isolation, and we

probed if those primitives could be extracted from the MEG sig-

nals. This approach allowed us to determine if the sequences

were indeed represented as nested repetitions of primitive rules.

RESULTS

Primitive rules: Behavioral results
During the primitive part of the experiment, participants were

exposed to a succession of two dots forming a pair illustrating a

primitive operation. For instance, in a given block, for all pairs,

the second dot was vertically symmetrical to the first one, thus

testing the primitive of vertical symmetry. All 11 primitives of the

language were tested (see the list in Figure 1C; STAR Methods).

We asked participants to click a button whenever they felt that

they could predict the location of the second item in each pair.

Those responses were converted into a measure of ‘‘encoding

time’’ (Figure 2A): the number of pairs presented before the

response occurred (if participants failed to respond, themaximum

number of presentations, 32, was used). To assess if participants

had understood the primitive rule and did not simplymemorize the

eight pairs by rote, we introduced a control condition in which the

pairs were not driven by any general rule, and participants there-

fore had to memorize each of them. Participants performed very

poorly in this condition, most of them failing to respond before

the end of the run (i.e., after 32 pairs were presented). t tests

showed that, for all of the 11 proposed primitives, encoding

time was shorter than for the control condition (all p values <

10�5), indicating that subjects detected all regularities.

In the second half of each block, we introduced a violation

detection task: participants were asked to press another button
as fast as possible whenever they de-

tected that the second dot of a pair was

misplaced (Figures 2B and 2C). In the

control condition, participants missed

95% of those violations, whereas the

average miss rate never exceeded 53%

for the 11 geometrical primitives. Again,

all the differences relative to control

were significant (all p values < 10�4).
To determine if all rules were processed with the same ease,

we ran repeated-measures ANOVA on three dependent behav-

ioral measures: encoding time, violation detection time, and

violation miss rate. This analysis revealed significant differences

among the primitives (respectively, F[10] = 5.26, p < 10�4; F[10] =

3.31, p = 0.001; and F[10] = 4.00, p < 10�4). Tukey post hoc tests

on encoding time and miss rate indicated that the primitives of

rotation ±3 were significantly more difficult than the counter-

clockwise rotation�1, the point symmetry, and the vertical sym-

metry (see Figure 2).

In summary, behavioral measures indicated that the partici-

pants could detect all of the postulated geometrical primitives

but that, contrary to our initial assumptions (Amalric et al.,

2017), those primitives may not be strictly equivalent in

complexity, with rotation ±3 being more difficult to detect (for a

similar conclusion, see Romano et al., 2018).

Geometrical sequences: Behavioral results
During the geometrical sequence block, subjects were repeatedly

exposed to eight-item sequences. Subjectswere asked to press a

button when they had identified the repeating sequence precisely

enough to predict the next item. We analyzed the encoding

time, defined as the number of sequence repetitions that the par-

ticipants needed before responding (if participants failed to

respond, the maximum number of repetitions, 12, was used). As

predicted, encoding time increased with LoT complexity, that is,

minimal description length in the proposed language (Spearman

r = 0.45, t[19] = 9.6, p < 10�7; Pearson r = 0.70, t[19] = 20.7,

p < 10�13; Figure 2D; the results remained significant even when

the most irregular sequence was excluded: r = 0.22, t[19] = 3.1,

p = 0.006; r = 0.30, t[19] = 4.3, p < 10�3) (Figure 2D).

After ten repetitions of a given sequence (i.e., during the last

two presentations), a violation could occur (i.e., a single dot
Neuron 109, 1–13, August 18, 2021 3
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was misplaced, off by three locations on the octagon). Partici-

pants were asked to press a button as fast as possible when

they detected it. The violation detection times again exhibited

a positive correlation with LoT complexity (Figure 2E; r = 0.38,

t[19] = 7.1, p < 10�5; r = 0.40, t[19] = 6.7, p < 10�5; when

excluding the irregular sequence: r = 0.33, t[19] = 6.2, p <

10�5; r = 0.28, t[19] = 5.2, p < 10�4). The effect was also detect-

able in error rates: as the sequence LoT complexity increased, so

did the number of missed violations (Figure 2; r = 0.33, t[19] =

6.3, p < 10�5; r = 0.43, t[19] = 7.1, p < 10�6; excluding the irreg-

ular sequence: r = 0.18, t[19] = 2.4, p = 0.03; r = 0.28, t[19] = 3.8,

p = 0.001). Indeed, the effect on errors was very large: subjects

missed fewer than 10% of deviants in the simplest sequence but

more than 50% of them in the most complex sequence, consis-

tent with the idea that the latter exceeded their working-memory

span and they had trouble memorizing it.

As all sequences were of the same length, those results cannot

be explained by classical slot-based models of working memory.

They converge with the ones obtained using explicit predictions

of the next item (Amalric et al., 2017) or usingeye-movement antic-

ipations (Wang et al., 2019): the more complex a sequence, the

harder it is to predict the next locations and, therefore, to detect vi-

olations. Nevertheless, the correlations with LoT complexity were

modest, suggesting that ourmeasure of LoT complexity, basedon

the proposed language, may not be ideal. Indeed, the behavioral

results on the primitive part indicated that rotation ±3 was harder

to process than the other primitives. Furthermore, participant’s

behavior may also be modulated by other parameters such as

the spatial distance between items. To determine the contribution

of these two variables to behavioral performance, we ran a step-

wise regression (STAR Methods) to assess which linear model

minimized the AIC (Akaike information criterion). The best model

of encoding times and response times was one that included

both LoT complexity and presence of rotation ±3. The best model

for the proportion of missed violations contained all three predic-

tors: LoT complexity, presence of rotation ±3, and distance. This

observationwasconfirmedwhenwecomputedamoreempirically

driven measure of complexity from the intercorrelation between

our three dependent measures. Both detection time and missed

ratewerewell predictedbyencoding time,withcorrelationssimilar

to those obtained from our theory-driven measure of LoT

complexity (respectively, r = 0.54, t[19] = 10.5, p < 10�8, r =

0.51, t[19] = 9.8, p < 10�8, and r = 0.44, t[19] = 5.7, p < 10�4, r =

0.48, t[19] = 5.4, p < 10�4). We thus extracted the first principal

component of those three dependent behavioral measures (Fig-

ures 2D–2F). Although determined in a purely data-drivenmanner,

this empirical measure of complexity showed a robust correlation

with the theory-driven LoT complexity (r = 0.56, r = 0.75). Devia-

tions from a perfect line were due to deviations for the alternate,

four-diagonals and two-crosses sequences, which either con-

tained the rotation ±3 primitive or long spatial distances. To

conclude, the proposed language should be slightly amended to

allow for complexity that varies with distance and primitive type.

Decoding the successive locations of each
sequence item
We first tested whether MEG signals contained decodable infor-

mation about the successive locations of each sequence item. At
4 Neuron 109, 1–13, August 18, 2021
each time point, on the basis of the 306 sensor measures, we

trained an estimator to decode the angular position of the pre-

sented item. This position decoder was trained on data indepen-

dent of the eight-item sequences and for which no anticipation

could be formed (STAR Methods).

As shown in Figure 3A, position decoding was at chance prior

to stimulus presentation, rose suddenly �70 ms after stimulus

onset, and peaked at 150 ms. Successful decoding of the eight

item locations was based primarily on bilateral occipito-parietal

sensors (Figure S7). The generalization-across-time (GAT)matrix

(Figure 3B) revealed both a diagonal, indicating an unfolding

sequence of stages, and a partial square pattern, indicating a

sustained maintenance of location information in brain signals

(King and Dehaene, 2014). Successful generalization to the

eight-item sequence data was also observed (Figure 3C). We

trained a decoder on the average brain responses in the time

window of maximal decodability, from 100 to 200 ms after the

stimulus onset, and tested it on each sequence. Figure 3D pre-

sents the relative amount of times that the decoder predicted

each location for each ordinal position. The pattern obtained

from these predictions tightly paralleled the actual profile (Fig-

ure 3D, second line), with only some added spatial uncertainty

(i.e., spreading of the decoding to the two neighboring locations

on the octagon). Control analyses showed that this decoding did

not arise from residual eye movements (Figure S1).

Prior research on predictive coding has demonstrated that

predictable stimuli elicit a reduced brain response but a more

faithful representation, as reflected by a higher decoding accu-

racy (Kok et al., 2012; Summerfield and de Lange, 2014). To

test this prediction, we examined if simpler sequences elicited

higher decoding accuracy. We ran a linear regression of the

average decoding score as a function of LoT complexity and

empirical complexity for each participant. A small modulation

was found as a function of empirical complexity (one-tailed

t test, t[19] = �2.0, p = 0.0297) but not of LoT complexity (one-

tailed t test, p = 0.1, t[19] = �1.3).

Anticipation and its modulation by sequence structure
Our next goal was to determine if anticipatory information was

present on MEG even prior to actual stimulus presentation, as

previously demonstrated by others (Demarchi et al., 2019; Ek-

man et al., 2017; Kok et al., 2014, 2017) and if it decreased

with sequence LoT complexity.

To do so, we assessed the performance of the position

decoder prior to the presentation of each sequence item (time

0 ms). Importantly, as there was evidence of spillover of the

decoding to nearby locations on the octagon, we controlled for

distance to the previous item. To this aim, we defined an antici-

pation score as the difference in the decoding score at the up-

coming location and at the location equidistant from the previous

location but that was not stimulated (STAR Methods; Figure 4A).

This anticipation score was computed for all sequence items

(Figure 4B) then averaged across the training time window

100–200 ms (Figure 4C), corresponding to the maximal perfor-

mance of the position decoder (Figure 3A). We ran a cluster-

based permutation test in the temporal window between the

presentation of the preceding item and the anticipated item

(i.e., from�430 to 0 ms). The anticipation score was significantly
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Figure 3. Decoding successive sequence locations from MEG signals

(A) Performance in decoding stimulus location as a function of time following the flash of a dot at a given location (the shaded area indicates the sem). Maximal

decoding performance was achieved at ~150 ms.

(B) Average generalization-across-time (GAT) matrix showing the location decoding score as a function of training time (y axis) and testing time (x axis). The

dashed lines indicate p < 0.05 cluster-level significance, corrected for multiple comparisons (STAR Methods).

(C) Thresholded (p < 0.05, corrected) decoding matrix plot showing when each of the eight successive sequence items could be decoded.

(D) Decoding of each sequence. The topmatrix represents the stimuli at each ordinal position, and the bottommatrix shows the proportion of times a given spatial

location was decoded.
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positive during two time windows, from �176 to �104 ms and

from �84 to 0 ms. Additional analyses excluded a contribution

of eye movements to those anticipation signals (Figure S1).

We then used anticipation to probe the representation postu-

lated by the language of geometry. If predictive mechanisms are

modulated by sequence structure, the anticipation score should

be increasingly smaller as the sequence gets more complex. We

computed the average anticipation score for each sequence

(except four diagonals and two crosses; STAR Methods) and

ran a linear regression as a function of complexity. We observed

a significant decrease of anticipation score with LoT complexity

(one-tailed t test, t[19] = �2.1, p = 0.025) and empirical

complexity (one-tailed t test, t[19] = �2.0, p = 0.028). This result,

although only weakly significant, supports the hierarchical repre-

sentation postulated by the language of geometry, as it shows

that expectation mechanisms, measured by the anticipation

score, are modulated by the overall LoT complexity of the

sequence.
Previous research has shown that brain activity in language

areas is modulated by the nested structure of language, such

that activity varies sharply at the boundary of sentence constitu-

ents such as noun phrases (Nelson et al., 2017). We thus

wondered if a similar effect occurred with the language of geom-

etry. To do so, we therefore compared the anticipation scores of

the items that, according to our postulated language, open a

constituent with the ones that are inside a component. Only a

small amount of data conformed to those conditions, however

(STAR Methods), and perhaps because of this lack of statistical

power, no effect of syntactic structure reached significance.

Decoding geometrical operations
The language-of-geometry hypothesis predicts that participants

encode spatial sequences not only in terms of each item’s

specific location but also in terms of high-level geometrical

primitives such as symmetries and rotations. To directly probe

the existence of this representation, we attempted to decode,
Neuron 109, 1–13, August 18, 2021 5



A B

C

Figure 4. Detecting an anticipation of sequence locations from MEG signals

For each training time in the range 0–500 ms, we tested whether the location decoder could detect the stimulus location in a time window ranging from 630 ms

before to 370 ms after stimulus presentation.

(A) To control for distance from the previous stimulus location (P1), an anticipation score was computed by measuring the decoding at the correct stimulus

location (P2) and subtracting the decoding at the equidistant non-stimulated location (P0
2).

(B) Top panel: the anticipation score is above chance before stimulus presentation. Bottom panel: average anticipation score over 100–200 ms training times

(selected region from top panel). The anticipation score was significantly above chance before stimulus presentation (time window, asterisks), indicating that the

brain anticipates P2 even before it appears (shaded area indicates the sem).

(C) Average of the proportion of times P2 and P0
2 were predicted over the 100–200 ms training time window. The average anticipation score is the subtraction of

the two (shaded areas indicate sem).
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from the brain signals, the elementary geometrical primitives

postulated by our formal language.

To do so, we first examined if the 11 primitive operations could

be decoded when they were presented in isolation. Using the tri-

als that illustrated each primitive (see Figure 1C), we trained a

decoder to determine, on the basis of the brain signals, which

of the 11 primitive operations was presented (STAR Methods).

Our hypothesis was that participants actively apply the appro-

priate geometrical transformation to predict the location of the

second element. To characterize the temporal dynamics of the

primitive operation code, the primitive decoder was trained

and tested at different time points. We cross-validated across

runs to exclude decoder overfitting due to temporal proximity,

and we ran a sliding window over the epochs to increase the

signal-to-noise ratio (STAR Methods). As shown in Figure 5A,

performance was significantly above chance (p < 0.05 cluster-

level significance) for an extended time window, which peaked

�200–300 ms following the presentation of the first element of

the pair but actually started �50 ms before that presentation,

suggesting that the block structure enabled participants to antic-

ipate on the forthcoming geometrical transformation. Thus,

those results indicate that human brain activity contains decod-

able information about the type of geometrical transformation

that links one location to the next and does so, in a predictable

context, even before the second sequence item is presented.

The 11 geometrical primitives in Figure 1C are all perfectly

balanced in terms of starting point and endpoint, and their decod-
6 Neuron 109, 1–13, August 18, 2021
ing is therefore unconfounded by retinotopic stimulation. Howev-

er, by definition, they involve different pairs of locations, and some

primitives differ in the distance between the two locations

(e.g., +1, +2, +3). It is unclear whether this represents a genuine

confound, because the time window when geometrical transfor-

mations were decoded preceded the presentation of the second

item of the pair and hence came before distance could have any

physical effect (e.g., perceived motion). Still, we wondered

whether, in the extreme case, geometrical transformations could

be decoded even if the pair of starting points and endpoints

were strictly identical. We capitalized on the fact that the same

pairs of dots could appear in the context of either a rotation block

or a symmetry block. For instance, a dot moving from the top left

to the top right location can be construed as either a rotation

around the octagon (+1) or as a symmetry with respect to the ver-

tical axis (see Figure 5C). We selected all trials corresponding to

such pairs and asked whether, for equal start and end locations,

brain activity still contained decodable information about their pu-

tative internal encoding as a rotation or as a symmetry (STAR

Methods; Figure 5C). Figure 5D shows that this was indeed the

case. These decoding results suggest that over and above any

location or distance information, the neural patterns associated

with abstract geometrical operations of rotation and symmetry

can be disentangled when primitive operations are considered

in isolation.

We then determined whether, on the basis of the description

provided by the postulated formal language, the same primitive
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Figure 5. Decoding primitives

Decoders were trained to predict which of the postulated geometrical transformations was applied at a given time between two consecutive locations P1 and P2

(onset of first location marked by t = 0 ms).

(A and B) Average GATmatrices showing the decoding score for the 11 primitive operations in the primitive part of the experiment (A) and in the sequence part (B).

(C) Illustration of how trials with the same start and end locations may be classified as a rotation or a symmetry depending on the context.

(D) Performance of a binary decoder for rotation versus symmetry on such trials with identical start and end locations, from the primitive part of the experiment.

Dashed lines indicate p < 0.05 cluster-level significance over the �200 to 600 ms time window, corrected for multiple comparisons (STAR Methods).
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operations could be decoded in the context of a sequence. We

extracted 800 ms epochs centered on specific locations in the

sequence and labeled them by the subsequent primitive opera-

tion involved, at the lowest level of the sequence description (i.e.,

the one whose application predicted the next location). We suc-

cessfully trained a decoder for the 11 primitives, as indicated by

an above-chance GAT performance matrix (Figure 5B). Howev-

er, when we replicated the above training and testing on a

balanced set of rotation and symmetry pairs, we could not

detect, at above-chance level, a code separating rotations

from symmetries, perhaps because of the smaller number of tri-

als involved.

We then assessed whether the primitive code, inferred when

such primitives were presented in isolation, generalized to the

sequence part of the experiment, when elementary primitive op-

erations are integrated into a program. In order to avoid any bias

due to a particular block or run, we trained this decoder on the

micro-averaged trials over the four runs (STAR Methods) and

tested it on the sequence data. The GAT matrices did not exhibit

any significant clusters, suggesting that the neural code for prim-

itives presented in isolation is not directly replicated in the

context of a full sequence but is modified in the sequence

context (see Discussion).

In summary, the MEG decoding analysis provided evidence

for an abstract encoding of rotations and symmetries, indepen-

dently of the visual features of the stimuli, both in the primitive

and in the sequence parts of the experiment. However, this

code did not generalize from the primitive to the sequence part.

We also used RSA (Kriegeskorte et al., 2008) to further test the

existence of a neural code for abstract geometrical primitives,

independently of a location-specific code. To do so, we selected

epochs corresponding to transitions encoded by an unambigu-

ous primitive according to our language. The representational

dissimilarity matrix, computed separately for each primitive

operation and each location on screen, was regressed as a func-

tion of several theoretical predictors (see Figure S2; STAR

Methods). A cluster-based permutation test on the 0–1 s time
window confirmed that, over and above retinotopic or visuospa-

tial factors (the locations of the first and the second item of the

pair and the distance between them), a representation of ab-

stract geometrical primitives influenced brain activity. Regres-

sion coefficients for the primitive operation were significantly

positive in the window between 100 and 400 ms (i.e., between

the presentation of the two items of the pair), during which an

application of the corresponding transformation allowed to pre-

dict the location of the second item. This representation was re-

activated after the second item was presented (significant clus-

ter from 710 to 870ms). We ran a cluster-based permutation test

from �400 to 0 ms and found a significant cluster from �400 to

�250 ms, suggesting that the primitive operation was repre-

sented before the onset of the first item of the pair. We then

used RSA to again ask whether the neural code for primitive

operation was similar across experimental parts. Although a

mild peak was observed, it did not reach significance after

correction for the time interval tested. Thus, consistent with the

decoding results, the neural representation of geometrical prim-

itives differed in the context of a sequence and when presented

in isolation.

Decoding ordinal position in subsequences
According to the proposed hypothesis, the internal representa-

tion of the sequence is not a mere list of locations but expresses

nested structures. For instance, ‘‘two squares’’ is encoded as

‘‘two groups of four items, each linked by a +2 operation.’’

When remembering such a sequence, an internal numerical

code, akin to the for loop in programming languages, must un-

fold in the participants’ brain, keeping track of how many times

a given geometrical transformation has been applied.

Thus, we investigated the presence, in humanMEG signals, of

a neural code for ordinal position within a subsequence of items,

ranging from one to a maximum of four. The presence of such a

code in MEG signals would reflect the parsing of the sequence

into multiple subgroups linked by a common geometrical trans-

formation, similar to the parsing of language sequences into
Neuron 109, 1–13, August 18, 2021 7
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nested phrases (Ding et al., 2016). An ordinal number code has

been previously observed in a simpler context in both human

and non-human primates (Kutter et al., 2018; Nieder, 2012;

Nieder et al., 2006) and has been postulated in some models

of working memory (Botvinick and Plaut, 2006; Botvinick and

Watanabe, 2007).

Our analyses focused on the two-squares and two-arcs se-

quences (two groups of four items) and on the four-segments

and four-diagonals sequences (four groups of two items). In

each case, we trained and tested a decoder on sequence data

labeled by the innermost ordinal position (STAR Methods). The

GATmatrices, obtained by cross-validating across runs, showed

significant above-chance decoding (Figures 6A and 6C, left col-

umn; corrected p < 0.05 with cluster-level permutation analysis),

suggesting that ordinal position was indeed encoded in MEG

signals. Performance was above chance before the stimulus

was actually presented, compatible with the fact that sequence

items were anticipated.

We then determined if the code for ordinal position is abstract

and thus identical regardless of the particular geometrical prim-

itive that is called for at that position. In other words, we asked

whether the code for a sequence is ‘‘factored out’’ into separate

codes for ordinal position and for the particular geometrical

primitive applied at this position, as predicted by our language

model and as previously shown for non-spatial visual sequences

by Liu et al. (2019). Indeed, we found above-chance generaliza-

tion across time and across sequences (Figures 6B and 6D, left

column), indicating that the code for ordinal position is, at least in

part, independent of the specific geometrical transformation

involved.

To characterize the temporal variations of this code during the

entire sequence presentation, we applied the ordinal position de-

coders toMEGdata from runs that were not used for training. As a

more sensitive estimator of classifier performance, we computed

themean projection of the data on the decoding axis for each pre-

dicted ordinal position. We averaged the predicted distances on

the 300–500 ms time window for which the decoding score was

above chance. The results (middle columns) indeed showed oscil-

lations compatible with a sequential unfolding of an ordinal posi-

tion code across the entire sequence, for decoders trained on

both sequences (Figures 6A and 6C) and when generalizing

across sequences (Figures 6B and 6D). To test if the ordinal

code indeed oscillated at the appropriate frequency, we

computed the log power spectrum of the distance time series

for each condition. We then determined if there was a significant

peak at the component frequency (two arcs and two squares,

f/4 = 0.58 Hz; four diagonals and four segments, f/2 = 1.15 Hz)

by comparing the log power at that frequencywith the neighboring

frequencies (STAR Methods). In the case of two squares and

two arcs, the test was performed on the averaged log power

over the four ordinal position decoders. In every condition,

the test was significant at the predicted frequency, indicating

the presence of groups of two or four items depending on the

sequence (four groups of two items: [A] cross-validation across

blocks tf/4[19] = 0.70, n.s., tf/2[19] = 3.38, pf/2 < 0.01; [B] general-

izing across sequences tf/4[19] = �0.59, n.s., tf/2[19] = 3.32,

pf/2 < 0.01; two groups of four items: [C] cross-validation across

blocks tf/4[19] = 6.27, pf/4 < 0.001, tf/2[19] = 2.28, pf/2 = 0.034; [D]
8 Neuron 109, 1–13, August 18, 2021
generalizing across sequences tf/4[19] = 3.91, pf/4 = 0.001,

tf/2[19] = 1.35, n.s.).

Furthermore, a 23 2 ANOVA of the log power difference, with

factors of frequency (f/2 or f/4) and sequence type (components

of size two versus four), showed a significant interaction both

when training on both sequences (F[1, 19] = 20.0, p = 2.6 3

10�4) and when generalizing across sequences (F[1, 19] =

14.7, p = 0.001), indicating that the powerwas significantly stron-

ger at the expected than at the inappropriate frequency (STAR

Methods).

Instead of ordinal number, the brain might have solely en-

coded the position of the first and the last item in each group.

However, we could reject this hypothesis because significant os-

cillations were also present, with a peak at the appropriate time,

for the intermediate positions 2 and 3 in four-segment and four-

diagonal sequences (Figure S3). Nevertheless, examination of

the cross-generalization between the ordinal codes for groups

of two versus four items suggested that first versus last item in-

formation was also encoded (Figure S4).

As a final control, we trained and tested the very same de-

coders on data for which our language model predicts that there

should be no subgroups of items (i.e., the repeat and irregular

sequences). As predicted, the decoders now failed to identify a

1-2-1-2 structure (Figure S5). Interestingly, there was modest

evidence for a 1-2-3-4 code only in the repeat +1 sequence, sug-

gesting that even when the items keep going around the octagon

without any break, participants may encode them in memory as

groups of four (e.g., top versus bottom or left versus right).

Crucially, the decoders found no evidence of ordinal coding in

the irregular sequence.

Finally, Figure S7 shows that the spatial, primitive, and ordinal

decoders relied on partially distinct MEG sensors. While occipi-

tal-parietal sensors, located over posterior retinotopic maps,

contributed in a preponderant manner to the spatial code,

ordinal codes were associated primarily with right precentral

sensors. Primitive codes were less focal and involved distributed

frontal, parietal, and temporal sensors.

DISCUSSION

The goal of the present study was to probe the internal represen-

tations that humans use to encode geometrical sequences of

varying regularity. The simplest models of working memory for

serial order assume either that sequences are encoded as sim-

ple associative chains linking consecutive items (Lewandowsky

and Murdock, 1989) or by storing each item in a distinct memory

slot (Botvinick and Watanabe, 2007; for review, see Hurlstone

et al., 2014). If this were the case, however, all of our sequences

would be encoded in a similar manner, as they all have the same

length and only differ in the order in which the same eight loca-

tions are presented. Instead, we found evidence that partici-

pants mentally compress the sequences using their geometrical

regularity and have a better memory for those that can be com-

pressed down to a lighter memory load. Indeed, both behavioral

and brain-derivedmeasures weremodulated by LoT complexity,

as provided by the postulated formal language. Furthermore, us-

ing time-resolved decoding and RSA techniques, we identified

three distinct types of codes: for each item’s spatial location,
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Figure 6. Decoding ordinal position within a sequence component

(A–D) Decoders were trained to predict the ordinal positions 1 and 2 in the inner groups of four-segment and four-diagonal sequences (A and B) and positions 1–4

in the inner groups of two-arc and two-square sequences (C and D). (A) and (C) were obtained by cross-validating across blocks and (B) and (D) by generalizing

across sequences (e.g., from four segments to four diagonals and vice versa). Left column: mean GAT performance for the ordinal position decoder. Zero

milliseconds corresponds to item onset. Dashed lines indicate p < 0.05 cluster-level significance, corrected for multiple comparisons (STAR Methods). Middle

column: time course of the average output of ordinal decoders trained in a time window of 300–500 ms, during a sequence of eight consecutive items. Although

noisy, those curves show a decoding peak around 300–500ms after the corresponding ordinal item (colored zones) and a clear rhythmicity every two items for the

top sequences (A and B) and every four items for the bottom sequences (C and D). The y axis shows the projection on the decision axis for each decoder, and the

vertical lines indicate the onsets of sequence items (thick linemarks the first item). Blue, orange, green, and red lines indicate first, second, third, and fourth ordinal

positions. Shaded areas indicate the sem. Right column: power spectrum of those time courses throughout the presentation blocks for the two sequences.

Statistics are provided at frequencies f = 2.31 Hz, f/2 = 1.15 Hz, and f/4 = 0.58 Hz, where f is the presentation frequency.
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for the geometrical transformation linking two consecutive loca-

tions, and for their ordinal position within a group of items.

Using multivariate decoding, we found that each of the suc-

cessive retinotopic locations in a spatial sequence could be de-
coded (Figure 3). However, we also found that the brain did not

stop at encoding specific locations but also coded for the transi-

tions between consecutive locations, in such a way that we

could classify them into 11 abstract geometrical primitives
Neuron 109, 1–13, August 18, 2021 9
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(Figure 5). Decoding of geometrical primitives worked both when

considering primitive operations in isolation and in the context of

a sequence. In addition to evidence from decoding, RSA allowed

to factor out the contributions of retinotopic and abstract

geometrical codes and to demonstrate that even if the first one

dominated the MEG signal, the second, although weaker, was

significant (Figure S2).

Our findings support the existence of amental repertoire of ab-

stract geometrical concepts and its automatic deployment when

a sequence must be encoded in memory. A previous behavioral

study showed that even young children and adults with limited

access to formal schooling in mathematics use these geomet-

rical primitives when memorizing sequences (Amalric et al.,

2017). All humans, starting at an early age, may have access to

a core of basic geometrical concepts (Dehaene et al., 2006;

Spelke et al., 2010).

Another prediction of our formal language is that the human

brain uses such geometrical regularities to segment the se-

quences: if a series of successive locations can be encoded

by the repeated application of the same transformation, then

subjects compress it using an internal repetition operator,

akin to a for loop in programming languages. In agreement

with this hypothesis, MEG signals contained decodable infor-

mation about ordinal position within a subgroup of locations

(Figure 6). The ordinal code was activated in a periodic

manner (Figure 6, middle column) in agreement with the pro-

posed rhythmicity of the sequence representation, which var-

ied across sequences (groups of two or four). Such ordinal

knowledge was not present in every sequence but could be

decoded only from brain signals when the code was indeed

predicted by our language model (compare Figure 6 and con-

trol in Figure S5).

Previous experiments have revealed that a numerical code is

present in several cortical regions of the monkey (Nieder, 2012;

Nieder et al., 2006; Ninokura et al., 2004) and human brain

(Fias et al., 2007; Kutter et al., 2018; Nieder and Dehaene,

2009). Here, we also found suggestive evidence for the decoding

of the first and the last ordinal positions. Those positions also

correspond to the opening and closing of a component and

may therefore reflect the distinct mental operations involved.

This finding fits with the ubiquity of primacy and recency effects

in working memory (Anderson et al., 1998; Hurlstone et al., 2014;

Orlov et al., 2000; Terrace et al., 2003). The ordinal code for inter-

mediate positions 2 and 3 could also be decoded and recurred in

a periodic manner (Figure S3), indicating that the ordinal code

was not limited to first versus last.

Although we refer to an ordinal code, we readily acknowledge

that because the sequences unfolded at a fixed pace, our exper-

iments could not separate numerical and temporal codes. Future

experiments could use variable sequence length, tempo, and

grouping in order to better specify the nature of the neural

code involved. Importantly, all such codes point to the same

conclusion, namely, that the human brain does not stick to a

flat, superficial representation of the sequence but parses it

into subsequences on the basis of geometrical cues. In this

respect, our results extend the conclusions obtained for linguis-

tic structures in connected speech (Ding et al., 2016) to the

domain of visuospatial sequences.
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Another important postulate of our proposed language of

thought is that different sequences can be encoded via a recom-

bination of the same ordinal and geometrical codes. In a recent

MEG study, Liu et al. (2019) proposed the term ‘‘factorized co-

des’’ for such a situation in which a sequence is encoded as

the combination of an abstract structural code (here for the

ordinal number 1–4) and a specific content (here the specific

geometrical transformation, e.g., +1 to generate an arc or +2 to

draw a square). In their study, Liu et al. (2019) exposed partici-

pants to sequences of pictures and asked them to reorder

them according to a learned rule. They showed that human

MEG signals contain three different codes: for item identity,

item ordinal position in the sequence, and target sequence after

application of the requested mental transformation. The hippo-

campus replayed the learned structure, supporting the hypothe-

sis of a factorized hippocampal representation of abstract

structural sequence knowledge. The current results are consis-

tent with Liu et al., (2019) findings, as we found that the structural

code that tracks ordinal position generalizes across sequences

that make use of different geometrical primitives, suggesting

that ordinal knowledge is encoded in an abstract manner, inde-

pendently from the code used to represent the particular

geometrical primitive. This subdivision of labor fits with our

formal language, in which the same for loop can be applied to

different geometrical primitives.

A final prediction of our language is that those primitives can

be nested to form complex, recursive mental programs and

that working memory load is ultimately determined by the mini-

mal description length of that program, a measure we call LoT

complexity (Planton et al., 2021). We obtained behavioral and

MEG evidence in support of this prediction. Behaviorally, partic-

ipants’ subjective feeling of remembering the sequence, as well

as their objective capacity to detect an occasional location

deviant, were correlated with LoT complexity (Figure 2). In

MEG, we found that covert visual anticipation of the sequence

items was modulated by sequence complexity, suggesting that

expectation mechanisms can be more efficiently deployed

when the sequence has a low LoT complexity. The observation

of anticipation signals fits within the predictive-coding frame-

work, which proposes that the brain constantly tries to predict

its sensory inputs (Bastos et al., 2012; Chao et al., 2018; Friston

et al., 2003) and projects stimulus-specific templates in advance

of the stimulus itself, as previously found during associative

learning (Demarchi et al., 2019; Kok et al., 2014, 2017; Sakai

and Miyashita, 1991) or during sequences of spatial locations

with no structure (Ekman et al., 2017). Our previous behavioral

studies showed that human participants could anticipate up-

coming geometrical sequence items, both explicitly (by pointing)

and implicitly (by moving their gaze), and that such anticipation

varied according to the hierarchical structure of the sequences

(Amalric et al., 2017;Wang et al., 2019). Wang et al. (2019) further

showed that fMRI signals in bilateral inferior frontal gyrus (IFG)

and dlPFC were modulated by LoT complexity and by the actual

amount of anticipation of the nested rules. These regions were

previously shown to be engaged in the parsing of structured

spatial sequences (Bor et al., 2003; Desrochers et al., 2015),

but those studies considered only two levels of sequence regu-

larity (structured versus unstructured), as opposed to the
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multiple levels of regularity and nesting studied here. The results

from Wang et al. (2019) bolster the proposition of a hierarchical

caudal-rostral organization of the prefrontal cortex to represent

rules of increasing abstraction (Badre, 2008; Badre and D’Espo-

sito, 2009; Badre andNee, 2018; Badre et al., 2010; Koechlin and

Jubault, 2006; Koechlin et al., 2003). These prefrontal regions

may encode the internal model of geometrical sequences and

send top-down signals in order to pre-activate circuits in poste-

rior cortices, generating the observed anticipations.

Several limits of the present work must be acknowledged.

First, the formal language of geometry we proposed provided

only an imperfect, though significant, fit to the observed

behavioral data (Figure 2). This deviation of behavior from the-

ory seems to arise, at least partially, from the fact that some

primitives, such as rotation ±3, are more difficult to process

than others. In an augmented version of the theory, weights

could be assigned to each primitive separately before

computing sequence complexity (as proposed by Romano

et al., 2018).

A second limit is that we did not provide direct decoding ev-

idence that several numerical and geometrical primitives

could be jointly encoded in a complex program. So far, we

managed to decode only the lowest level of this hypothetical

nested code (i.e., the transitions between consecutive items

and their ordinal positions within a local group of locations).

Whether and how the brain binds the same representation

at multiple levels to create a nested language-like code is a

debated issue (e.g., Elman, 1990; Marcus et al., 1999; Smo-

lensky and Legendre, 2006) that remains to be empirically

resolved. In this context, it is noteworthy that the decoder of

geometrical primitives, once trained on the data from the

primitive part, did not generalize to the sequence part where

the same primitives were embedded into longer sequences.

This result was confirmed by RSA. Future research should

disentangle two alternative explanations. First, this negative

finding could be due to peripheral factors such as the different

timing of the two parts (Figure 1) or the possibility of head po-

sition changes across the experiment. Alternatively, it may

also hint at a principled difference in the neural encoding of

the same geometrical primitives when presented in isolation

and in a sequence context. Indeed, a major difference is

that in the primitive part, a single primitive rule is considered

at the time, for an entire block, whereas in the sequence

part, the primitives must be bound together with other primi-

tives and with numerical information to form complex expres-

sions such as ‘‘two squares.’’ Some theories postulate that to

embed an object inside a syntactic structure, the brain applies

a tensor product operation between the neural codes for the

object and for its role inside the structure (Smolensky, 1990;

Smolensky and Legendre, 2006). This radical transformation

would re-map the original neural vectors for primitives onto

a new direction in neural space, thus explaining why they

can no longer be decoded by the original decoder once they

are embedded in a sequence. Higher resolution recordings,

possibly at the single-cell level, may be required to test this

hypothesis.

The present work fits with a long line of research according to

which humans encode complex concepts as nested combina-
tions of a finite set of elementary primitives (Chomsky, 1956; Fo-

dor, 1975; Hauser et al., 2002; Leeuwenberg, 1969; Restle,

1970). This idea was initially supported by behavioral studies of

human rule learning (Shepard et al., 1961). In concept learning

experiments, the speed and efficiency of learning was shown

to be modulated by the Boolean complexity of the rule (i.e., the

length of its shortest logical expression as a formula with

elementary logical operators and parentheses) (Feldman,

2000). Working memory for sequences of digits was also found

to be modulated by the presence of simpler chunks (Mathy

and Feldman, 2012). Such research led to the general proposal

that the human brain acts as a compressor of information in all

sorts of domains and always attempts to select the shortest

expression that accounts for what it perceives (Chater and Vitá-

nyi, 2003; Feldman, 2000, 2003; Li and Vitányi, 1993; Romano

et al., 2013). The present research adds further evidence in favor

of this framework. Indeed, the same formal language of geome-

try that we tested here was recently found to capture the regular-

ities in binary auditory and visual sequences made of two arbi-

trary sounds or pictures (Planton et al., 2021). Future research

should examine three key open questions. First, to what extent

can the same set of recursive language-like rules capture very

different domains in which humans excel, such as mathematics,

music, and language? Second, how are such rules implemented

at the neural level? And third, are such codes uniquely developed

in human, as postulated by some researchers (Dehaene et al.,

2015; Fitch, 2014; Hauser et al., 2002) or can they also be

observed in non-human primates?
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

20 participants (9 men,Mage = 24.6 years, SDage = 3.7 years) with normal vision were included in the MEG experiment. We didn’t test

any effect of gender on the results of this study. In compliance with institutional guidelines, all subjects gave written informed consent

prior to enrollment and received 90V as compensation.

METHOD DETAILS

Experimental protocol
General structure of the experiment

The main task, completed in the MEG Elekta acquisition device, was subdivided into 3 parts. To avoid biasing subjects toward spe-

cific primitives, the sequence part was performed first. The second part was dedicated to each of the primitive operations, and the

third part was a localizer task with unpredictable locations, designed to train a decoder for spatial locations. During the 3 parts of the

MEG experiment, white dots were flashed for 100ms on the vertices of an octagon while the subject was fixating a cross at the center

of the screen. The MEG experiment was preceded by a short training (c.a. 20 minutes) to the geometrical sequences.

Training on sequences

As initial training, outside the MEG, the geometrical sequences were presented with a slower pace than the rest of the experiment: a

stimulus onset asynchrony (SOA) of 700ms between consecutive dots, and a dot duration of 200ms. Each sequence was repeated

until the participants pressed the space bar to report that they had memorized it. They were then asked to type in the 8 locations that

followed the last item displayed on the screen. If they succeeded, the word ‘Bravo’ (congratulations) was presented on the screen

and the next sequence started. If they failed, the word ‘Erreur’ (error) was displayed and the same sequence restarted. Participants

were instructed that the same sequences would be presented to them during the main experiment. No training was provided on the

primitive part of the experiment. The training part wasmeant to select participants able to quickly encode the geometrical sequences.

Only the ones that had finished the training in less than 20 minutes were qualified for the main MEG experiment. 5 out of 25 partic-

ipants did not manage to do the training part of the experiment in less than 20 minutes.
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MEG task
Geometrical sequences

The first part of the experiment was devoted to the geometrical sequences and was composed of 4 runs. 9 sequences (Figure 1B)

were composed of 8 non-repeating locations. The last 3, called ‘Memory sequences’, which were composed of 1, 2 or 4 spatial lo-

cations, were not analyzed in this study. During one run, each sequence of 8 locations was presented 12 times consecutively. The

sequences presented in Figure 1B were mere templates: to generate the actual sequences, the starting point and global direction of

rotation were varied and balanced across runs. 4segment sequences were selected such that each of the 4 symmetry axes (horizon-

tal, vertical and diagonal) would appear once. Participants had to perform two tasks. First, they had to report with a button presswhen

they had identified the sequence and felt able to predict the next locations. Second, during the 11th or the 12th repetition, an item

appeared at an unexpected location, and subjects had to report this violation with another button press as fast as possible. This

task was added to maintain participants attention during the full block. MEG epochs containing such a violation were excluded

from all analyses.

Primitive part

The second part of the experiment was devoted to the primitive operations. It was composed of 4 runs, subdivided in 12 mini-blocks

for each of the 12 conditions. The 11 first ones followed elementary ‘primitive’ rules (Figure 1C), because a simple geometrical

operation allowed to determine the spatial location of the second item of a pair when given the first. The 12th condition was a control

condition in which nominimal rule allowed to do so, and participants could onlymemorize the 8 unrelated pairs in order to perform the

task. Amini-block was composed of 32 pairs with a SOA of 433ms between the items of the pair and an inter-pair-interval of 1100ms.

Each of the 8 pairs appearing 4 times in the mini-block.

The task was similar to the sequence part. Participants reported with a button press when they had identified the rule that allowed

them to predict the location of the second item given the first. In addition, they had to detect as fast as possible when the second item

did not appear at the expected location. Violations could only occur during the presentation of the last 8 items of the mini-block.

Again, MEG epochs containing such a violation were excluded from all analyses.

Localizer part

The last part of the experiment was meant to train a decoder for spatial position of the presented items. To do so, dots were flashed

pseudo-randomly on the vertices of the octagon with SOA 433ms. Occasionally (1/20 dots on average) the color of the dot changed.

The subject had to click as fast as possible to report this.

MEG acquisition and preprocessing
MEG recordings

Participants performed the tasks while sitting inside an electromagnetically shielded room. The magnetic component of their brain

activity was recorded with a 306-channel, whole-head MEG by Elekta Neuromag� (Helsinki, Finland). 102 triplets, each comprising

one magnetometer and two orthogonal planar gradiometers composed the MEG helmet. The brain signals were acquired at a sam-

pling rate of 1000 Hz with a hardware highpass filter at 0.03Hz. The data was then decimated by a factor 4.

Eye movements and heartbeats were monitored with vertical and horizontal electro-oculograms (EOGs) and electrocardiograms

(ECGs). Subjects’ head position inside the helmet was measured at the beginning of each run with an isotrack Polhemus Inc. system

from the location of four coils placed over frontal and mastoı̈dian skull areas.

Data cleaning: Maxfiltering

Bad MEG channels were identified visually in the raw signal and were provided to the MaxFilter software (ElektaNeuromag�,

Helsinki, Finland) to compensate for head movements between experimental blocks by realigning all data to an average head posi-

tion and to apply the signal space separation algorithm (Taulu et al., 2004) to suppress magnetic interference from outside the sensor

helmet and interpolate bad channels.

Data cleaning: ICA

The rest of the analysis was performed with MNE Python (Gramfort et al., 2013; Jas et al., 2018). Oculomotor and cardiac artifacts

were removed performing an independent component analysis (ICA). The components that correlated the most with the EOG and

ECG signals were automatically detected. We then visually inspected their topography and correlation to the ECG and EOG time se-

ries to confirm their rejection from the MEG data.

Recording participants’ gaze

During the MEG acquisition, participants were instructed to fixate the central cross while the items were flashed. Their gaze was

monitored online to make sure that they did. Eye-tracking data was collected for 14 out of 20 participants using EyeLink 1000

eye-tracker device (SR research).

QUANTIFICATION AND STATISTICAL ANALYSIS

Time-resolved multivariate decoding
The goal multivariate of time-resolved decoding analyses was to predict from single-trial brain activity (X) a specific categorical (e.g.,

primitive identity) or continuous (e.g., angular position) variable (y) that represented the neuronal state corresponding to the participant’s

mental representation. These analyses were performed following King et al.’s preprocessing pipeline (King and Dehaene, 2014) using
Neuron 109, 1–13.e1–e4, August 18, 2021 e2
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MNE-python (Gramfort et al., 2013). Prior to model fitting, each channel at each time-point was z-scored across trials. Each estimator

was fitted on each participant separately, across all MEG sensors using the parameters set to their default values providedby the Scikit-

Learn package (Pedregosa et al., 2011). When the estimator was trained and tested on two different conditions, the whole training and

testing sets were used to respectively fit and test the estimator. By contrast, when the decoder was trained and tested on non-inde-

pendent data, we used a stratified cross-validation procedure with 5 folds for spatial decoding, or cross-validated across block number

for primitive and ordinal decoding. The reported scores are the average across cross-validation folds.

Decoding of spatial position
Data from a localizer block, where locations were randomly intermixed, as well as data from the first item of each pair in the pair block,

which was unpredictable was used to train spatial angular decoder.

The spatial angular decoders were built from two ridge regressions used to decode the angular position Q. One predicted sin(Q)

and the other cos(Q). The angular decoding score was obtained by first computing the mean absolute difference between the

predicted angle (Qpred) and the true angle (Qtrue). We subtracted to this score p/2 to obtain a score in the range of – p/2 and p/2

(chance = 0) (King and Dehaene, 2014).

To access the temporal organization of the neural representations, we computed the generalization-across-time (GAT) matrices.

These matrices represent the decoding score of an estimator trained at time t (training time on the vertical axis) and tested with data

from another time t’ (testing time on the horizontal axis).

Anticipation score
The anticipation score was obtained from the predictions of an angular decoder trained on brain data decimated by a factor of 2,

averaged over windows of 10ms every 5ms. This was meant to increase the signal-to-noise ratio while avoiding the contamination

of anticipation signals by the visual response to the expected item. The decoder was then tested on the sequence data. However, we

removed the first presentation of the sequence, that was needed to identify it, and the two last repetitions, as a violation could occur.

The output of the decoder was binned into the 8 spatial positions. The anticipation score was defined as the subtraction of the pro-

portion of times the correct position was predicted and the proportion of times the other position at the same distance from the pre-

ceding item was predicted (Figure 4). This measure was designed to overcome a potential confound that comes from the fact that

successive sequence items tend to be close to each other (average angle between two sequence items is 73�, s.d. = 28�). As the

angular decoder output spreads on neighboring angles, it may predict with an above chance performance the spatial position of

the next item. This is particularly true for simpler sequences, which involve shorter distances. Therefore, by construction, the antic-

ipation score is immune to such a distance-based confound.

The anticipation score is not defined when the next item is at distance 4 from the previous one. As this represents 50% of the tran-

sitions for 4diagonals and 2crosses sequences, we excluded these sequences from the analyses. We ran linear regressions per

participant on the average of the anticipation scores across sequence types. The statistics are computed on the subjects’ distribution

of regression coefficients.

Modulation of anticipation and syntactic role
Wecompared the anticipation scores of the items that, according to our postulated language, open a component, to the ones that are

inside a component. The analysis was run only on the 4segments and 2squares sequences. The repeat, alternate and irregular se-

quences were excluded from it as their postulated representation does not involve a nested syntactic structure.We also excluded the

2arcs sequences since all constituent opening corresponded to distance-4 transitions. Finally, we also discarded the complex 2rect-

angle sequence, since its anticipation score was not significantly different from zero.

Decoding primitive identity and ordinal position
The data was smoothed over slidingwindows of 100ms for every time-step (i.e., each 4ms).We used Support VectorMachines (SVM)

to decode which geometrical primitive was involved at a given transition between two locations, as predicted by our languagemodel.

When controlling for visual confounds, rotation ± 2 primitive was excluded from the trial set as no symmetries involved a distance of 2.

Moreover, when only two categories were considered (e.g., ‘rotation’ and ‘symmetry’), the score of the decoder was provided in

terms of the area under the curve. When decoding the 11 primitives, we used One-VS-rest multiclass classifiers and report their

mean accuracy.

A four-way decoder (One-VS-rest multiclass classifier) was used to decode ordinal positions 1-4; and a binary decoder was used to

decode ordinal positions 1 versus 2. This ordinal position was at the lowest level of the hierarchical code predicted by our language

model (i.e., 1-2-1-2. or 1-2-3-4 depending on the sequence, see Figure 6). The decoders’ performance was estimated by

computing their mean accuracy, averaged over participants.

Significance was assessed by a cluster-based permutation test on the window �200 to 600ms.

Fourier analysis and presence of a peak
To determine the periodicity of the activation of the ordinal code, we ran a fast Fourier transform on the projection on the decision

axes time-series using scipy’s fftpack module. We computed the difference between the log-power at the test frequency and the
e3 Neuron 109, 1–13.e1–e4, August 18, 2021
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log-power at neighboring frequencies. The log-power at f (2.31 Hz), f/2 (1.15 Hz) and f/4 (0.577 Hz) was compared to the average log-

power for the 4 neighboring frequencies (frequency bin width: 0.024 Hz) using a Student’s t test. To determine if there was an inter-

action between the amplitude at f/2 and f/4 and the component size, we ran a two-factor within subjects repeated-measures ANOVA

with MATLAB�.

Representational similarity analysis
Representational similarity analysis (RSA) characterizes a neural representation by the similarity between the neural patterns elicited

by a set of stimuli. To test a given model, we compare the representational similarity it predicts to the one measured from brain

signals. In this experiment, we hypothesized that brain activity would reflect a superposition of visuospatial factors (item location,

distance between consecutive items) and high-level geometrical primitives. To compute the similarity between two conditions, we

smoothed the data over sliding windows of 100ms with 10ms steps. Epochs belonging to the even and odd run numbers were

averaged separately to form two sets of evoked activities. The empirical similarity was determined as the Spearman rank correlation

between the evoked activities of these two sets. The empirical dissimilarity (1-Spearman rank correlation) was then regressed as a

function of the theoretical representational dissimilarities. These predictor matrices were z-scored beforehand.

Statistical analyses
All statistics reported in the text refer to group-level analyses. Tukey post hoc tests were performed using the R software packages

nlme and multcomp. We used permutation statistics to assess multivariate decoding performance for the two-dimensional time by

time generalization-across-time (GAT) matrices and for the simple decoding score time-courses. We considered temporal clusters

and non-parametric one-sample t tests estimated on 4096 permutations (Maris and Oostenveld, 2007) implemented by the permu-

tation_cluster_1samp_test available in mne.stats package. A cluster was defined by adjacent time points. The cluster-level statistic

was the sum of the sample-specific t-statistics that belonged to a given cluster. The alpha level of the sample-specific test statistic

and of the cluster-specific test statistic were 0.05. For decoding performance curves, ‘*’ and ‘**’ indicate that resulting p values are

respectively < 0.05 and < 0.01. Dashed contours on temporal generalization correspond to p value < 0.05 resulting from the permu-

tation test. The Student’s t tests and the linear regressions were performed with MATLAB�. Stepwise linear regressions were

computed with the MATLAB� stepwiselm function using an AIC criterion starting from a model with intercept. rm_anova2 function

was used to run the two-factor within subjects repeated-measures ANOVA with MATLAB�, available on the MATLAB� File

Exchange.
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