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ABSTRACT 

 

The timing of sensory events is a crucial perceptual feature, which affects both explicit 

judgments of time (e.g. duration, temporal order) and implicit temporal perception (e.g. 

movement, speech). Yet, while the relative external timing between events is commonly 

evaluated with a clock in physics, the brain does not have access to this external 

reference. In this dissertation, we tested the hypothesis that the brain should recover the 

temporal information of the environment from its own dynamics. Using 

magnetoencephalography (MEG) combined with psychophysics, the experimental work 

suggests the involvement of cortical oscillations in the encoding of timing for perception. 

In the first part of this dissertation, we established that the phase of low-frequency 

cortical oscillations could encode the explicit timing of events in the context of 

entrainment, i.e. if neural activity follows the temporal regularities of the stimulation. 

The implications of brain oscillations for the encoding of timing in the absence of 

external temporal regularities were investigated in a second experiment. Results from a 

third experiment suggest that entrainment does only influence audiovisual temporal 

processing when bound to low-frequency dynamics in the delta range (1-2 Hz). In the last 

part of the dissertation, we tested whether oscillations in sensory cortex could also ‘tag’ 

the timing of acoustical features for speech perception. Overall, this thesis provides 

evidence that the brain is able to tune its timing to match the temporal structure of the 

environment, and that such tuning may be crucial to build up internal temporal reference 

frames for explicit and implicit timing perception. 

 

 

 

 

 

 

 

 



 
 

RÉSUMÉ 

 

La perception explicite du temps écoulé (la durée, l’ordre temporel…) et les jugements 

implicites des dynamiques de notre environnement  (percevoir le mouvement, la 

parole…) nécessitent l’extraction des relations temporelles entre événements sensoriels. 

Alors que le temps physique est communément évalué en rapport à un référentiel externe 

(celui de l’horloge), le cerveau lui n’a pas accès à ce référentiel. Dans cette thèse, nous 

émettons l’hypothèse que le cerveau génère son propre référentiel temporel à partir des 

dynamiques neurales. Combinant la magnétoencéphalographie (MEG) aux données 

psychophysiques, les présents travaux suggèrent que les oscillations corticales sont 

impliquées dans l’encodage du temps perçu. Une première étude montre que la phase des 

oscillations corticales basse-fréquences peut encoder l’ordre temporel perçu entre 

événements sensoriels s’il y a entrainement neural, i.e. si l’activité cérébrale suit les 

régularités temporelles de la stimulation. L’implication des oscillations cérébrales en 

l’absence d’entrainement est testée dans une seconde expérience. Les résultats d’une 

troisième expérience suggèrent que l’entrainement neural n’a d’influence sur le traitement 

temporel des informations multisensorielles qu’à basse fréquence (1-2 Hz). Un dernier 

chapitre aborde le rôle l’entrainement neural dans l’encodage la temporalité des 

informations acoustiques pour la perception de la parole. En conclusion, cette thèse 

suggère que le cerveau est capable de suivre la structure temporelle du monde extérieur, 

et que cet ajustement permet la construction d’un référentiel temporel interne pour la 

perception explicite et implicite du temps.  
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CHAPTER 1:  

INTRODUCTION 

 

 

1.1. THE INNER REPRESENTATION OF TIME 

 

Le temps […] qui pourra le définir ? Et pourquoi l’entreprendre, puisque tous les hommes  

conçoivent ce qu’on veut dire en parlant de temps, sans qu’on le désigne davantage.  

Blaise Pascal, Pensées 

 

I do not define time, space, place and motion, as being well known to all.  

Isaac Newton, the Scholium to the Principia  

 

 

1.1.1. What is a time experience? 

 

Time is a familiar concept to every individual. As pointed out by Saint Augustine, despite 

our understanding of the concept of time, it is hard to define. 

What, then, is time? I know well enough what it is, provided that nobody asks me; but if I 

am asked what it is and try to explain, I am baffled. 

To Saint Augustine time is something we know because we constantly experience its 

effects on the world: time is present when we work, when we twist and when we shout. It 

is intuitively obvious why time makes “No man ever steps in the same river twice” and 

its existence cannot be questioned. But when trying to capture its very essence, time 

suddenly becomes something “secret, lacking in substance and yet almighty" (Thomas 

Mann, The Magic Mountain 1924). 
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Blaise Pascal wrote in his Pensées that the difficulty to define time may relate to its 

polysemy. Time can either refer to a continuum where things evolve, a flow or 

movement of things within this continuum, or a measure of the flow and changes of the 

world. While the two first definitions refer to time as outside experience, the last 

definition of time will be of interest for the observer of the passage of time or “time 

experiencer” (Michon, 1985). Indeed time as a measure is the only time we may have 

access to, while the time outside experience is inaccessible and may not even exist 

(Augustine; Pöppel, 1997). But what exactly is the time experiencer measuring? 

In all existing definitions, time is tied to the succession of physical events. If time is first 

defined as “a nonspatial continuum” as in The Merriam-Webster dictionary, it has the 

property to be “measured in terms of events which succeed one another from past 

through present to future”. If time is rather defined as flow or as “the indefinite continued 

progress” in the Oxford dictionary, then this progress will concern the “existence and 

events in the past, present, and future”. If time is referred to as a quantity (“an amount of 

time”) it is “reckoned by a conventional standard” and is “measured as seconds, hours, 

and days”. Here again, the dependency of time to events succession is still apparent, as 

one second is defined as the succession of 9,192,631,770 cesium atom state changes.  

Hence time is only observable with respect to its effects on the outside world, and thus 

experiencing time is only possible by quantifying the change and succession of external 

events. It entails that a time experience should not exist in the absence of external 

temporal information. This description appears at odds with our intuition: if we close our 

eyes, if we isolate from sensory stimulation, we are still able to feel that time is passing 

by. But as pointed out by William James (James, 1886): 

Our heart-beats, our breathing, the pulses of our attention, fragments of words or sentences 

that pass through our imagination, are what people this dim habitat. […] In short, empty 

our minds as we may, some form of changing process remains for us to feel, and cannot be 

expelled. And along with the sense of the process and its rhythm goes the sense of the length 

of time it lasts. Awareness of change is thus the condition on which our perception of time's 

flow depends; but there exists no reason to suppose that empty time's own changes are 

sufficient for the awareness of change to be aroused. The change must be of some concrete 

sort -- an outward or inward sensible series, or a process of attention or volition. 
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Thus, external temporal information is always available for the time experiencer, either 

through the dynamics of sensory inputs, body rhythms, or mental states. But what 

exactly is the content of time experience, and how does the time experiencer extract this 

information for the establishment of perceptual time?    

 

1.1.2. How does the time experiencer sense time? 

 

For humans and other animals, perceiving the temporal relationship between events is 

essential for their daily behavior (Pöppel, 1997; van Wassenhove, 2009; Wittmann, 

2009). Time perception encompasses a multitude of phenomena that can be categorized 

into implicit and explicit timing types (Michon, 1990). Explicit timing is defined as the 

conscious representation of the temporal relations between percepts and/or actions. It 

includes among others the perception of event synchrony, temporal order, or duration. 

For instance, it occurs while watching a soccer game and estimating the time left before 

the end of the match. Conversely, implicit timing refers to the dynamics of perception 

and behavior that are not consciously conceptualized as temporal properties. It includes 

motion perception, temporal content segmentation, anticipation, and predictability. It is 

also present while watching a soccer game as we perceive within the dynamics changes of 

lights the movements of the soccer team and within the fluctuations of the acoustic signal 

the exclamation of the sport commentator. 

Both explicit and implicit timing percepts seem to rely on the accurate extraction of the 

external dynamics in the world. Yet, Gibson, in his talk entitled ‘Events are perceivable, 

but time is not’, suggests to the contrary that the time that we perceive has no physical 

essence. As a parallel to depth perception that does not rely on the physical information 

in the external world but on the mental reconstruction of perceived objects surfaces, the 

representation of time is nothing but a mental reconstruction built on the perceived 

succession of events. As such he concluded that “there is no such thing as the perception 

of time, but only the perception of events and locomotion” (Gibson, 1975). Hence time 

perception should not be confounded with perception of time, as time cannot be 

perceived per se. Time experience should not be considered as a perception of external 

changes, but rather as a change of the perceived external events. This view of time 



6 
 

perception was supported by philosophers Dennett and Moller and synthesized by 

Roache (Roache, 1999): 

Therefore it seems that, at bottom, our representation of the temporal order of two events is 

nothing more or less than the temporal order of, and the causal relations between, our 

experiences of those events.   

A bigger claim is actually drawn from the view of time as “the ghost of events in the 

world”. Like other features of perception, subjective event timing is a construct of the 

observing brain. But what is highlighted here is that unlike color, pitch or any feature of 

sensation, time is not a proper “sense” per se. That is, unlike most features, there seems 

to be no apparent devoted sensor and no dedicated sensory brain area for the encoding of 

time (Ivry and Schlerf, 2008; van Wassenhove, 2009; Wittmann, 2009, 2013). In other 

words, the time experiencer cannot directly extract the temporal information in the 

world. The time experiencer first processes external sensory inputs, from which external 

event timing is estimated, here defined as a particular time point of occurrence of the 

event. Hence, the perception of event timing is not based on external stimulation timing, 

but on the timing of mentally-reconstructed sensory events (Pöppel, 1997; van de Grind, 

2002). It entails that time should somehow be extracted through the neural processing of 

sensory inputs.  

 

1.1.3. How is event timing encoded? 

 

For the time experiencer, the perception of time passing by relies on our capacity to 

extract the successive changes of the environment. Hence, time perception will obviously 

rely on the temporal information provided by the external world, but it will also be 

dependent on our ability to extract the temporal information through the processing of 

the other features of sensation. Of interest here, the time experiencer is not only 

observing but also undergoing the passage of time. The functioning of his body, like the 

external world, follows temporal rules.  

From an information-theoric standpoint, the time experiencer, in order to reconstruct the 

time passing by, relies on sensors and on information systems that have constraints in 
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time. At the beginning of information processing, sensors present time constants that 

constrain the temporal resolution of perceived events at different time scales across 

sensory modalities. For instance, temporal acuity in human vision is already constrained 

in time at the very first stage of the light processing in the retina: it takes between 35 ms 

and 75 ms for the pigments that capture light in the photoreceptors to disintegrate and 

form again (Tyler, 1985). In contrast within mammalian audition, the transduction of the 

acoustic signal by the hair cells in the cochlea operates in less than 1 millisecond time 

scale. As a result, the auditory system can capture much finer variations of its input 

signal than the visual system (Russell and Sellick, 1978).  

The funnel effect in the temporal resolution of sensory processing increases as 

information travels along the brain. At the neuron level, the integration of presynaptic 

spikes is constrained with the membrane time constant that is for the principal cells in the 

waking cerebral cortex of about 10-30 ms (Koch et al., 1996; Destexhe et al., 2003).  

After spiking, neurons can undergo refractory periods from tens to hundreds of 

milliseconds (Mickus et al., 1999; Henze and Buzsáki, 2001). Between neurons, synaptic 

transmission can operate at the speed of tens to hundreds of milliseconds (Monyer et al., 

1992), and even at the second timescale (Deisz and Prince, 1989; Nakanishi, 1994).  In 

addition to a decrease in temporal resolution, the presence of synapses and the axonal 

neural transmission time constants can introduce information transmission delays. A 

consequence is that sensory information reaches the cortex at different times depending 

on the sensory modality: auditory information reaches the primary auditory cortex as 

soon as 10 ms after sound emission (Celesia, 1976; Heil and Irvine, 1997), while it takes 

around 50-70 ms for visual information to reach primary visual cortex (Schmolesky et al., 

1998; Zeki, 2001; Raij et al., 2010).  

Therefore, a fundamental question is how human and animals extract the temporal 

dimension with both external and internal temporal contingencies for perception 

(Michon, 1985). Events timing perception is dependent on the body sensors 

contingencies and neural processing delays, and it is likely that the time we have access 

to, i.e. our experience of time, is an inexact mental construct of reality (Michon, 1985). 

Consistently, perceived timing departs from real timing. One possible consequence of 

sensors and neural integrative mechanisms of signal processing is that subtle signal 

temporal changes are not perceived. Temporal integration constrains are particularly 
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apparent when comparing timing perception in vision and audition, as we capture much 

finer temporal variations in the auditory domain than in the visual domain: acoustic 

changes of 1-2 ms can be detected (Plomp, 1964; Green, 1971), while visual events need 

to be separated in time by about 25 ms to be segregated (Hirsh and Sherrick Jr., 1961). 

Crucially thresholds of temporal segregation increase with stimulus complexity, 

suggesting that neural processing affects temporal acuity: for speech or musical stimuli 

temporal segregation occurs for temporal distances of 25 ms to 250 ms (Green, 1971; 

Poeppel, 2003).  

A second consequence is that even if sensory events are perceived as distinct events, their 

temporal information may be distorted. In particular, human perception is tolerant to 

asynchrony: two visual elements may be perceived as flashed synchronously while they 

are actually delayed in time (Fahle and Koch, 1995; Verstraten et al., 2000; Blake and 

Lee, 2005; Chakravarthi and Cavanagh, 2007). In the same manner delayed auditory and 

visual information may be perceived synchronous (Fujisaki and Nishida, 2005, 2010; 

Zampini et al., 2005; van Wassenhove et al., 2007; Benjamins et al., 2008; Vroomen and 

Keetels, 2010; Keetels and Vroomen, 2012).    

Third, if timing perception is indeed constrained by body, sensor, and brain structures, 

then different bodies should lead to different timing percepts: animals with different body 

architectures do not perceive time the same way (Healy et al., 2013). In an evolutionary 

perspective, animals with more demanding temporal contingencies (for instance animals 

making faster movements) have faster sensors (Laughlin and Weckström, 1993). 

Conversely, if animals experience small variations in time experience, they can also 

encounter similar temporal constrains. Differences in biological timing between animals 

that face similar temporal contingencies should not be too big. Consistently neural 

dynamics are quite robust and show similar temporal scales among mammalians 

(Buzsáki et al., 2013).   

 

One can wonder to what extent sensors and brain temporal contingencies explain the 

distortions from physical to mental timing. The reported distortions in perceived timing 

could just be a consequence of forward neural timing delays that are introduced during 

visual, auditory and other sensory processing. As such neural latencies have been 

suggested to be the missing link between external and subjective timing, and constitutes 
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the simplest coding scheme for event time. Yet, extracting event timing from neural 

timing must pose quite a few challenges that are described in greater details in the next 

section. 

As an alternative to the neural latency code, dedicated networks could take part in the 

encoding of time. Indeed, even if time perception does not rely on a specific sensory 

neural architecture, it is still possible that specialized networks read sensory activity in 

the sole purpose to extract temporal information. Dedicated models of event timing that 

are addressed in section 3 of the introduction.  

Dedicated models emphasize the role of specific brain regions for the decisional aspect of 

time perception. However, these models rely on temporal information retrieved from the 

dynamics of brain activity. As such, the brain capitalizes on dynamics to construct an 

internal representation of time. Crucially, any modulation of this temporal reference 

should lead in distortions of event timing encoding. In section 4, the role of brain 

dynamics _ with a focus on brain oscillations _ on perception in time are reviewed. We 

will further argue in this thesis that cortical oscillations provide the temporal reference 

frame on which perceptual timing relies.   

 

1.2. ENCODING EVENT TIMING THROUGH NEURAL LATENCY 

 

1.2.1. Brain access to external timing 

 

In the external world, time is commonly evaluated with a clock. Yet the brain has no 

access to the external clock reference and in general it has no insight into the timing of 

the external stimulation. Thus, the first challenge for the brain is to detect new sensory 

onsets from its internal dynamics (Heil, 2004; VanRullen et al., 2005a; Brasselet et al., 

2012; Scharnowski et al., 2013). After the emission of sensory input, a specific 

combination of neural networks is recruited to process the information and emit spike 

trains of activity; hence a simple solution to detect the onsets of new events would be to 

detect when the recruited network starts firing (Heil and Irvine, 1997; VanRullen et al., 

2005a). 
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However, this coding scheme for event timing raises many issues. First, detecting 

stimulus-related neural activity is not trivial. Not only does the brain lack the knowledge 

of stimulation onsets, but sensory networks are rarely silent before stimulation emission. 

To the contrary, network activity in the absence of sensory events is undergoing 

endogenous fluctuations. For instance at the earliest stages of visual processing, retinal 

ganglions cells show spontaneous activity, i.e. they fire actions potentials in the total 

absence of light (Bruce et al., 1996; Rodiek, 1998). This apparent ongoing neural activity 

is present at all stages of visual and other sensory processing (Gerstein and Kiang, 1960; 

Laufs et al., 2003; Fox and Raichle, 2007). Therefore, the brain must first dissociate 

endogenous fluctuations and event-related responses from its overall network activity. 

This dissociation could be done by contrasting ongoing activity in a network to its 

“default” or “baseline” state (Kuffler, 1953; Gerstein and Kiang, 1960; Coles and Rugg, 

1995). Consistently, neuro-physiological and –imaging studies typically observe changes 

in neural activity by contrasting activity pre- to post-stimulus. Yet, baseline correction is 

usually done with the knowledge of stimulus timing. Detecting contrasts of activity must 

be much harder for the brain, knowing that it does not have access to the stimulus 

external temporal reference. Furthermore, the dissociation between endogenous and 

stimulus-driven activity is more problematic when processing successive sensory inputs. 

In natural settings, sensory events are not often isolated in time, and neuronal networks 

are possibly already recruited at the emission of new stimulation. An important issue for 

time perception is to link past events to ongoing events in time. The brain needs to find a 

way to detect incoming events while processing past stimulation in parallel (VanRullen et 

al., 2005a) and to place new detected onset in their surrounding temporal context.   

Second, neural spiking activity following stimulus onset is quite spread in time (Brasselet 

et al., 2012) and presents some apparent irregular dynamic properties (Wang, 2010). This 

phenomenon is also observable with neuroimaging techniques, as electric and magnetic 

event-related neural activity is known to present many peaks that span from tens to 

hundreds of milliseconds post-stimulation (Coles and Rugg, 1995). As networks are 

active for a long time period after the emission of the sensory event, it seems hard to 

define what temporal information in neural activity could encode the perceived onset. A 

first possibility is that stimulus onset is tagged by the first spike occurring post-stimulus 

onset (Heil, 2004; Chase and Young, 2007). However, this sparse coding of event timing 

seems problematic considering that a first spike would be hard to detect if embedded 
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between endogenous spikes. More problematically, first-spike latency has been shown to 

be dependent on the content of the stimulus, and not only on its temporal properties (Heil 

and Irvine, 1997). The same problem extends when looking at following neural activity: 

despite its apparent irregularity spike timing is specific to the sensory stimulation 

(Mainen and Sejnowski, 1995), and may actually provide a temporal code for the 

representation of different sensory attributes (Bair and Koch, 1996; Victor, 2000; Panzeri 

et al., 2001). If spike timing serves the encoding of both temporal and non-temporal 

information, one direct consequence is that, for the same temporal onset, neural latencies 

may differ depending on stimulus properties. For instance, in LGN a high contrast 

stimulus is processed faster than a low contrast stimulus (Maunsell et al., 1999). V1 cells 

respond at different latencies according to stimulus orientation (Gawne et al., 1996), and 

neurons in MT/V5 respond at different latencies depending on motion direction (Raiguel 

et al., 1999). Similarly, neuroimaging studies have reported changes in the peak latency 

of Event Related electric Potentials (ERPs) and Events Related magnetic Fields (ERFs) 

which reflect non-temporal stimulus features (Tepas and Armington, 1962; Roberts et al., 

2000). Based on these findings, it appears that absolute neural timing post-stimulus 

presentation cannot alone provide a reliable index of sensory event timing (Eagleman, 

2010). 

Additionally, sensory analysis in the brain gets more and more delayed in time compared 

to stimulus onset due to cumulative neural transmission delays through the processing 

pathways. Thus, it remains unclear at which stage of the sensory hierarchy neural timing 

would be a relevant measure for timing perception. While it is argued that neural latency 

at sensory cortex level encodes event timing (Brasselet et al., 2012), other evidence 

suggests the existence neural timing codes at subcortical level (Chase and Young, 2007).  

 

1.2.2. Temporal binding  

 

Determining at which stage of the sensory processing the latency of the neural responses 

matter for the establishment of conscious timing is particularly crucial when comparing 

different sensory features in time. Indeed, sensory inputs are processed via distinct brain 

areas (Zeki, 1978; Livingstone and Hubel, 1988; Felleman and Van Essen, 1991) that 
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receive stimulus information at different latencies (Schmolesky et al., 1998; Zeki, 2001). 

As presented in the previous section, visual inputs are first processed in the Lateral 

Geniculate nucleus (LGN), with a peak latency occurring as soon as 30 ms post stimulus 

onset, followed 10 to 20 ms later by primary visual cortex (V1). Neural latency increases 

differently based on how the signal bifurcates in the visual hierarchy, so that specialized 

areas that code for visual contours, motion or color do not received sensory information 

at the same time (fig. 1.1). How, then, does the brain correctly bind in time synchronous 

features if they are processed at different latencies? 

 

 

Figure 1.1: Temporal binding problem. How do we perceptually combine in time the different features of 

an object, if they are processed by distinct brain areas at different instants? And how do neural latencies 

impact explicit timing perception (e.g. when we perceive asynchrony between lip movements and dubbing 

when watching a movie) and implicit temporal processing (e.g. when processing speech)? 

 

 

One view is that awareness of a stimulus feature arises at early stages of sensory 

processing, such as the awareness of the sensory event, and a fortiori awareness of the 

sensory event’s timing, come as soon as sensory networks that are encoding the feature 

start firing. In other words, the “differential-latency” hypothesis states that perceived 

timing between distinct sensory features corresponds to neural timing delays between the 

two areas encoding each feature. This view suggests that because of neural latencies, the 

distinct features of a visual object should actually not be perceived as synchronous 
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(Moutoussis and Zeki, 1997; Purushothaman et al., 1998; Whitney and Murakami, 1998; 

Zeki and Bartels, 1998; Patel, 2000), and some evidence has been put forward in 

agreement with this model. For instance, in an illusion first investigated by Moutoussis & 

Zeki (1997), participants observed a moving square that was changing color and direction 

(upward or downward) and they were asked to judge the synchrony between changes in 

motion direction and in color (fig.1.2a).  

 

Figure 1.2: Perceptual temporal illusions. (A) Motion color asynchrony. Color dots are displayed 

on a screen and move upwards or downwards. The perception of synchrony between motion 

direction changes and color changes do not occur at physical synchrony, but when the change in 

motion direction occurs approximately 80 ms before the color change. Adapted from (Johnston 

and Nishida, 2001), (B) Flash-lag effect. A moving visual circle would appear ahead of a static 

visual disked that is flashed at the same location. Adapted from (Nijhawan, 2002)  
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Surprisingly perceived synchrony between motion and color features departed from 

veridical synchrony: color changes had to precede motion direction changes by 70-80 ms 

to be perceptually matched in time (Moutoussis and Zeki, 1997; Zeki and Bartels, 1998) 

(fig. 1.2a). The asynchrony of perceptual binding between motion and color remained the 

same when the timing between the two features was implicitly modulating the perceptual 

reports (e.g. in a motion aftereffect task) (Arnold et al., 2001). These results thus provided 

evidence that asynchronous neural processing of color and motion features could have 

consequences on the perception of event timing. It further suggests that conscious access 

to feature timing is done at early stages of feature processing (Zeki and Bartels, 1998). 

Other visual illusions have been interpreted within this differential-latency framework. 

The flash-lag effect, for example, consists in the perception of asynchrony between a 

moving  and a static visual stimulus even though these stimuli were displayed at the same 

time (Eagleman and Sejnowski, 2000; Patel, 2000; Nijhawan, 2002; Arnold et al., 2003) 

(fig. 1.2b), and has also been suggested to rely on differences in neural latencies 

(Purushothaman et al., 1998; Whitney and Murakami, 1998; Patel, 2000). 

 

Based on these findings, could we conclude that perceptual timing linearly maps onto 

neural latencies? While the motion-color binding asynchrony suggests independent 

timing encoding mechanisms for different stimuli features, the reported psychological 

latencies do not match known neural latencies: the motion area MT/V5 receive inputs 

around 30 ms after visual onset, while color information is processed 70 ms post stimulus 

onset in area V4 (Schmolesky et al., 1998; Zeki, 2001). The psychological timing is thus 

in reverse order compared to neural timing. Moreover, the differential latency hypothesis 

is counterintuitive and does not match introspection. If different features of an object 

were perceived at different timings, our perception would be constantly impaired in 

everyday life. In particular, we would not be able to perceive objects as a whole and 

would incorrectly interpret the color of a moving car, or the dim and bright surfaces of a 

same object (Eagleman, 2010). The fact that we are capable of binding correctly the 

different features of an object in time, and more importantly that temporal congruity is a 

prerequisite for feature binding (Treisman, 1996; Alais et al., 1998; Blake and Lee, 2005), 

casts a shadow on the differential latency hypothesis. Clearly a sense of temporal unity is 

necessary for perceptual binding.   
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Against the differential latency hypothesis, it was suggested that the brain, to cope with 

its internal delays, waits for the last processed stimulus to establish event timing 

(Eagleman, 2010). In other words, if the starting point of feature processing might not 

explain timing perception maybe the ending point may be more relevant. As evidence for 

this proposal, most visual temporal illusions present a temporal resolution of 80 ms  (Di 

Lollo, 1980; Eagleman and Sejnowski, 2000; Arnold et al., 2001; Eagleman et al., 2005; 

Eagleman, 2010), which corresponds to the transmission time of the visual signal from 

the retina to the slowest visual area V4. This argument has also found support in 

multisensory temporal binding observations (Kopinska and Harris, 2004). Combining 

auditory and visual stimuli raises the same problem as combining color and motion 

features, as auditory and visual areas do not process information at the same latencies: 

the visual system processes information between 30 ms and 80 ms post stimulus onset 

(Schmolesky et al., 1998), while A1 receives information only 10 ms post stimulus onset 

(Celesia, 1976). Like in color-motion feature binding, perceived audiovisual synchrony 

and temporal order do not occur at pure stimulus synchrony, and the psychophysical 

delays do not match with neural transmission delays (Slutsky and Recanzone, 2001; 

Zampini et al., 2005; Van Eijk et al., 2008; Harris et al., 2010; Vroomen and Keetels, 

2010). Again, the temporal resolution of audiovisual timing perception is of 80-100 ms, 

implying that the brain waits for the slow visual processing signal to compute cross-

sensory timing.  

This proposition does present a few issues. If the brain waits for the last sensory signal to 

be processed, it presupposes that a specific region in the sensory hierarchy serve as a 

“temporal buffer”, where perceived synchrony corresponds to neural synchrony. But no 

clear crossing neural point in visual processing has been found yet (Johnston & Nishida 

2001, van de grind 2002). In audiovisual processing, convergent sites in superior 

colliculus (SC) (Meredith et al., 1987; Stein and Meredith, 1993) and in superior 

temporal sulcus (STS) (Benevento et al., 1977) may serve the linkage of coincident visual 

and auditory inputs. However, the coarse temporal resolution of the multisensory 

neurons in SC and STS does not match with the relative precision of audiovisual timing 

perception (Stein and Meredith, 1993; Stone et al., 2001; Kopinska and Harris, 2004).  

A second and more important flaw that this proposition makes is the assumption that 

neural latencies recorded by neuroscientists match with the signal latencies at the 
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neuron’s level (Scharnowski et al., 2013). Indeed, these recorded neural latencies are 

always observed from an external reference frame: they reflect the time it takes to observe 

event related network activity compared to stimulus onset timing. But the neurons do not 

“know” the timing of external events. They only have access to the signal timing they 

receive from their connections. Because of the different communication speeds between 

neurons, it is possible that they perceive the processed information at different latencies 

than those recorded from the stimulus-centric reference. For instance, a neuron could 

receive information from higher visual areas more quickly than information from 

primary visual cortex (fig. 1.3) (Scharnowski et al., 2013). Hence, the reported neural 

latencies across the brain visual hierarchy may have no validity for the neurons, which 

might rely on an internal reference of time that is completely distinct (fig. 1.3). As such 

the perceptual latencies between the different features of perception could indeed reflect 

the signal processing latencies from the neuron’s viewpoint (Scharnowski et al., 2013). 

This view rehabilitates the differential latency hypothesis, and suggests that neural 

latencies from a brain-centric view could correspond to perceptual latencies. Then, to assess 

when the neuron starts receiving information of the stimulus input, neuroscientists a 

priori need the full knowledge of each neuron’s connections (Scharnowski et al., 2013), 

which makes the differential latency hypothesis in its new form hard to test. 

 

 

Figure 1.3: Neurorelativity. The known neural latencies at different sensory sites might have no 

validity at the neuron’s level. For instance, it may have a privileged fast access to the apparently 

late sensory signal coming from V4, while information from V1 and V2 may be relayed via slow 

and indirect neural routes. Adapted from (Scharnowski et al., 2013) 
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1.2.3. Temporal plasticity 

 

To circumvent the “neurorelativity” issue (fig. 1.3), a solution can be found in the 

plasticity of subjective event timing. While a pure internalization of timing could have 

the advantage of giving a measure of time that is constant and reliable with experience, 

contrary evidence suggests that the subjective metric of time presents some tuning 

properties to match external timing information. As defined by Michon (1985), tuning 

refers to the property of the system to keep track of the correspondence between the 

timing in the external world and the timing provided with the internal reference, 

“keeping the two series in synchrony is precisely what tuning is about” (Michon, 1985). 

Tuning in that sense is close to temporal expectation, i.e. a mechanism that uses past 

stimulation to build up predictions on the timing of incoming events. The temporal 

prediction of incoming sensory stimulation is a well-known phenomenon that modulates 

our perception of implicit timing, as we are able to predict the position of moving objects 

(Coull and Nobre, 1998; Nobre, 2001; Coull et al., 2004; Nobre et al., 2007), or correctly 

detect percepts after a reliable temporal cue (Treisman and Howarth, 1959; Olson and 

Chun, 2001). Temporal expectations can be built on rhythmic information, and 

perception is enhanced at specific points in time which are in phase with the external 

rhythm (Jones, 1976; Jones and Boltz, 1989; Large and Jones, 1999). For example, after 

rhythmic stimulation a near-threshold visual stimulus is more likely to be detected if it is 

displayed at multiples of the rhythmic period (Mathewson et al., 2010) and auditory pitch 

sounds can be better discriminated (Barnes and Jones, 2000).   

Temporal predictability also impacts our explicit estimation of events timing (Barnes and 

Jones, 2000). One classical illustration is the distance effect in audiovisual perception 

(Sugita and Suzuki, 2003; Fujisaki et al., 2004; Vroomen et al., 2004; Miyazaki et al., 

2006; Yamamoto et al., 2012). Because of the difference in light and sound speeds, 

synchronous audiovisual stimuli arrive asynchronous at the position of the observer. At 

15 meter distance, for instance, the sound is already delayed by about 45 ms to the visual 

information. Yet participants are able to modulate their perceptual judgment of 

audiovisual synchrony to compensate the external transmission delays (Sugita and 

Suzuki, 2003). The auditory sound speed may be modulated by both distance as well as 

transmission medium. The sound speed in air in particular is modulated by temperature, 
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such as the sound of an object 100 meter away takes around 286 ms to arrive to the ear of 

the observer at 30°C, while it takes 307 ms to run the distance at -10°C. It has thus been 

hypothesized that compensation mechanisms take place to overcome the variability in 

transmission delays. Studies have shown that the repeated presentation of asynchronous 

stimuli engender the recalibration of audiovisual synchrony (Fujisaki et al., 2004; 

Vroomen et al., 2004; Di Luca et al., 2009; Heron et al., 2010; Roseboom and Arnold, 

2011) and auditory-motor (Praamstra et al., 2003; Cai et al., 2012).  

 

We can therefore conclude that the brain mechanisms for encoding event timing should 

be flexible and should account for the variability in temporal reports. Hence, if neural 

latencies are the hallmark of event timing, then any variation in the perceptual timing of 

a stimulus should correlate with a variation in the stimulus evoked response in the 

corresponding sensory area. To test this, neuroscientists capitalized on a known 

perceptual illusion of time called “prior-entry effect”. This effect implies that attended 

stimuli reach conscious access more quickly that unattended stimuli (Titchener, 1908; 

Spence and Parise, 2010). Vibell and colleagues (2007) tested whether prior entry was 

caused by a speeding up of neural latencies with electroencephalography (EEG) in an 

audio-tactile task. They indeed found temporal facilitation of visual processing when the 

stimulus was attended (Vibell et al., 2007), yet the changes of neural latencies were quite 

small (from 3-4 ms for the N1 to 14 ms for the P300) and did not match quantitatively 

with perceptual reports (perceptual latency changes of 38 ms) (fig. 1.4a). Two years 

before, an audiovisual prior entry study failed to observe latency shifts in evoked activity, 

and even reported changes in amplitude of the evoked response (McDonald et al., 2005) 

(fig 1.4b). This study suggests that timing encoding is not reflected by neural timing, and 

that the attentional gain of sensory processing can translate into temporal facilitation of 

sensory processing.  

Looking at the timing of EEG activity at seminal peak latencies (N1, P1, P300) follows 

the idea that the average neural timing in sensory areas accounts for event timing 

encoding. However, event timing could either be encoded within the timing of a subset of 

neurons in sensory areas (Chase and Young, 2007; Brasselet et al., 2012) and then could 

not be observed with Evoke Related Potential (ERP) analysis. Specific networks in 

sensory networks may have fast latencies following stimulus onset that are “stereotyped”, 
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i.e. independent of non-temporal stimulus properties (Brasselet et al., 2012), and in this 

manner may provide a good tag of events’ timing. However, two problems arise from this 

possible code of event timing. First, if the response of these “stereotyped neurons” is 

static as independent on non-temporal factors, then they cannot explain any plastic 

change in perceived event timing.  Second, stereotyped neurons cannot be used for multi-

features temporal integration as the encoding is sensory specific and does not contain 

information about it relative temporal position according to past and futures events. 

 

 

Figure 1.4: Changes in perceived timing are not reflected by changes in neural timing. (A) In a visuo-

tactile prior entry task, paying attention to touch (dashed line) compared to vision (continuous) slightly 

delays the visual evoked response (4 ms for N1, 14 ms for P300), yet this delay is much smaller than 

perceptual delays (38 ms). (B) In an audiovisual prior-entry task, paying attention to sound (red) compared 

to vision (blue) reduces the amplitude of the visual evoked response. Adapted from (McDonald et al., 2005; 

Vibell et al., 2007) 

 

 

To summarize, it appears that neural latencies _ recorded at the stimulus onset reference 

frame _ are not good indicators of subjective event timing. Yet, there is no need for a 

linear relation between neural mechanisms and mental states. As mentioned before, non-

temporal properties of sensation could be encoded within the timing of neural activity; 

conversely, could time be encoded with non-temporal neural features? The next section 

addresses the possibility of dedicated mechanisms for the encoding of timing. 
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1.3. ENCODING EVENT TIMING WITH DEDICATED NEURAL 

STRUCTURES 

 

1.3.1. Specialized brain areas for the encoding of time 

 

If neural time can represent space, motion and other qualities of perception _ and as 

neural transmission delays do not seem to reflect subjective time _ would it be relevant to 

consider a non-temporal code for event timing perception? 

In particular, encoding time through the activity of a dedicated network would have the 

ability to easily account for the amodal aspect of time, i.e. that participants are able to 

estimate the temporal relations between events from distinct sensory modalities. While it 

is clear that there is no sensory area dedicated to time perception, the existence of brain 

structures dedicated to the encoding of time is still debated (Treisman et al., 1990; 

Harrington et al., 1998; Lewis and Miall, 2003, 2006; Coull et al., 2004; Buhusi and 

Meck, 2005; Ivry and Schlerf, 2008; Wittmann, 2013; Morillon et al., 2009; van 

Wassenhove, 2009; Wittmann, 2009).   

Neuroimaging studies suggest the involvement of several brains structures during time 

perception: cerebellum has an important role in motor timing, coupled with 

supplementary motor area (SMA) and motor cortex (Harrington et al., 1998; Ivry and 

Schlerf, 2008; Schwartze and Kotz, 2013). Basal ganglia and thalamus may provide 

metrics for absolute timing (Buhusi and Meck, 2005; Schwartze and Kotz, 2013). Parieto-

frontal areas are involved in the conscious discrimination of temporal information (Coull 

et al., 2004; Nobre et al., 2007). Insula may register physiological states of the subject to 

encode duration (Wittmann and Paulus, 2008; Craig, 2009; Wittmann, 2009, 2013). 

Finally, early sensory and multisensory areas are also activated when discriminating 

relative timing or rate of external information (Dhamala et al., 2007; Noesselt et al., 

2007; van Wassenhove and Nagarajan, 2007), and in particular the auditory cortex can 

be recruited even in the absence of sound (Coull et al., 2000). While these structures are 

specialized in the encoding of a certain aspect of time perception, evidence suggests 

together they contribute to the final time percept (Lewis and Miall, 2003).  It should be 

noted that many of the reported experiments capture either encoding, emotional, and 



21 
 

decisional aspects of timing reports, and may reflect multiple aspects of temporal 

processing such as duration, temporal prediction, temporal order, or synchrony 

perception. It is probable that these different facets of time perception recruit different 

areas and/or exploit different neural mechanisms. Here we review two dedicated 

mechanisms that could serve the encoding of relative event timing. 

 

1.3.2. Delay-tuned cells 

 

As explained previously, synchrony perception could be achieved via neural signals 

converging at specific hubs whose role is to estimate the coincidence of sensory inputs. In 

multisensory context, SC (Meredith et al., 1987) and dedicated structures in cortex, such 

as STS or insula (Benevento et al., 1977), have been shown to respond to synchronous 

multisensory stimuli. Additionally, these areas seem to play a prominent role in temporal 

audiovisual binding. Of interest, the multisensory neurons in these brain regions have 

different temporal tuning properties (Meredith et al., 1987). As multisensory neurons are 

sensitive to different temporal delays, audiovisual timing could be extracted from the 

whole population code (Roach et al., 2011; Cai et al., 2012; Heron et al., 2012). 

Computational models further suggest that the adaptation of these “delay-tuned neurons” 

could underlie reports of changes in subjective timing, such as during temporal 

recalibration (Roach et al., 2011; Cai et al., 2012) (fig. 1.5).  

While “time cells” _ which encode long durations stored in working memory _ have been 

found in the hippocampus (Pastalkova et al., 2008; MacDonald et al., 2011; Kraus et al., 

2013), the existence of similar mechanisms for the encoding of short perceptual timing in 

sensory and multisensory areas remain to be empirically tested. Other structures, in 

particular the cerebellum, have been hypothesized to encode time in a “interval-based 

fashion”, so that each temporal relation between task-dependent stimuli could be stored 

following a columnar organization (Ivry, 1996). Yet the main argument against the 

existence of delay-tuned neurons (or interval-based temporal code) is its mechanistic cost: 

a priori this mechanism needs infinity of cells to compute all possible delays between all 

possible perceived duets of features; as such it is not a parsimonious computational 

process (Brasselet et al., 2012). 
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Figure 1.5: Delay-tuned cells. (A) The interval-based model is based on a population code composed 

of neurons to different audiovisual delays (B) Neurons can adapt to a repeated audiovisual delay and 

change their tuning curves accordingly (C) After adaptation, the population code of delay-tuned cells 

can account for temporal recalibration, which consists in the bias in synchrony perception after the 

repeated exposure to asynchronous audiovisual stimuli. Adapted from (Roach et al., 2011) 

 

1.3.3. Brain clocks 

 

If time is measured in the external world with a clock, why wouldn’t the brain build its 

own clock for timing perception? Following this idea, another dedicated model for time 

perception suggests that the brain relies on an internal clock for estimating the passage of 

time (Treisman, 1963; Church, 1984). In this model, the clock is composed of a 

pacemaker, a counter and a comparator. The pacemaker consists in an oscillator ticking 

at a default frequency (Treisman et al., 1990, 1992).  The counter sums the number of 

ticks emitted by the pacemaker since stimulus onset, and the comparator receives 
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information from the counter to estimate the elapsed duration by comparing this 

representation of time with those stored in working memory (fig. 1.6).  

Crucially the pacemaker is the mechanism that serves for the encoding of temporal 

information, while the counter and the comparator are linked more to the accumulation 

of evidence and the decision on the perceptual content of time. The pacemaker thus 

provides the temporal reference on which the brain estimates relative timing between 

events. Importantly, its default frequency is not fixed; it can be modified by the arousal 

state of the individual or the temporal statistics of external inputs. As such the internal 

clock model can account for variability in explicit duration judgments, and can explain 

some characteristics of implicit temporal prediction as well (Schwartze and Kotz, 2013). 

Further evidence suggests that the internal clock should not only operate at one specific 

frequency (Church, 1984; Treisman, 1984; Treisman et al., 1990, 1992; Buhusi and 

Meck, 2009), and implies the presence of multiple fixed pacemakers for accurate 

frequency estimations (Buhusi and Meck, 2005, 2009). Additionally, the presence of 

adaptive pacemakers could account for changes in external timing depending of the 

properties of sensory stimuli (Treisman, 1984; Treisman et al., 1990). 

Pacemakers are instruments that fluctuate in periodic fashion. Neural oscillations have 

thus been hypothesized to be the best candidates in the role of pacemakers for conscious 

time estimation (Treisman et al., 1990; Pöppel, 1997; Buhusi and Meck, 2005, 2009). 

While previous accounts suggested that the Substancia Negra could play the role of the 

pacemaker for time perception in the absence of stimulation (Meck, 1996), the Striatal 

Beat Model (fig. 1.7) suggests that cortical oscillations may also play the role of 

pacemakers when judging the duration between successive events (Matell and Meck, 

2004). During timing estimation, cortical oscillations are read by striatum whose role is 

to detect stimulus onset and offset according to oscillatory coincidence between the 

different cortical oscillators. In turn, it sends back information to the cortex to correct the 

pacemakers if necessary. Hence, it appears that basal ganglia have a dedicated role in 

time estimation, which is to “read” timing through the behavior of non-dedicated-to-time 

cortical oscillations and to correct timing in cortex. Furthermore, according to this 

model, it appears that cortical oscillations may represent the internal temporal reference 

with which timing judgments are elaborated. 
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Figure 1.6: The clock model. The clock is composed of a pacemaker that emits regular pulses at a constant 

interval. The frequency of the pacemaker can be modulated by arousal factors. The counter records the 

numbers of pulses emitted by the pacemaker between two successive events. The resulting number of pulses 

is stored in working memory and could be either decoded as a verbal estimate or compared to previous 

stored items to judge the interval duration. Adapted from  (Treisman, 1963) 

 

 

In summary, two main dedicated mechanisms have been put forward for encoding the 

relative timing between events. A first model is based on the interval-based code where 

specific neurons are tuned to specific delays between specific sensory features. This 

mechanism seems very costly as there must be one cell for each relative duration and for 

each possible feature of sensation. The second model considers the existence of a brain 

clock which is composed of a pacemaker (the metric of time), a counter and a 

comparator. Interestingly, while counter and comparator mechanisms are suggested to 

rely on dedicated mechanisms; evidence implies that these mechanisms read the 

dynamics of cortical activity for the establishment of relative time. Particularly, it implies 

that neural oscillations in networks non-dedicated to the encoding of time _ in particular 

sensory areas _ could provide the metrics for conscious time. In the next section, we 

explore the putative role of cortical oscillations in the encoding of relative event timing 

for perception.  
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Figure 1.7: The Striatal Beat Model. Cortical oscillations (top panel) project onto basal ganglia (bottom 

panel), whose role is to detect coincidence in oscillatory activity (e.g. stimulus onset) and to continuously 

compare the states of cortical oscillations with the expected state detected at the time of the reward. 

Adapted from (Buhusi and Meck, 2005). 

 

 

1.4. ENCODING EVENT TIMING WITH BRAIN OSCILLATIONS 

 

As discussed in section 2, one main challenge for the brain is to recover the external 

timing of the world from its own dynamics. A first hypothesis states that the brain does 

not compensate for neural transmission delays from sensors to sensory areas, and thus 

that perceived timing equates neural timing. However, several bodies of work showed 

that neural transmission delays from stimulus onset to sensory area were bad indicators 

of perceived timing. Furthermore, many perceptual effects suggest that the time 

experiencer compensates for its internal neural temporal delays. Therefore, it has been 

suggested that perceived timing is encoded at a later stage of sensory processing via 

dedicated structures (Ivry and Schlerf, 2008). In this theoretical framework, timing 
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compensation could operate through the crossing of sensory informations at specific 

networks that are specialized for the encoding of timing. Yet it seems that most proposals 

of dedicated networks for the encoding of time depict networks that act as “readers” of 

temporal information. Interestingly, this temporal information might be retrieved from 

the dynamics of non-dedicated brain areas, including sensory networks. This means that 

the brain feeds on its internal temporal fluctuations to recover time. This view is close to  

what William James suggested, when stating that time perception could rely on “outward 

sensible series”, “heart beats” or “breathing”, but also on “the pulses of our attention, 

fragments of words or sentences that pass through our imagination”. Hence subjective 

timing could rely on the timing of mental activity. From a neuroscientific point of view, 

this suggests that ongoing brain dynamics provide the temporal grounds for the inner 

representation of time. Here, we review evidence that, among indices of brain dynamics, 

neural oscillatory activity is a relevant candidate to provide the ongoing metrics of time 

that could be used for sensory processing. 

 

1.4.1. Temporal binding through neural coherence 

 

Neural activity at neuron, network, or area level is characterized by well-described 

intrinsic periodic fluctuations that span across multiple time scales (Buzsáki and 

Draguhn, 2004; Roopun et al., 2008; Wang, 2010). These neural oscillations are observed 

through Local Field Potential (LFP) recordings within the brain, or with 

electroencephalography (EEG) and magnetoencephalograghy (MEG) that record 

electrical and magnetic fields coming out of the scalp of the subject. Although brain 

rhythms range from 0.02 Hz to 600 Hz (Buzsáki and Draguhn, 2004), they are usually 

classified within distinct frequency bands: infra-slow oscillations concern rhythms below 

1 Hz, delta oscillations corresponds to rhythms between 1-3Hz, theta oscillations span 

between 3-8 Hz, alpha oscillations between 8-13 Hz, beta oscillations between 15-25 Hz, 

gamma oscillations between 30 and 120 Hz, and ripples above 150 Hz.  

Neural oscillations typically reflect the synchronous fluctuating activity of a neural 

ensemble (Varela and Lachaux, 2001; Buzsáki, 2004, 2010; Lakatos et al., 2005): the 

presence of oscillations in the signal suggests that the overall activity of the neurons in the 

networks is grouped at certain periodic time points. Thus neural oscillations constitute a 
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marker of temporal coherency in local networks. Crucially, following the Hebbian rule 

“cells that wire together fire together”, it is suggested that the networks that are encoding 

a common perceptual object _ or “cell assembly” (Buzsáki, 2010)_ should fire within the 

same amount of time. If oscillations modulate neural synchrony, then they should 

provide mechanistic means for neurons that process the same attribute to communicate 

(Fries, 2005; Sejnowski and Paulsen, 2006; Buzsáki, 2010). The Hebbian rule is not 

restricted to local processing; it applies also to the coordination of distant brain regions 

that are encoding the same object. Then, neural oscillations should play a prominent role 

in the temporal binding of different sensory features (Pöppel et al., 1990; Engel et al., 

1991c, 1999; Senkowski et al., 2008; Pöppel, 2009) 

Gamma oscillations were first targeted to explain temporal binding. These oscillations 

are imputed to reveal the coordinated activity within small cell assemblies (Gray et al., 

1989; Engel et al., 1991a, 1991b, 1991c; Engel and Singer, 2001b; Fries, 2005, 2009; 

Sirota et al., 2008), considering that they reflect fluctuations of neural activity of the same 

time scale than the shortest recorded postsynaptic times constants (in the order of 10 ms-

30 ms) (Bragin et al., 1995).  Hence, one gamma oscillation cycle should provide the 

smallest encoding unit in the neural signal, and should reflect the temporal coherence of 

a fundamental cell assembly (Buzsáki, 2010). The first evidence linking gamma 

oscillation synchrony to feature binding has been observed in cat visual cortex. 

Synchronization of neural activity at gamma rate was observed within a visual column in 

primary visual cortex (Eckhorn et al., 1988), between two visual columns (Gray et al., 

1989; Engel et al., 1991b), across visual hemispheres (Engel et al., 1991c), and across 

distinct visual areas (Engel and Kreiter, 1991). Most importantly, gamma 

synchronization between two regions of cortex was only observed when they were 

encoding features from the same object, and not from distinct perceptual objects  (Engel 

et al., 1991a, 1991b) (fig. 1.10). Following studies on primate and human individuals 

confirmed that gamma synchronization between distinct brain regions is associated with 

cognitive binding (Tallon-Baudry et al., 1996; Roelfsema et al., 1997; Rodriguez et al., 

1999; Tallon-Baudry and Bertrand, 1999; Womelsdorf et al., 2006). Gamma oscillations 

synchrony between remote brain areas thus reflects information transfer between these 

regions. As far as sensory cortices are concerned, an increase in oscillation phase 

coherence can reflect temporal binding between different sensory attributes. Accordingly, 
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similar gamma activity synchronization has been observed across sensory regions and is 

related to cross-sensory binding mechanisms (Senkowski et al., 2008).  

 

 

Figure 1.10: Temporal binding through gamma oscillation coherence. (A and C) Stimulating visual 

columns 1 and 2 with single bars entailed (B and D) the inter-columnar synchronization of neural 

excitability at gamma frequency. (D) Stimulating the two columns with two distinct bars cause (E) no inter-

columnar synchronization. Adapted from (Engel et al., 1991b) 
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However, temporal binding by gamma synchrony between distant brain areas should be 

limited by anatomical conduction delays (von Stein and Sarnthein, 2000). It has thus 

been suggested that slower oscillations take part in communication mechanisms (von 

Stein and Sarnthein, 2000; Varela and Lachaux, 2001; Siegel et al., 2012), including beta 

(von Stein and Sarnthein, 2000; Hipp et al., 2011), alpha (Palva and Palva, 2011) , theta 

and even slower oscillations (Schroeder and Lakatos, 2009).  As such different oscillators 

with different time scales take part in temporal binding mechanisms. 

 

1.4.2. Oscillations affect perceptual temporal sampling 

 

Oscillatory activity reflects the temporal coherence of a neural ensemble, and also 

corresponds to cyclic fluctuations of a network’s excitability (Bishop, 1932; Lakatos et 

al., 2005). The phase of the neural oscillation is correlated with the firing rate of the 

network, independently of the oscillation frequency (Lakatos et al., 2005) (fig. 1.8). Thus, 

neural oscillations of different frequencies provide different windows of excitability that 

can serve to parse the neural signal into relevant encoding units. The networks that are 

active within one oscillation cycle may encode one perceptual entity _ or “neural word”; 

and the combination of succeeding neural words can constitute a neural “sentence” 

(Buzsáki, 2010). 

 

 

Figure 1.8: Brain oscillations reflect neural excitability. Multiunit activity (MUA) amplitude from 

primary auditory cortex in awake macaque monkey is modulated by the phase of delta (1–4 Hz, blue), 

theta (5–7 Hz, green) and gamma (25–50 Hz, red) oscillations. Adapted from (Lakatos et al., 2005; 

Schroeder et al., 2008) 
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Coding information through neural oscillations presents many advantages. First, 

silencing activity periodically is advantageous in terms of resources costs, considering 

that the generation of action potentials is energetically expensive (Laughlin and 

Sejnowski, 2003). Second, because it provides syntactic rules to silence neural activity, it 

constitutes a code of well-separated messages that should be easier to interpret than 

uninterrupted signals. As such, an oscillation code should transmit information more 

effectively than continuous spiking activity (Sakurai, 1999; Wickelgren, 1999).  

Yet, the chunking of the neural signal into units of information has a crucial consequence 

for perceptual coding schemes. It suggests that sensory input is not processed 

continuously, but discretized into quanta of information (Stroud, 1967). Numerous 

studies confirm that sensory information is sampled during sensory processing (Purves, 

1996; VanRullen and Koch, 2003; VanRullen et al., 2006; Fiebelkorn et al., 2011; Giraud 

and Poeppel, 2012; VanRullen and Macdonald, 2012; Sokoliuk and VanRullen, 2013). 

The most convincing illustration of the sampling of sensory information comes from the 

invention of the cinema. Perceiving continuity when watching a movie necessitates the 

humans’ inability to perceive the discrete succession of images. This suggests that the 

human visual system does not process stimulus dynamics continuously, but integrates the 

signal in bits of information. The fact we perceive continuity in the visual world 

constitutes another introspective evidence of the existence of discrete sensory sampling 

processes. If we were able to perceive the continuous flow of visual information, we 

would be aware of the abrupt changes in visual scenes due to saccadic eye movements 

(Andrews and Coppola, 1999).   

If the temporal resolution of perception relies on an endogenous neural oscillation that 

acts as a “sampler”, it implies that sensory information could only correctly be perceived 

if it fluctuates at a relatively slow rate. If stimulation dynamics are as fast as half the 

frequency of the neural sampler, temporal aliasing should be observed. Aliasing occurs 

when a signal is discretely sampled at a rate that is insufficient for capturing all the 

variations in the signal. A typical example of this phenomenon often observed in films is 

the wagon-wheel illusion. When the rotation speed of a filmed wheel is slower than twice 

the movie frame rate, the wheel is perceived rotating backward while the vehicle is 

clearly moving forward (Purves, 1996). Consistent with a neural sampling mechanism of 

visual stimulation, this illusion can be observed in reality (Purves, 1996; VanRullen et al., 



31 
 

2005b). However, the percept of the illusory backward rotation is however not stable but 

alternates with the true forward rotation over time (Purves, 1996; VanRullen et al., 

2005b). This effect has been quantified in studies showing that a 10 Hz rotation 

maximized the effect (VanRullen et al., 2005b). Additionally, EEG data confirmed the 

implication of neural oscillations, showing that alpha power (13 Hz) predicted reversals 

of perceived rotation (VanRullen et al., 2006). Interestingly, oscillations in the alpha band 

(8-13 Hz) are dominant in occipital and parietal regions. The brain might thus capitalize 

on this prominent oscillation to sample sensory signal into perceptual coherent units. 

Consistently, several studies showed the association between alpha oscillations activity 

and visual temporal sampling. In particular synchrony judgments between two static 

flashes (Varela et al., 1981; Gho and Varela, 1988), and between a moving and a static 

stimulus (Chakravarthi and Vanrullen, 2012) in the flash-lag effect are predicted by pre-

stimulus alpha phase.  

The present results suggest that one cycle of a neural oscillation encodes for one temporal 

sample of sensory information. But it has also been suggested that oscillation phases 

provide deeper insight into the fine-grained coding of sensory information within one 

duty cycle.  As neural oscillations shape neural excitability in time (Lakatos et al., 2005), 

it entails that perceptual excitability should be maximal at some particular phase of the 

oscillation cycle, and minimal at the opposite phase. Neuroimaging results validate this 

prediction, by showing that perceptual detection and discrimination is determined by pre-

stimulus oscillation phase (Monto et al., 2008; Busch et al., 2009; Romei et al., 2009, 

2012; Mathewson et al., 2010; Chakravarthi and Vanrullen, 2012; Henry and Obleser, 

2012; Neuling et al., 2012a). For instance, the detection of a near threshold visual 

stimulus could be predicted by pre-stimulus alpha phase in visual and frontal cortex 

(Busch et al., 2009; Mathewson et al., 2010) (fig. 1.9). Similarly, applying a rhythmic 

external current via oscillating transcranial direct current stimulation at 10 Hz can 

generate oscillatory activity in the auditory cortex;  and the phase at stimulus onset of the 

engendered oscillation predicts auditory detection (Neuling et al., 2012a).  

The shaping of perceptual excitability by slow oscillations suggests that periods of 

excitability are followed by periods of inhibition. Interestingly, the peaks of slow 

oscillations are usually associated with periods of low neural excitability (Lakatos et al., 

2005; Haegens et al., 2011), suggesting that slow oscillations may actually reflect the 
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silencing of neural excitability. In line with this idea, strong slow oscillating components 

in the signal have been associated with sensorimotor inhibition (Linkenkaer-Hansen, 

2004; van Dijk et al., 2008; Jensen and Mazaheri, 2010). Moreover, studies show 

evidence that stronger slow oscillation power entails more pronounced cyclic stimulus 

inhibition (Jensen and Mazaheri, 2010; Haegens et al., 2011; Mathewson et al., 2011, 

2012; Joundi et al., 2012). 

 

 

 

Figure 1.9: Cortical oscillations shape perception in time. (A) Endogenous pre-stimulus alpha phase in 

fronto-central areas predict whether a visual stimulus will be detected or missed. Adapted from (Busch et 

al., 2009). (B) Infra-slow frequency (ISF, <1 Hz) oscillation phase has also an impact on visual detection. 

Adapted from (Monto et al., 2008).   

 

 



33 
 

Brain oscillations are ubiquitous to neural activity, and are present in the total absence of 

external stimulation (Buzsáki and Draguhn, 2004). However, there is strong evidence 

that brain oscillations are modulated in the presence of sensory inputs, first by phase reset  

(Fiebelkorn et al., 2011; Thorne et al., 2011; Romei et al., 2012; Thorne and Debener, 

2014), and second via entrainment (Schroeder and Lakatos, 2009). Neural entrainment 

reflects the propensity of sensory cortices to tune to the dynamics of the world and to 

follow environmental rhythms (Rees et al., 1986; Hari, 1989). Knowing that oscillations 

shape perception in time, neural entrainment thus provide a plausible mechanism for 

improving perceptual performances at expected temporal points (Lakatos et al., 2008; 

Stefanics et al., 2010b; Henry and Obleser, 2012; Mathewson et al., 2012; Cravo et al., 

2013; Graaf et al., 2013), and could present a valuable explanation for known 

psychophysical results on rhythmic expectation (Jones and Boltz, 1989; Barnes and 

Jones, 2000; Mathewson et al., 2010). 

 

Overall, the present findings point to a clear role of cortical oscillations in the temporal 

sampling of perception. Yet, reducing oscillations to temporal “samplers" could have 

detrimental consequences on perception. Sampling implies that sensory information 

which occurs within the sample period is reduced to one unit of neural information. 

Hence, if a cognitive function is based on the recruitment of a neural oscillation, it should 

entail that the sensory dynamics that are faster than the oscillation frequency could not be 

retrieved anymore. Yet, to the contrary, growing evidence suggests that fine-grained 

temporal information across different time scales could still be processed owing to the 

parallelization of multiple neural oscillators. 

 

1.4.3. Neural phase codes of events succession 

 

A fundamental property of neural syntax code proposed by Buzsáki (2010) is that the 

smallest units of the neural codes, e.g. the gamma oscillations bursts (Gray et al., 1989; 

Engel et al., 1991a, 1991b, 1991c; Engel and Singer, 2001b; Fries, 2005, 2009; Sirota et 

al., 2008), are embedded together to form more complex units of information. Thus, the 

temporal sequencing of distinct neural assemblies is at the core of the multiplexing of 

information in neuroscience. To do so, gamma oscillations bursts are grouped by slower 
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oscillations (Bragin et al., 1995; Lakatos et al., 2005; Canolty et al., 2006; Sirota et al., 

2008; Buzsáki, 2010; Canolty and Knight, 2010; Siegel et al., 2012).  

As reviewed previously, the nesting of fast oscillations within slower oscillations could 

reflect the temporal integration (or sampling) of smaller units of information into a more 

complex unit. Integration means that all information contained in the smaller units is 

aggregated, and as such that they cannot be retrieved separately anymore. It predicts in 

particular that the temporal information of each smaller unit of information should be 

lost. Some reports support this view by showing that delayed stimuli were perceived as 

synchronous if they arrived within the same cycle of a slow oscillation (Varela et al., 

1981; Gho and Varela, 1988). Yet, several studies suggest that information relayed by fast 

oscillations is not “blurred” if coupled to slow oscillations. To the contrary slow and fast 

oscillations may work in parallel, and encode distinct aspects of perception in a 

hierarchical scheme (Lakatos et al., 2005; Schroeder et al., 2008; Ghitza, 2011; Giraud 

and Poeppel, 2012).   

Here, we distinguish chunking (or parsing) from integration (or sampling). In opposition 

to integrative mechanisms, chunking mechanisms “only” serve the cutting of the signal 

into relevant temporal units. Chunking amounts to delineating a temporal window of 

processing, without merging the information that is present within this time window. As 

such, chunking provides relevant temporal markers for one cognitive processing, without 

deteriorating finer temporal information. A particularly relevant case where oscillatory 

chunking may operate is during speech processing. It has been hypothesized that the 

comprehension of spoken sentences relies on banks of neural oscillators with different 

frequencies (delta, theta, and gamma oscillations) that chunk in parallel the different 

units of language (phonemes, syllables and words) in the acoustic signal (Ghitza, 2011; 

Giraud and Poeppel, 2012).  

If slow oscillations serve as a means for temporal binding, some information at higher 

time scales could still be preserved for correct sensory processing. High-frequency 

oscillations coupled to low-frequency oscillations should provide additional information 

on stimulus properties. The position of fast temporal dynamics within the slow 

oscillation cycle is not insignificant. It can constitute a powerful temporal code for 

perception (Montemurro et al., 2008; Kayser et al., 2009, 2012; Panzeri et al., 2010; Ng 

et al., 2013): the timing of spiking activity according to the phase of slow ongoing 
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oscillations is shown to be a reliable decoder of sensory content (Montemurro et al., 

2008; Kayser et al., 2009; Panzeri et al., 2010; Ng et al., 2013). More precisely, different 

phases of slow oscillations provide temporal tags to partition neural spiking activity into 

meaningful bits of information. This encoding scheme is almost as efficient as using 

temporal windows that are locked to stimulus onset (Kayser et al., 2009, 2012; Ng et al., 

2013). Therefore, owing to neural oscillations, the brain is able to extract stimulus 

information in time without the a priori knowledge of external timing. 

 

Crucially for temporal perception, the ordering of gamma bursts within the slower 

oscillation cycle may have the general role of representing sensory event succession 

(Lisman, 2005; Lisman and Jensen, 2013). This hypothesis is supported by numerous 

findings of phase precession mechanisms in rat hippocampus during navigation (fig. 

1.11). When the rat moves in a maze, it activates neurons in the hippocampus that 

encodes for a particular position in space. Phase precession refers to the fact that each of 

these “place cells” fire within a specific gamma burst that is coupled to a slow 

endogenous theta rhythm (O’Keefe and Recce, 1993; Bragin et al., 1995; Skaggs et al., 

1996). Remarkably, place cells that fire in successive gamma cycles encode neighboring 

locations and the ordering of place cells activation within one theta cycle reflects the 

sequential order of locations explored by the rat in the maze (Jensen and Lisman, 1996, 

2000; Skaggs et al., 1996; Pastalkova et al., 2008).    

 

Phase precession mechanisms have also been reported between hippocampal theta and 

prefrontal areas (Jones and Wilson, 2005), and within cortical areas such as entorhinal 

cortex (Hafting et al., 2008). It has been hypothesized that phase precession provides a 

general mechanism for computing the temporal order of items (Lisman, 2005; Nadasdy, 

2010; Lisman and Jensen, 2013). Computational models even suggest that interactions 

between sensory cortices and the hippocampus might be at the origins of known phase 

precession mechanisms (Nadasdy, 2010). Recent results further imply that phase 

precession is used in visual cortex as a mean to order visual elements by saliency 

(Bonnefond and Jensen, 2012). Even if the represented information is not temporal per 

se, an ordered saliency map in alpha cycle could serve the prioritization of conscious 

access to the more salient stimuli (Jensen et al., 2012), and as such could have an 

influence in its perceived relative temporal order.   



36 
 

 

Figure 1.11: Phase precession mechanisms permit the temporal ordering of memorized items. When the 

rat traverses the maze, it activates different places cells with encodes neighboring locations (P1 to P8). 

Place cells fire (colored bars) at different phases of the hippocampal theta. The order reflects the path taken 

by the animal. Adapted from (Buzsáki, 2010) 

 

 

The present findings suggest that the brain could use neural oscillations as an internal 

reference of time. Specifically, the phase of firing of neural networks according to the 

slow oscillation internal inference participates in the representation of sensory content 

(Panzeri et al., 2010; Kayser et al., 2012). In particular, the phase of cortical oscillations 

could represent the perceived order of successive events (Lisman, 2005; Lisman and 

Jensen, 2013). Knowing that oscillations may also constitute time metrics for perception 

(Matell and Meck, 2004; Buhusi and Meck, 2005), could the relative phase between 

successive events also encode relative timing? 

 

1.4.4. Phase tagging of perceived event timing? 

 

It appears that the brain uses oscillations in cortex as internal reference frames for time 

perception. First, cortical oscillations may provide internal metrics of time for duration 

perception. Second, the time course of stimulus-related neural activity in relation to the 

phase of slower oscillations reflects the order of presentation of sensory events. On one 
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hand brain oscillations are metronomes, and on the other hand oscillations line up 

percepts in temporal order. Hence, a simple way for the brain to compute relative timing 

between events would be to measure the phase distance at which fire the cell assemblies 

that encode each stimulus. Therefore, the relative phase should not only reflect temporal 

order but also the temporal distance between sensory events. The resulting measure of 

relative event timing would certainly depart from the veridical timing between sensory 

events. In this thesis, we tested the hypothesis that phase distance between sensory events 

processing reflects the perceived timing between these events. In other words, subjective 

event timing should be given by the phase position of the event-related neural response 

within the internal clock reference. 

 

It is well-known that temporal perception is very variable within and across individuals. 

This variability both concerns explicit and implicit temporal judgments. With three 

experiments, we specifically questioned whether variability in explicit and implicit timing 

perception could be explained by phase shifts of stimulus responses within the 

“pacemaker” oscillation.  

 

If these mechanisms do exist, then which oscillation serves as a temporal reference? One 

possibility is that the brain uses prevalent endogenous rhythms such as hippocampal 

theta or parieto-visual alpha. Here, following the idea that the brain tunes its reference of 

time to external temporal information, we tested the hypothesis that the brain uses 

entrainment as a mean to infer time perception in a plastic fashion. The phenomenon of 

entrainment is particularly interesting because (1) it is present in many ecological 

situations (Schroeder and Lakatos, 2009), (2) it is a situation where oscillatory activity is 

prominent is sensory cortices and then reliable (Regan, 1966; Rees et al., 1986; Hari, 

1989; Capilla et al., 2011), (3) it is not a passive response to stimulation, as it is 

modulated by cognitive factors such as attention (Lakatos et al., 2008; Besle et al., 2011; 

Nozaradan et al., 2011; Zion Golumbic et al., 2013), or temporal expectation (Stefanics 

et al., 2010b; Hsu et al., 2013). Hence variability in entrainment could be observed within 

participants and between participants (Besle et al., 2011). As such we tested whether this 

variability could explain variability in timing perception. 
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The next four chapters will cover the following aspects: 

 

Chapter 2 will concern the link between oscillations and explicit timing. The 

results confirmed that variations in the entrained oscillation in sensory cortices predict 

how individuals perceive audiovisual timing. In a pilot experiment we also questioned 

the existence of endogenous brain clocks in the absence of stimulation. 

While chapter 2 focuses on the effect of slow oscillatory entrainment in the 

emergence of time, in Chapter 3 we questioned whether entrainment to fast rhythms 

could also provide a temporal code for audiovisual perception. The reported findings 

suggest that rhythmic audiovisual binding mechanisms are limited to low-frequency 

oscillations in the delta range (1-2 Hz).  

In chapter 4, we investigated the role of oscillatory entrainment in the tagging of 

event timing in an implicit temporal task, e.g. in a speech chunking task. 

Finally, Chapter 5 provides a general commentary on the role of oscillatory phase 

in the temporal tagging of events. 
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CHAPTER 2:  

PHASE ENCODING OF EXPLICIT TIMING 

 

 

2.1. INTRODUCTION  

 

2.1.1. Motivation 

 

In this experiment, we tested the hypothesis that the brain capitalizes on external 

temporal regularities and uses entrainment to build up a temporal reference frame for 

explicit timing. We focused in particular on audiovisual timing for the following reasons: 

- Audiovisual perception is a classic situation in which the temporal binding 

problem is at stake. As explained in the introduction, auditory and visual inputs 

do not reach primary sensory areas at the same time (Heil and Irvine, 1997; 

Schmolesky et al., 1998). Audiovisual input timing is also highly modulated by 

external factors due to the different speeds between light and sound.  As such, the 

brain should use strategies to flexibly compensate for these variable external 

delays. Accordingly, perceived audiovisual timing has been shown to be 

influenced by context (Sugita and Suzuki, 2003), experience (Fujisaki et al., 2004; 

Vroomen et al., 2004; Yamamoto et al., 2012), and importantly, it is strongly 

variable between individuals (Stone et al., 2001; Love et al., 2013).  

- Neural entrainment is cross-modal. The presentation of slow auditory rhythms 

will entrain delta (1-3Hz) oscillations in both auditory and visual areas (Lakatos et 

al., 2008; Besle et al., 2011). Similarly, auditory cortex can be entrained to visual 

rhythms (Besle et al., 2011; Gomez-Ramirez et al., 2011). As such, low-frequency 

oscillatory entrainment has been proposed to support audiovisual temporal 

binding by driving cross-modal attentional selection (Schroeder and Lakatos, 

2009).  
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- Auditory and visual regions are well separated in cortex, allowing the segregation 

of their neural signatures more easily with MEG techniques. 

 

2.1.2. Experiment 

 

In this MEG study, participants underwent a series of adaptations to asynchronous 

audiovisual events. Presenting repeatedly delayed audiovisual information is known to 

induce perceptual changes in audiovisual timing (Fujisaki et al., 2004; Vroomen et al., 

2004; Yamamoto et al., 2012). It indicates that long rhythmic exposure to delayed stimuli 

modifies the brain’s internal reference frame of time. Of interest, the rhythmic 

presentation of audiovisual stimuli at a 1 Hz frequency will likely entrain auditory and 

visual cortices. Therefore, we investigated whether entrainment would be a passive 

response to sensory stimulus, or whether it could be modulated through adaptation. 

Furthermore, if the entrained oscillation serves as a reference frame for audiovisual 

timing, it should entail that any change in the entrainment response should be 

commensurate with a change in audiovisual timing.  

 

2.1.3. Summary of the results 

 

The repeated presentation of asynchronous audiovisual stimuli led to non-stationary 1Hz 

entrainment in sensory cortices: the preferential phase at this frequency was significantly 

shifted between the beginning and the end of the adaptation period. Individuals’ reports 

of subjective simultaneity linearly mapped onto the phase shifts of auditory but not visual 

neural responses (fig 2.1). Overall, the present results provide evidence that entrained 

oscillations play a role in the subjective estimation of audiovisual timing. This further 

suggests that auditory cortex recalibrates its timing to the visual response that serves as a 

temporal anchor. 
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Figure 2.1: Summary of the results. Phase shifts were observed during the beginning and the end of the 

adaptation period, while no difference was observed in the sensory evoked responses. These results are seen 

through the external reference frame centered on event onset (left panel). If we now place ourselves on the 

entrained oscillation reference frame (right panel), we see that evoked responses are clearly shifted in time 

according to this reference. The results of this experiment suggest that this shift correspond quantitatively to 

the perceived shift in timing between auditory and visual information.      

 

 

 

2.2. ARTICLE 

 

Anne Kösem, Alexandre Gramfort, Virginie van Wassenhove (accepted). Encoding of event 

timing in the phase of neural oscillations. Neuroimage 

 



42 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



43 
 

ENCODING OF EVENT TIMING IN THE PHASE OF NEURAL 
OSCILLATIONS 

 
Anne Kösem 1-3, Alexandre Gramfort 2, 4, 5, Virginie van Wassenhove1-3* 

1INSERM, U992, Cognitive Neuroimaging Unit, F-91191 Gif/Yvette, France. 
2 CEA, DSV/I2BM, NeuroSpin Center, F-91191 Gif/Yvette, France. 

3 Univ Paris-Sud, Cognitive Neuroimaging Unit, F-91191 Gif/Yvette, France. 
4 INRIA, Parietal team, Saclay, F-91191 Gif-sur-Yvette, France. 

5 LNAO, NeuroSpin, CEA Saclay, F-91191 Gif-sur-Yvette, France. 
 

ABSTRACT   

Time perception is a critical component of conscious experience. To be in synchrony with the 

environment, the brain must not only deal with differences in the speed of light and sound but 

also with its computational and neural transmission delays. Here, we asked whether the brain 

could actively compensate for temporal delays by changing its processing time. Specifically, 

can changes in neural timing or in the phase of neural oscillations index perceived timing? For 

this, a lag-adaptation paradigm was used to manipulate participants’ perceived audiovisual 

(AV) simultaneity of events while they were recorded with magnetoencephalography (MEG). 

Desynchronized AV stimuli were presented rhythmically to elicit a robust 1 Hz frequency-

tagging of auditory and visual cortical responses. As participants’ perception of AV 

simultaneity shifted, systematic changes in the phase of entrained neural oscillations were 

observed. This suggests that neural entrainment is not a passive response and that the 

entrained neural oscillation shifts in time. Crucially, our results indicate that shifts in neural 

timing in auditory cortices linearly map participants’ perceived AV simultaneity. To our 

knowledge, these results provide the first mechanistic evidence for active neural 

compensation in the encoding of sensory event timing in support of the emergence of time 

awareness. 

 

KEYWORDS: MEG, oscillatory entrainment, temporal order, simultaneity, internal clock. 

1. INTRODUCTION  
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While dedicated neural structures for time perception have been described (Buhusi and Meck, 

2005; Coull et al., 2004; Harrington et al., 1998; Ivry and Schlerf, 2008; Morillon et al., 2009; 

Treisman et al., 1990; van Wassenhove, 2009; Wittmann, 2013, 2009), the encoding of 

sensory event timing has been proposed to result from the intrinsic dynamics of neural 

populations not necessarily dedicated to temporal processing (Johnston and Nishida, 2001; 

Karmarkar and Buonomano, 2007; van Wassenhove, 2009). For instance, the timing of a 

colored visual patch could be encoded in the dynamics of the neural population dedicated to 

the analysis of color (Karmarkar and Buonomano, 2007; Moutoussis and Zeki, 1997). In this 

non-dedicated view, the latency of neural responses could provide an index for event timing  

(Johnston and Nishida, 2001; Zeki and Bartels, 1998). Under this latency code hypothesis, 

timing mechanisms are based on the changes of neural routing delays in sensory areas coding 

for a specific sensory attribute (Moutoussis and Zeki, 1997; Zeki and Bartels, 1998). To date 

however, electroencephalographic (EEG) studies have reported little-to-no correspondence 

between neural latencies and participants’ perceived timing (McDonald et al., 2005; Vibell et 

al., 2007), and rather suggest that it is the phase of neural oscillations that plays a crucial role 

in the encoding of visual event timing (Chakravarthi and Vanrullen, 2012; Gho and Varela, 

1988). 

 

We here provide further evidence that the encoding of event timing is realized in the phase of 

neural oscillations (in auditory cortex). It is well known that distinct phases of low-frequency 

neural oscillations are associated with periods of high and low neural excitability (Buzsáki, 

2010; Lakatos et al., 2008).  These fluctuations have been shown to impose temporal 

constraints on the “what” of perception by modulating the perceptual detection threshold of 

various stimuli (Busch et al., 2009; Fiebelkorn et al., 2013; Henry and Obleser, 2012; Monto 

et al., 2008; Neuling et al., 2012). They have also been proposed to serve parsing and 

informational chunking of sensory information over time (VanRullen and Koch, 2003) 

notably for complex temporal structures such as speech (Giraud and Poeppel, 2012). Indeed, 

neural oscillations are known to be entrained to external rhythms (Rees et al., 1986; Regan, 

1966) and this entrainment may allow the alignment of cortical processing to  the timing of 

sensory events (Giraud and Poeppel, 2012; Schroeder and Lakatos, 2009). As such, this 

mechanism naturally provides a means for the brain to internalize external temporal 

regularities (Schroeder and Lakatos, 2009). In line with this proposal, the phase of low-

frequency neural oscillations has been shown to reflect temporal expectancy or predictability 

of event timing (Stefanics et al., 2010).  Here, we hypothesize that the brain could use 
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oscillatory entrainment to establish a temporal reference frame and we thus ask whether the 

phase of entrained neural oscillations actually encodes the “when” of perception. Specifically, 

the preferred phase of oscillatory entrainment is known to be context-dependent (Besle et al., 

2011; Gomez-Ramirez et al., 2011; Lakatos et al., 2008; Rees et al., 1986), suggesting that 

neural entrainment may not be a passive neural response. Additionally,  preferential phases of 

entrained neural oscillations are subject-specific (Besle et al., 2011), making this neural index 

particularly well-suited for investigating the highly subjective and variable nature of time 

perception. 

 

To test the specific hypothesis that the phase of an entrained neural oscillation directly 

informs on the variability of conscious timing, we transiently shifted participants’ perceived 

timing using a lag-adaptation paradigm (Fujisaki et al., 2004; Miyazaki et al., 2006; Vroomen 

et al., 2004). Figure 1 provides an overview of the experimental paradigm. During the induced 

changes of perceived timing, participants’ brain activity was recorded with 

magnetoencephalography (MEG). During a given lag-adaptation block, audiovisual stimuli 

were presented rhythmically to induce an entrainment of oscillatory activity in sensory 

cortices. Analysis of MEG data showed that the preferential phase of entrained neural 

oscillations shifted during adaptation. Crucially, phase shifts of neural oscillatory entrainment 

in auditory cortex mirrored individuals’ perceived simultaneity.  

 

2. MATERIALS AND METHODS 

 

2.1. Participants 

Nineteen participants (7 females, mean age: 24 years old) took part in the study. All had 

normal or corrected-to-normal vision, normal color vision and normal hearing, and were naive 

as to the purpose of the study. Each participant provided a written informed consent in 

accordance with the Declaration of Helsinki (2008) and the Ethics Committee on Human 

Research at NeuroSpin (Gif-sur-Yvette, France). Three subjects were excluded from the 

study: one subject did not finish the experiment, and two were unable to perform the temporal 

order judgment task properly. A total of sixteen participants were thus considered for MEG 

analyses. 
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Fig. 1: Experimental design. (A) Three different audiovisual (AV) lag-adaptations were tested: simultaneous 
AV presentation (S, black), sound leading visual by 200 ms (A200V, red) and visual leading sound by 200 ms 
(V200A, green). Each lag-adaptation block was followed by a temporal order judgment (TOJ) block during 
which participants reported which of the auditory or visual event occurred first. One MEG session comprised 
eight blocks of each lag-adaptation (S, V200A and A200V). S blocks were run at the beginning and at the end of 
the MEG session; A200V and V200A alternated within the session. (B) In all lag-adaptation blocks, 65 AV 
stimuli were presented at an average rate of 1 Hz with a random jitter of +/- 100 ms. This experimental 
manipulation was designed to elicit neural entrainment at 1 Hz in sensory cortices. 

 

2.2. Stimuli  

The experiment was written in Matlab using the Psychophysics toolbox (Brainard, 1997). 

Visual stimuli consisted of disks lasting 16.7 ms (1 frame). A visual annulus (9.5° of visual 

angle) consisted in the superposition of circles with different shades of gray. Visual stimuli 

were projected at a 60Hz refresh rate onto a screen placed 90 cm away from participants 

seated under the MEG dewar. Auditory stimuli consisted of 16 ms duration white noise (incl. 

5 ms fade-in and fade-out). Auditory stimuli were presented via Etymotic earphones 

(Etymotic Research Inc., USA). 

       

2.3. Procedure 



47 
 

Two types of blocks were used in this experiment namely, lag-adaptation (3 conditions: S, 

A200V or V200A) and temporal order judgment (TOJ) blocks. In the lag-adaptation blocks 

(Fig. 1b), a series of simultaneous (S) or desynchronized audiovisual events were displayed 

(A200V: audition leading vision by 200 ms or V200A: vision leading audition by 200 ms). 

During the lag-adaptation block, a stream of 65 AV stimuli was presented. The stream of AV 

events was displayed at an average rate of 1 Hz; the stimulus onset asynchrony (SOA) 

between two successive auditory or visual stimuli was randomly chosen from a normal 

distribution with a mean of 1s and a standard deviation of 100 ms: thus, each SOA has 95% 

probability to fall between 804 ms and 1196 ms. The first 20 AV events and the last 15 AV 

events in the stream were made up of stimuli with a constant temporal lag. Three lags were 

tested: in the S condition, AV stimuli were synchronously displayed (lag = 0 ms); in the 

A200V condition, the sound preceded the visual stimulus by 200 ms and in the V200A 

condition, the visual stimulus preceded the sound by 200 ms. During the lag-adaptation block, 

participants were asked to count the number of temporal deviants that were introduced in the 

middle part of the lag-adaptation block. Temporal AV deviants consisted of desynchronized 

AV stimuli that deviated from the constant lag introduced at the beginning of the block. This 

task was introduced to insure participants attended the temporal dimension of the AV stream 

which was reported to enhance temporal recalibration effects (Heron et al., 2010). Crucially 

however, only the first 20 and last 15 AV stimuli are reported here namely the periods during 

which no temporal deviants were introduced. Each lag-adaptation block was systematically 

followed by a TOJ in which participants’ subjective simultaneity of AV events was evaluated. 

In the TOJ blocks, AV stimuli were displayed with delays ranging from +/-317, +/-217, +/-

133, +/-67, and 0 (a negative delay corresponds to the auditory leads and a positive delay 

corresponds to visual leads). After each presentation of an AV pair, participants had to judge 

which of the sound or the visual event appeared first in a two alternative forced choice (2-

AFC). Each condition was tested four times leading to a total of 36 trials in the TOJ blocks.  

The experiment started and ended with 4 S blocks (i.e. 4 times S + TOJ). Other blocks were 

alternated between A200V and V200A condition. In total, each condition was run in 8 lag-

adaptation + TOJ blocks leading to a total of 24 blocks (Fig. 1a). 

 

2.4. Data acquisition and preprocessing 
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2.4.1. MEG data acquisition 

Brain magnetic fields were collected in a magnetically shielded room using the whole-head 

Elekta Neuromag Vector View 306 MEG system (Neuromag Elekta LTD, Helsinki) equipped 

with 102 triple-sensor elements (two orthogonal planar gradiometers and one magnetometer 

per location). Participants were seated in upright position. Participants’ head position was 

measured before each block with four head position coils (HPI) placed over frontal and 

mastoïd areas. Three fiducial points (nasion, left and right pre-auricular areas) and were used 

during the digitization procedure to help coregistration with anatomical MRI. MEG 

recordings were sampled at 1 kHz; band-pass filtered between 0.03 Hz and 330 Hz and used 

Maxshield. The electro-occulograms (EOG, horizontal and vertical eye movements) and 

electrocardiogram (ECG) were simultaneous recorded with MEG. Before each experiment, a 

so-called empty room recording of about 1 minute with no subject sitting under the dewar was 

acquired for the computation of the noise covariance matrix.  

 

2.4.2 MEG data preprocessing 

Signal Space Separation (SSS) method was applied to decrease the impact of external noise 

(Taulu et al., 2003). SSS correction, head movement compensation, and bad channel rejection 

was done using MaxFilter Software (Elekta Neuromag). Signal-space projection (SSP) were 

computed by principal component analysis (PCA) using Graph software (Elekta Neuromag) 

to correct for eye-blinks and cardiac artifacts (Uusitalo and Ilmoniemi, 1997). A rejection 

criterion for epochs was applied for gradiometers with amplitude exceeding 4000 e-13T/m. 

 

2.4.3. Structural MRI acquisition 

Magnetic Resonance Imaging (MRI) was used to provide high-resolution structural image of 

each individual’s brain. The anatomical MRI was recorded using a 3-T Siemens Trio MRI 

scanner. Parameters of the sequence were: voxel size: 1.0 x 1.0 x 1.1 mm; acquisition time: 

466 s; repetition time TR = 2300 ms; and echo time TE= 2.98 ms.  

 

2.4.5 Anatomical MRI segmentation 

Volumetric segmentation of participants’ anatomical MRI and cortical surface reconstruction 
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was performed with the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 

1999; Fischl and Dale, 2000). These procedures were used for group analysis with the MNE 

suite software (http://www.martinos.org/mne/). Individuals’ current estimates were registered 

onto the Freesurfer average brain for surface based analysis and visualization. 

 

2.4.6. Co-registration procedure (MEG-aMRI) 

The co-registration of MEG data with the individual’s structural MRI was carried out by 

realigning the digitized fiducial points with MRI slices. Using mne_analyze within the MNE 

suite, digitized fiducial points were aligned manually with the multimodal markers on the 

automatically extracted scalp of the participant. To insure reliable co-registration, an iterative 

refinement procedure was then used to realign all digitized points (about 30 more 

supplementary points distributed on the scalp of the subject) with the individual’s scalp. 

 

     2.5. Data analysis 

2.5.1. MEG source reconstruction 

Individual forward solutions for all source locations located on the cortical sheet were 

computed using a 3-layers boundary element model (BEM) (Hämäläinen and Sarvas, 1989) 

constrained by the individual’s anatomical MRI. Cortical surfaces extracted with FreeSurfer 

were sub-sampled to about 5,120 equally spaced vertices on each hemisphere. The noise 

covariance matrix for each individual was estimated from the raw empty room MEG 

recordings preceding the individual’s MEG acquisition. The forward solution, noise 

covariance and source covariance matrices were used to calculate the dSPM estimates (Dale 

et al., 1999). The inverse computation was done using a loose orientation constraint (loose 

=0.2, depth  = 0.8)  (Lin et al., 2006). The cortically constrained reconstructed sources were 

then registered, morphed, onto the FreeSurfer average brain for group-level statistical analysis 

that was performed with MNE-python (Gramfort et al., 2013a, 2013b). 

 

2.5.2. Labels of interest 

http://surfer.nmr.mgh.harvard.edu/
http://www.martinos.org/mne/
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We restricted the analysis to labels of interest in auditory and visual sensory cortices in the 

right hemisphere on the average Freesurfer brain after morphing. Known hemispheric 

asymmetries in auditory cortex have consequences on the signal-to-noise ratio of MEG 

recordings across hemispheres (Shaw et al., 2013). Consistent with this, a great majority of 

our participants showed a higher and more reliable SNR in the right hemisphere. Labels were 

drawn individually based on the following two criteria: (i) maximal amplitude of the M100 

response to auditory (resp. visual) stimulus for the auditory (resp. visual) label; (ii) 

consistency with functional anatomy. Individuals’ labels are presented in figure S1 

superimposed on the Freesurfer average brain. 

 

2.5.3. Event-related fields and source reconstruction 

Event-related fields (ERF) were computed by averaging 15 trials at the beginning and at the 

end of a lag-adaptation block. Data were gathered across the 8 lag-adaptation blocks for each 

asynchrony condition (S, A200V, V200A). For auditory ERF, the stimulus onset was locked 

to the sound onset; for visual ERF, the stimulus onset was locked to the visual stimulus. Data 

were segmented in epochs of 1s (400 ms pre- and 600 ms post-stimulus onset). Baseline 

correction was applied using the first 200 ms of the epoch (-400 to -200 ms pre-stimulus 

onset). The inverse solver used to localize the sources was then applied on the averaged 

normed evoked data. The normalization procedure was done to alleviate source cancellation 

when averaging sources within a label of interest, and across subjects (Gross et al., 2013). The 

comparisons of evoked responses between conditions were computed using a non-parametric 

permutation test. Correction for multiple comparisons was performed with cluster level 

statistics using as base statistic Student t-test computed at each time sample (Maris and 

Oostenveld, 2007). Only temporal clusters with corrected p-value ≤ 0.05 are reported. 

 

2.5.4. Power spectrum analysis 

Low-frequency components in the frequency spectra could either originate from neural 

entrainment to the 1Hz stimulation or from noise having a power spectrum density with 1/f 

distribution. To substantiate a peak neural entrainment at 1Hz, the 1/f component was 

removed by subtracting at each frequency bin the mean power of the neighboring frequency 

values (4 frequency values were: [fo – 0.14Hz ; fo – 0.07 Hz; fo + 0.07 Hz; fo + 0.14 Hz] 

(Nozaradan et al., 2011). 
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2.5.5. Phase analyses   

The first 5 trials of each lag-adaptation block were discarded as they established transient 

episodes before establishment of the steady-state regime (Capilla et al., 2011). Hence, an 

equal number of 15 trials (or stimuli) at the beginning and at the end of an lag-adaptation 

period were considered for analysis. Single trial data were convolved with a 3-cycle Morlet 

wavelet centered at 1 Hz with a full width at half maximum of the power in the frequency 

domain of  [0.7 Hz, 1.3 Hz] (Keil et al., 2013) (Fig. S1). Epoch lengths were 4s and centered 

on the visual or on the auditory stimulus onset. From the coefficients obtained with wavelet 

convolution the instantaneous phase at visual or auditory onset was extracted (as indicated in 

text where relevant).  Subsequent analyses were done on the distribution of phase values 

across trials gathered across specific condition, namely: beginning or end of a lag-adaptation 

period, conditions S, A200V or V200A and for each participant.  

 

2.5.6. Phase uniformity test 

Phase distributions were submitted to Rayleigh’s test for uniformity of phase data (Fisher, 

1995). A significant Rayleigh test (p ≤ 0.05) indicates that the distribution of phases show a 

phase preference. If significance was reached, the circular mean of each distribution was 

computed and used for phase/ERFs and phase/behavior correlation analyses.  

For each participant and each condition, a Rayleigh test was performed. If all three conditions 

passed the test, entrainment was considered to be true for that participant. When separating 

trials between the beginning and the end of a lag-adaptation period, a criterion of two out of 

three conditions passing the Rayleigh test was considered evidence for entrainment. 

The Phase-Locking Value (PLV) (Lachaux et al., 1999) is defined as: 
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where K is the number of trials , and  θ(t,k) is the instantaneous phase at time t and trial k. 

PLVs were computed to assess intra-subject variability in the preferential phase. 
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2.5.7. Statistical comparison of phase distributions 

To assess statistical significance of phase shifts between 2 conditions (e.g. A and B), 

bootstrap measure of 95% confidence interval was used on the phase distribution of the paired 

differences A-B (Fisher, 1995). Phase distributions A and B were statistically different if the 

mean of the difference was statistically different from zero, i.e. if zero lies outside the 

measured confidence interval (p ≤ 0. 05).  

 

2.5.8. Psychophysics - Point of Subjective Simultaneity 

The percentage of “visual first” responses during the TOJ task following the lag-adaptation 

period (S, V200A, and A200V) were plotted as a function of AV asynchrony and fitted with a 

logistic regression to a sigmoid function of the form:  

     
 

     (
        

   
)
 

 

From each individual fit, the Point of Subjective Simultaneity (PSS) value and the Just 

Noticeable Difference (JND) were estimated. The PSS corresponds to the AV asynchrony at 

which an individual responds at chance level (50%) in a TOJ task and thus taken as a true 

subjective simultaneity estimate (Vroomen and Keetels, 2010).  

 

 

3. RESULTS 

 

Participants underwent a series of alternating lag-adaptation and TOJ blocks while being 

recorded with MEG. Three AV delays were tested (Fig. 1a-b): simultaneous AV presentations 

(S, control condition), a sound leading a visual event by 200 ms (A200V) and a visual event 

leading a sound by 200 ms (V200A). Each TOJ block allowed establishing an individual’s 

psychometric curve following each lag-adaptation block as well as deriving the progression of 

the individual’s Point of Subjective Simultaneity (PSS). Our hypothesis was that changes in 

neural activity during lag-adaptation would predict changes in subjects’ perceived 

simultaneity. First, we tested the latency code hypothesis by comparing the event-related 

responses at the beginning and at the end of the lag-adaptation. We then tested the phase code 

hypothesis by comparing the phase of the entrained neural oscillation at the beginning and the 
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end of the adaptation (Supplementary Fig. S1). 

 

3.1. Stable evoked activity in sensory cortices during adaptation 

 

Auditory and visual Event-Related Fields (ERFs) were source-reconstructed. The resulting 

time-source series were separately averaged in the auditory and visual labels. In all three lag-

adaptation conditions, visual evoked responses were comparable with no significant 

modulations of the visual evoked responses by auditory stimuli (Fig. 2a-c). To the contrary, 

clear modulations of the auditory evoked responses by the presence of visual stimuli were 

observed (Fig. 2d-f) in both A200V and V200A. The auditory evoked response profiles in 

A200V and V200A     

 
Fig. 2: Visual and auditory evoked responses before and after lag-adaptation. Auditory and visual evoked 
responses were obtained by separately time-averaging the first 15 trials at the beginning (blue) and at the end 
(A200V: red; V200A: green; S: black) of a given lag-adaptation block. Evoked responses were time-locked to 
the visual and auditory onsets in visual (A-C) and auditory cortices (D-F), respectively. Overall, no significant 
differences in the auditory or visual Evoked responses profiles were observed in the course of the lag-adaptation 
blocks, irrespective of the condition. Additionally, no significant influence of auditory stimuli was observed in 
the visual ERFs (A-C). In contrast, auditory Evoked repsonses in A200V and V200A significantly differed (p ≤ 
0.05): in V200A, a ramping modulation of the auditory Evoked responses was observed ~70 ms prior to sound 
onset whereas in A200V, a significant modulation of the auditory Evoked responses at ~300 ms post- sound 
onset was observed. 



54 
 

 
 

significantly differed (p ≤ 0.05): in V200A, a ramping modulation of the auditory evoked 

response was observed ~70 ms prior to sound onset whereas in A200V, a significant 

modulation of the auditory evoked response at ~300 ms post- sound onset was observed.  The 

modulations of the auditory evoked responses remained steady throughout the lag-adaptation 

block and did not significantly differ between the beginning and the end of a given lag-

adaptation block. If, as hypothesized, changes in perceived timing were caused by changes in 

the neural timing of auditory and visual cortices during lag-adaptation, the latency of evoked 

activity did not appear to be a good candidate to capture this change. These observations are 

in agreement with previous findings on evoked-related-potential literature (McDonald et al., 

2005).  

 

3.2. Non-stationarity of the entrained neural oscillations during lag-adaptation 

 

As predicted by the rate of AV stimulation during lag-adaptation, neural activity over long 

time scales displayed periodic fluctuations at 1Hz i.e. oscillatory entrainment or frequency-

tagging: a characteristic frequency peak at 1Hz was clearly observable in auditory and visual 

power spectra (Fig. 3b, d) and in single-trials data (Fig. 3a, c). No significant changes in 1 Hz 

power were found between the beginning and the end of a given lag-adaptation period 

irrespective of the experimental condition.  

 

Additionally, 1Hz oscillatory activity showed a significant phase-locking in both sensory 

cortices. Phase preferences of the 1 Hz oscillation were tested using a Rayleigh test against 

uniformity (p < 0.05). At the beginning of all lag-adaptation periods (S, A200V, and V200A), 

phase preferences were found to be significant in both sensory cortices for 15 participants; at 

the end of all lag-adaptation periods (S, A200V, and V200A), significant phase preferences 

were found for all participants. For all conditions and in both sensory cortices, the observed 

Phase Locking Values (PLV, index the variance of phase distributions) did not significantly 

differ between the beginning and the end of each lag-adaptation period (Supplementary Table 

S1). Altogether, these results show the existence of robust phase preferences in all conditions 

throughout the course of the experiment.  

However, and unlike the power of the entrained 1Hz oscillation, the phase of the 1Hz 

oscillatory component did not appear to be stationary over the course of the lag-adaptation 
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period. Specifically, the neural responses evoked by the stimulus presentation arrived at 

different phases of the 1Hz oscillation (Fig. 4a, b).  In the non-zero lag adaptations (A200V 

and V200A), phases of the 1 Hz oscillation shifted in opposite directions in visual and 

auditory cortices whereas in the control condition (S), no phase shifts were observed (Fig. 4c). 

Within a given block, stimuli presented at the beginning of the adaptation were identical to 

those presented at  the  end:  as   

 

Fig. 3: Oscillatory entrainment and jitter procedure. In all lag-adaptation blocks, AV stimuli were presented 
at a rate of 1 Hz +/- 100 ms. The temporal jitter was introduced to prevent full neural response time-locking and 
enable the dissociation of the oscillatory component from the evoked response (Lakatos et al., 2008). In both (A) 
and (C): one participant’s superimposed single trial data (black) with the visual evoked response (red) at the end 
of A200V in visual cortex (A) and in auditory cortex (C). As can readily be seen in these two examples, the 
time-locked averaging of one stimulus (at zero) prevented to see the evoked responses of the preceding and 
following stimuli (which would be expected at about -1 and + 1 sec, respectively). As predicted, the temporal 
jittering procedure massively reduced the temporally adjacent evoked responses. Despite the absence of evoked 
response at -1 and +1 s, a clear single-trial oscillatory component at 1 Hz could be seen in both sensory cortices.  
In both (B) and (D): Frequency power spectra of neural responses in visual (B) and auditory (D) cortices for all 
lag-adaptation blocks. After 1/f correction (see section 2.5.4.), a significant 1 Hz peak was readily observable (on 
sample t-test against Ho = zero power, p < 0.01) in both sensory cortices. No significant differences in 1 Hz 
power were observed between the beginning and the end of the lag-adaptation periods irrespective of the 
experimental conditions. In visual cortices (panel B): S: t(15) = - 0.9, n.s.; A200V: t(15) = 0.6, n.s.; and V200A: 
t(15) = -0.7, n.s.. In auditory cortices (panel D): S: t(15) = -1.8, n.s.; A200V: t(15) = 0.05, n.s.; V200A: t(15) = 
1.7, n.s.. 
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previously reported, and consistent with the steady stimulation, no significant differences 

were observed when contrasting the evoked responses at the beginning and at the end of a 

given lag-adaptation period (Fig. 2). If neural entrainment were a passive neural response, no 

changes in the preferential phase would be predicted. Hence, the observed phase shifts in the 

entrained oscillatory response suggest an active modulation of the entrained 1 Hz oscillation 

not easily accounted for by the unchanged event-related responses.  

 

Additional analyses were performed supporting the independence of evoked activity and 

neural oscillatory phase shifts. If the evoked responses impacted the phase of neural 

oscillations at 1Hz, a similar pattern of phase shifts in neighboring frequency regions should 

be found by virtue of evoked response being fixed-latencies and strongly phase-locked 

signals. Weak-to-no phase locking and no significant phase shifts were observed for 2 or 3 Hz 

neural oscillations (Supplementary Fig. S2).  

 

      3.3. Encoding of subjective timing in the phase of neural oscillations 

 

Our main hypothesis states that shifts in the phase of neural oscillations during adaptation 

may reflect active changes in subjective timing. To test this, we compared the shifts in the 

phase of neural oscillations with perceptual reports (Fig. 5a, b). Consistent with previous 

reports on TOJ paradigms (Love et al., 2013; Van Eijk et al., 2008), the average PSS value in 

the zero-lag adaptation condition (S) was biased towards sound-leading asynchronies: on 

average, participants required the auditory event to lead the visual event by 38 ms to consider 

them as simultaneous  (Fig. 5b). Following lag-adaptation to A200V and V200A, participants 

required the sound to lead the visual event even more with PSS values of -87 ms (significant 

main effect of lag-adaptation: F(2,30) = 10.1,p <0.001, significant contrast PSSA200V - PSSS: p 

= 0.002) and -69 ms (PSSV200A - PSSS: p = 0.03), respectively (Fig. 5b).  Thus, in both A200V 

and V200A, the sound needed to be heard before the visual event to be perceived as 

simultaneous, but shifts in perception were more pronounced in A200V than in V200A 

(PSSA200V - PSSS, p = 0.01).  From a neural processing point of view, these results suggest that 

auditory analysis may be delayed during lag-adaptation and/or visual analysis advanced in 

time.  As seen in Fig. 4c, the average phase shifts during A200V and V200A lag-adaptations 

were consistent with these predictions:  lag-adaptation lead to a negative shift of the phase of 

auditory entrained oscillation i.e. the 1 Hz response in auditory cortex shifted forward in time; 

conversely, the phase of the visual entrained oscillation positively shifted suggesting that the 
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1Hz entrained response shifted backward in time. 

 

Fig. 4: 1 Hz neural response: oscillatory phase differences during lag-adaptation. (A) One participant’s 
visual evoked response obtained at the beginning (blue) and at the end (red) of an A200V lag-adaptation block. 
The top graph shows the unfiltered visual evoked response; the bottom graph shows the same visual evoked 
response band-pass filtered from 0.5 to 1.5 Hz. The 1 Hz oscillatory component at the end of the lag-adaptation 
block (red) shows a backward shift in time with respect to the same oscillatory component at the beginning of 
the lag-adaptation (blue): this backward temporal shift is quantified as an increase in the mean instantaneous 
phase value across the 30 single trials used to compute the evoked response (right panel). (B) One participant’s 
auditory evoked response at the beginning (blue) and at the end (red) of an A200V lag-adaptation block. The 
unfiltered and 0.5-1.5 Hz band-pass filtered auditory evoked responses are depicted in the top and bottom graph, 
respectively. The 1 Hz oscillatory component at the end of the lag-adaptation block (red) shows a forward shift 
in time with respect to the same oscillatory component at the beginning of the lag-adaptation (blue). The mean 
instantaneous phase across the 30 trials used to build the auditory evoked response show a decrease between the 
beginning and the end of the block (right panel). (C) Instantaneous phase distribution and preferential 
instantaneous phase of the entrained 1 Hz neural oscillatory response at the beginning (light gray) and at the end 
(colored) of a given lag-adaptation block (S: black; A200V: red; V200A: green). Phase distributions were 
computed at visual onset in visual cortices (top) and at sound onset in auditory cortices (bottom). Phase 
distributions were individually normalized to the preferred instantaneous phase observed at the beginning of a 
given lag-adaptation block. Hence, all phase distributions at the beginning of a given block are centered on zero. 
In S, the phase distributions remained stable over time in both auditory (+1°, 95% confidence interval (CI) = [-
6°, +5°]) and visual (-1°, CI = [-6°, +8°]) cortices. In the desynchronized blocks, the mean instantaneous phase 
shifted in opposite directions in the auditory and visual cortices during lag-adaptation: specifically, in A200V the 
preferential phase in visual cortices increased (+ 19° or - 53 ms, CI = [12°, 26°]) suggesting a backward shift in 
time of the entrained 1 Hz oscillatory response, whereas a forward shift in time was observed in auditory cortices 
(- 19° or +53 ms, CI = [-27°, -9°]). Conversely, in V200A the mean instantaneous phase in visual cortices 
increased (+16° or -44 ms, CI = [7°, 25°]) but decreased in auditory cortices (- 19° or +53 ms, CI = [-26°, -13°]). 
Hence, and as predicted, lag-adaptation to simultaneous AV stimuli (S) did not affect the phase of the entrained 
1 Hz neural oscillation in sensory cortices whereas desynchronized AV stimuli (A200V and V200A) shifted the 
preferential phase distribution in opposite direction in the auditory and visual cortices. 
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Fig. 5: Psychophysical results. (A) Two individuals’ psychometric curves fitted to the percentage of “visual 
first” responses as a function of AV delays in the TOJ blocks. The negative and positive AV delays are audio 
leads (visual lags) and audio lags (visual leads), respectively. The individual’s Points of Subjective Simultaneity 
(PSS) observed after each lag-adaptation block are indicated by a colored line: TOJ obtained in S, A200V and 
V200A are in black, red and green, respectively. (B) Grand average PSS (n=16). The control condition S showed 
a mean TOJ value of -38 ± 19 ms, suggesting that on average a sound had to be presented about 38 ms before a 
visual event to be perceived as synchronous. Following lag-adaptations to A200V and V200A, significant shifts 
of PSS towards audio leads were observed compared to the control condition (A200V: -87 ± 24 ms; V200A: -69 
± 23 ms). Errors bars reflect s.e.m. (C) Summary of all individuals’ PSS. As can readily be observed, a large 
inter-individual variability was obtained in the individuals’ PSS values (control blocks (S)) and in the propensity 
of a given individual to temporally shift his or her natural PSS.  
 

 

It is noteworthy that while the direction of the PSS shifts observed after lag-adaptation to 

A200V was consistent with seminal reports on temporal recalibration  (Fujisaki et al., 2004; 

Vroomen et al., 2004), the PSS following V200A lag-adaptation did not shift in the direction 

predicted by seminal temporal recalibration effects. Nevertheless, the latter finding remains 

consistent with other lag-adaptation reports (Miyazaki et al., 2006; Yamamoto et al., 2012) 

and major differences in experimental design including the choice of task and the absence of 

re-adapting trials in the TOJ assessment task could account for these differences (Cai et al., 

2012; Yamamoto et al., 2012). Specifically, remote and recent stimulation histories are known 

to bias in opposite ways the perception of incoming stimuli (Chopin and Mamassian, 2012) 
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and consistent with this, PSS shifts are distinctly influenced by the presence or the absence of 

re-adapting trials (Cai et al., 2012). Here, we did not include re-adapting trials during the TOJ 

blocks and stimuli were randomly chosen between -316 ms and + 316 ms, hence the primary 

influence on lag adaptation was the remote stimulation history i.e. the lag-adaptation trials. 

 

Here, we used lag-adaptation to generate shifts in an individual’s subjective timing. As 

expected, a large inter-individual variability was observed in the individual’s default PSS 

(control S, zero-lag adaptation) and in the propensity of an individual to temporally adapt to 

desynchronized AV stimuli (Fig. 5a, c). In order to test whether the shifts in the phase of the 1 

Hz neural oscillation were commensurate with subjective simultaneity, we capitalized on this 

inter-individual variability and compared individuals’ PSS with the shifts in the entrained 

neural oscillation in each sensory cortex. Strikingly, the phase shifts of the 1Hz auditory 

oscillatory neural response significantly correlated with participants’ subjective simultaneity 

whereas no such correlations were observed in visual cortices (Fig. 6). Specifically in auditory 

cortex, the more negative the phase of 1 Hz neural oscillation, the more the sounds needed to 

lead visual events to be perceived as simultaneous. Thus a negative shift in phase, which 

corresponds to a forward neural timing i.e. a delay of 1Hz auditory activity in time, is 

associated with a shift in perceived simultaneity towards auditory-leads asynchronies. Note 

that shifts in perception and shifts in neural timing change together in coherent directions: a 

delay in auditory processing as measured by a negative phase shifts should correspond to a 

perceived delay in auditory event timing; thus to perceive simultaneity the sound needs to be 

advanced in time i.e. the PSS is shifted towards auditory-leads asynchronies. Conversely, a 

positive phase shift moves the processing of auditory events backward in time thereby sounds 

have to lag visual events to be perceived as simultaneous. As reported in Figure 6, the slope of 

the regression between perceived timing shift and neural timing shift was 1.2, suggesting that 

neural timing and perceived timing shifts are quantitatively similar. Additionally, the obtained 

regression predicts that a zero-phase shift in the 1 Hz neural oscillation observed in auditory 

cortex (i.e. stationarity or stable phase preference through time) should map onto a PSS of -45 

ms. This value was very close to the mean PSS obtained experimentally in the control 

condition S (namely, -38 ms).  

 

Overall these results suggest that AV simultaneity relies on asymmetrical cross-talks between 

auditory and visual sensory cortices, namely: auditory cortices actively adjust the timing of 

auditory events to match that of visual inputs. 
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Fig. 6: Phase shifts reflect subjective timing. Individuals’ PSS were plotted as a function of the difference in 
mean instantaneous phase (end minus beginning in a given lag-adaptation period) in auditory (A) and visual 
cortices (B). Each data point corresponds to an individual duplet, namely: the mean phase difference obtained in 
a given lag-adaptation period (S: black; A200V: red; V200A: green) and the associated individual’s PSS 
measured during the following TOJ block. A linear regression was computed on a per individual basis between 
the mean PSS and the circular mean of the instantaneous phases of the 1 Hz neural oscillation obtained across 
lag-adaptation blocks. A significant correlation was found between the phase shifts of the entrained 1 Hz neural 
oscillation in auditory cortices and individuals’ PSS (r = 0.65, p<0.01) whereas no such correlation was found in 
visual cortices (r = -0.26, n.s.).  

4. DISCUSSION  

 

Shifts in perceived AV simultaneity following lag-adaptation (Fujisaki et al., 2004; Miyazaki 

et al., 2006; Vroomen et al., 2004; Yamamoto et al., 2012) have been hypothesized to 

originate from mechanisms capable of adjusting the neural processing time across sensory 

modalities (Fujisaki et al., 2004; Moutoussis and Zeki, 1997; Stone et al., 2001; Sugita and 

Suzuki, 2003; Zeki and Bartels, 1998). In support of this hypothesis, our study reveals that 

such mechanisms may be implemented as phase shifts of neural oscillations: contrasting the 
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sensory responses before and after AV lag-adaptation provided no evidence for a latency code 

hypothesis and instead revealed significant phase shifts of the entrained 1 Hz neural 

oscillations. Crucially, it is the phase shifts of the auditory response that linearly predicted 

participants’ shifts of subjective AV simultaneity and no systematic mapping was found 

between visual responses and subjective AV timing. The present findings thus suggest that 

auditory cortex temporally calibrates its window of analysis with respect to vision and that 

event timing linearly maps onto the phase of entrained neural oscillations.  

 

4.1.  Neural oscillations as pacemakers for the encoding of time  

 

The “internal clock” is a prominent model of  time perception which is classically composed 

of a pacemaker (ticking mechanism), an accumulator (of ticks) and a counter (Church, 1984; 

Treisman, 1963). Of particular interest here, the pacemaker consists of an oscillator ticking at 

a frequency that can be modulated depending on the temporal properties of sensory stimuli 

(Buhusi and Meck, 2009; Treisman, 1984; Treisman et al., 1992, 1990): specifically, external 

temporal regularities can impose modulations of the pacemaker frequency so as to entrain the 

internal clock (Treisman et al., 1992).  Similarly, intrinsic neural oscillations match the 

temporal scales of perceptual phenomena (Buzsáki and Draguhn, 2004; Roopun et al., 2008; 

van Wassenhove, 2009; Wang, 2010) and can be entrained to external rhythms (Rees et al., 

1986; Regan, 1966). As such, neural oscillations have been hypothesized as natural 

pacemakers for conscious time estimation (Buhusi and Meck, 2005; Pöppel, 1997; Treisman 

et al., 1990; Varela et al., 1981).  However, within this framework, a major problem for the 

brain is to determine when events occur with respect to its internal frame of reference. Our 

results suggest that the timing of events could automatically be encoded in the phase of a 

recruited pacemaker or entrained oscillation (thereby acting as a temporal frame of reference 

for cortex) and that the variation of the pacemaker’s phase over time results in variation of 

perceived timing.  

 

4.2. A canonical role for the phase of intrinsic and entrained neural oscillations? 

 

It is noteworthy that we specifically targeted the delta range using neural entrainment or 

frequency-tagging. EEG studies have previously tested the idea that the order of visual events 

were coded in the phase of the alpha oscillatory component (Gho and Varela, 1988) and 

recent studies have pointed out to the role of theta/alpha in temporal visual illusions 
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(Chakravarthi and Vanrullen, 2012; VanRullen et al., 2006). These studies suggest that 

intrinsic oscillations are recruited for the encoding of events in the absence of external 

temporal regularities. Recent hypotheses further extend the notion that the phase of low-

frequency neural oscillations is crucial for the encoding of order - for instance with the 

implication of the theta band in working memory (Lisman & Jensen, 2013) - or even for 

temporal parsing - for instance, in speech (Giraud & Poeppel, 2012). The temporal encoding 

mechanisms described in our experiment are de facto constrained by the rhythmicity of the 

external inputs; in turn, however, the encoding of event timing may capitalize on the temporal 

features provided by external stimulation to build a temporal reference frame or pacemaker 

consistent with the rhythms provided by the external sensory world.  While delta oscillations 

have been previously linked to temporal predictability (Stefanics et al., 2010), further 

investigations need to be done to test their implication in the encoding of event timing when 

no rhythmic stimulation or external temporal reference frame is provided.  

 

4.3. Evoked activity and attention to time 

 

Latency-based descriptions of cognitive functions classically use event-related potentials / 

fields (ERP and ERF, respectively) to describe the timing at which mental operations take 

place in cortex (Coles and Rugg, 1995; Madl et al., 2011). The auditory and visual evoked 

responses were thus expected to partly reflect participants’ perceptual shifts in AV 

simultaneity taking place during lag-adaptation. However, and surprisingly, no significant 

changes in the amplitude or in the latency of the evoked responses were observed in the 

course of lag-adaptation, albeit clear visual modulations of the auditory responses were seen. 

Previous EEG studies using auditory and tactile stimuli during a TOJ task reported amplitude 

modulation (McDonald et al., 2005) or latency shifts (Vibell et al., 2007) of the evoked 

sensory responses as a function of which sensory modality was attended. It was notably 

reported that attention could speed up the processing of the attended sensory modality. Here, 

no systematic changes in the evoked profiles were observed suggesting that during lag-

adaptation participants equally paid attention to the auditory and visual events as per task 

requirements (cf. Methods).  

Although the lack of significant lag-adaptation suppression (Grill-Spector et al., 2006) of the 

evoked responses was surprising, it is classically known that attention can attenuate the effect 

of neural suppression (Gazzaley et al., 2005).  Here, participants were asked to pay attention 

to any deviants presented in the auditory, visual or audiovisual modalities during lag-
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adaptation. The lack of repetition suppression in both sensory cortices may thus be an index 

of successful attentional orienting. Additionally, recent findings have shown that the more 

temporally predictable, the higher the repetition suppression effects notably in the auditory 

responses (Costa-Faidella et al., 2011; Summerfield et al., 2011, 2008). In the context of 

predictive coding models, it has also been suggested that repetition and expectation were 

dissociable (Todorovic and de Lange, 2012). The current experimental design did not allow us 

to dissociate the factor of predictability and expectation but these observations provide an 

alternative speculation, namely that paying attention to time may alleviate neural lag-

adaptation. 

One relevant point here is the integrative vs. segregative nature of the task with regards to 

multisensory processing: experimental paradigms using multisensory integration have 

classically reported an increase of sensory evoked responses, for instance when using the 

sound-induced flash illusion (Mishra et al., 2007; Watkins et al., 2006). In a TOJ task 

however, the segregation of auditory and visual information is a pre-requisite for successful 

ordering of auditory and visual events in time. Participants were repeatedly presented with 

AV lags at an entrainment rate consistent with automatic multisensory integration (Kösem 

and van Wassenhove, 2012): as such, audiovisual binding was reinforced in this task and an 

increased evoked response would have been expected. However, and at the same time, a 

decrease of the evoked responses were expected by virtue of neural suppression (Grill-Spector 

et al., 2006). Hence, one possible explanation for the absence of significant modulations of 

the sensory evoked responses in the course of adaptation is the competition between the 

integrative and segregative processes in this particular experimental design. Additional work 

will be required to further address this working hypothesis.  

 

4.4. Phase of neural oscillations: encoding time (or space?) 

 

Multisensory integration is known to capitalize on the spatiotemporal coincidence of sensory 

events  (Colonius and Diederich, 2010; Meredith et al., 1987) and visual capture of auditory 

spatial representation is a classic phenomenon (i.e. ventriloquism,(Alais and Burr, 2004; 

Lewald and Guski, 2003; Slutsky and Recanzone, 2001)) well accounted for by Bayesian 

models of multisensory integration (Alais and Burr, 2004; Burr and Alais, 2006; Ernst and 

Bülthoff, 2004; Witten and Knudsen, 2005). More generally, vision tends to be most reliable 

in encoding spatial cues whereas audition provides the most reliable temporal cues. In the 

experimental design used here, visual events were displayed at a constant distance on the 
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monitor screen whereas sounds were presented via headphones. By virtue of spatiotemporal 

coincidence and given the consistent AV timing over lag-adaptation, the auditory distance 

would have to be adjusted to visual information. In a scheme analogous to the calibration of 

auditory spatial representation by vision in the barn owl (Knudsen and Brainard, 1991), the 

observed non-stationary phase shifts in auditory cortices could thus reflect an automatic 

means to fine tune spatiotemporal coincidence across sensory modalities. Specifically, 

auditory spatial uncertainty could be compensated for by the stable spatiotemporal reference 

frame established in vision. From this viewpoint, the auditory system would not act as a timer 

per se; rather, the distance of auditory events would be actively made compatible with visual 

inputs to form an integrated AV percept. Hence, shifts in AV simultaneity may reflect the 

compensation of temporal delays in audition. Such mechanism would predict what we 

observed, namely that the entrainment of auditory and visual cortices is asymmetrical when 

attention is directed to the timing of events (i.e. to the dominant sensory modality for timing, 

namely  audition); it also predicts that response times for audition (but not for vision) vary 

during AV delay exposure (Navarra et al., 2009) as well as the correlation between reaction 

times and visual to auditory phase-reset previously described (Thorne et al., 2011).  Our 

results further support a recent discussion on the functional asymmetry between the sampling 

of acoustic and visual information over time (Thorne et al., 2011), namely: while the visual 

system may naturally rely on endogenous rhythms (e.g. alpha oscillations, Gho and Varela, 

1988; Jensen et al., 2012; VanRullen and Koch, 2003; Varela et al., 1981) and overt sampling 

(e.g. (micro)saccades, Schroeder and Lakatos, 2009), the auditory system may necessitate 

temporal-locking to incoming acoustic inputs to accurately represent information over time 

(Giraud and Poeppel, 2012; Henry and Obleser, 2012; Stefanics et al., 2010; Thorne et al., 

2011). Hence, while visual timing may rely on an internally generated temporal reference 

frame, audition may require the establishment of a temporal reference frame on the go and 

locked to the temporal statistics of the auditory environment. 

 

4.5. Neural oscillations: multiplex encoding of information 

 

Our results suggest that, in cortex, the phase of neural oscillations may provide an automatic 

means to flag events in a brain’s referential time – i.e. provide the needed brain-centric view 

of time (Scharnowski et al., 2013). The encoding of spatiotemporal information in the phase 

of neural oscillations has been described in the hippocampus in which mechanisms of phase 

precession encode spatial locations as the animal navigates in a maze (Buzsáki, 2002; Lisman, 
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2005; Skaggs et al., 1995). Phase precession mechanisms may not be exclusive to 

hippocampal networks nor to spatial processing and may serve a more general purpose such 

as encoding events for working memory while preserving temporal order (Lisman, 2005; 

Lisman and Jensen, 2013). In particular, the content of a sensory event is encoded by the 

neural assembly firing within a certain gamma cycle (Lisman, 2005; Lisman and Jensen, 

2013) while the relative timing of the event is encoded in the phase of the theta oscillation 

(Lisman, 2005; Lisman and Jensen, 2013).   

In cortex, low-frequency neural oscillations are known to regulate the excitability of neural 

ensembles such that specific phases of low-frequency neural oscillations are associated with 

periods of high and low neuronal excitability (Buzsáki, 2010; Lakatos et al., 2008; Schroeder 

and Lakatos, 2009): the phase of low-frequency neural oscillations modulates the power of 

high-frequency neural oscillatory responses, a mechanism known as phase-power or cross-

frequency coupling (Canolty et al., 2006). Neural synchronizations in higher frequency ranges 

(e.g. gamma range, >40 Hz) provide a reliable index of feature binding within and across 

sensory modalities (Arnal et al., 2011; Engel et al., 1991; Roelfsema et al., 1997; Senkowski 

et al., 2008; Tallon-Baudry and Bertrand, 1999). In multisensory integration, low-frequency 

neural oscillations (delta, 1-2Hz) play a crucial role in the temporal  selection (Besle et al., 

2011; Fiebelkorn et al., 2013; Gomez-Ramirez et al., 2011; Lakatos et al., 2008; Schroeder 

and Lakatos, 2009) and in the integration of AV information  (Fiebelkorn et al., 2011; Kösem 

and van Wassenhove, 2012; Luo et al., 2010).   

Hence, the phase of low-frequency oscillations may provide the fine-grained temporal 

resolution needed for the segregation of AV event timing and conscious timing while 

preserving integration processes through neural synchronization (necessary in building the 

mental representation of a multisensory AV object).   

In such scheme, the informational chunking operates over an oscillatory cycle by eliciting 

temporal windows of high neural excitability for integration (Panzeri et al., 2010; van 

Wassenhove, 2009), while the phase of neural oscillations provides the temporal stamping 

operation needed to preserve the timing of operations in parallel systems. As such, the same 

informational content can be encoded in a multiplexed manner with (i) integration operating 

on those sensory attributes used in the building of an internal object (Engel and Singer, 2001; 

Treisman, 1996) while (ii) segregation - or temporal stamping – provides the automatic 

encoding of event timing.  Such temporal encoding framework comes in support of intrinsic 

and non-dedicated models of time perception over small time scales (Karmarkar and 

Buonomano, 2007). Our data further converge with recent findings showing that accurate 
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phase encoding of the temporal structure of sensory events affords predictability (Schroeder 

and Lakatos, 2009; Stefanics et al., 2010) and support recent phase-coding approaches in 

computational neurosciences (Nadasdy, 2010). 

 

4.6. Conclusion 

 

We showed that perceived simultaneity linearly maps onto the phase of neural oscillations in 

auditory cortex. Our findings complement recent findings showing that accurate phase 

encoding of temporal event structure affords predictability (Schroeder and Lakatos, 2009; 

Stefanics et al., 2010) and enhances task performance (Busch et al., 2009; Monto et al., 2008; 

Neuling et al., 2012; Romei et al., 2012; Varela et al., 1981). Our results further suggest that 

mechanisms analogous to phase precession in hippocampus may be used in cortex for the 

encoding of event timing. Specifically, the phase of slow oscillatory activity in sensory areas 

may provide a canonical means to organize sensory inputs in time. Future work will address 

the possibility that a canonical function of neural oscillations is the encoding of event timing 

serving the emergence of psychological time. 

 

ACKNOWLEDGMENTS 

This work was supported by an ERC-YStG-263584, an ANR10JCJC-1904 and an IRG-

249222 to V.vW. The authors report no conflict of interest. We are grateful to the NeuroSpin 

infrastructure groups, for their support in participant recruitment; and to anonymous reviewers 

for their comments on prior version of the manuscript. 

 

REFERENCES 

Alais, D., Burr, D., 2004. The ventriloquist effect results from near-optimal bimodal 
integration. Curr Biol 14, 257–62. 

Arnal, L.H., Wyart, V., Giraud, A.-L., 2011. Transitions in neural oscillations reflect 
prediction errors generated in audiovisual speech. Nat Neurosci 14, 797–801. 

Besle, J., Schevon, C.A., Mehta, A.D., Lakatos, P., Goodman, R.R., McKhann, G.M., 
Emerson, R.G., Schroeder, C.E., 2011. Tuning of the human neocortex to the temporal 
dynamics of attended events. J Neurosci 31, 3176–3185. 



67 
 

Brainard, D.H., 1997. The Psychophysics Toolbox. Spat Vis 10, 433–436. 

Buhusi, C. V, Meck, W.H., 2005. What makes us tick? Functional and neural mechanisms of 
interval timing. Nat Rev Neurosci 6, 755–65. 

Buhusi, C. V, Meck, W.H., 2009. Relativity theory and time perception: single or multiple 
clocks? PLoS One 4, e6268. 

Burr, D., Alais, D., 2006. Combining visual and auditory information. Prog Brain Res 155, 
243–58. 

Busch, N. a, Dubois, J., VanRullen, R., 2009. The phase of ongoing EEG oscillations predicts 
visual perception. J Neurosci 29, 7869–7876. 

Buzsáki, G., 2002. Theta oscillations in the hippocampus. Neuron 33, 325–40. 

Buzsáki, G., 2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 
362–385. 

Buzsáki, G., Draguhn, A., 2004. Neuronal oscillations in cortical networks. Science 304, 
1926–1929. 

Cai, M., Stetson, C., Eagleman, D.M., 2012. A neural model for temporal order judgments 
and their active recalibration: a common mechanism for space and time? Frontiers in 
psychology 3, 470. 

Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Berger, M.S., Barbaro, 
N.M., Knight, R.T., 2006. High gamma power is phase-locked to theta oscillations in 
human neocortex. Science 313, 1626–1628. 

Capilla, A., Pazo-Alvarez, P., Darriba, A., Campo, P., Gross, J., 2011. Steady-state visual 
evoked potentials can be explained by temporal superposition of transient event-related 
responses. PLoS One 6. 

Chakravarthi, R., Vanrullen, R., 2012. Conscious updating is a rhythmic process. Proc Natl 
Acad Sci U S A 109, 10599–604. 

Chopin, A., Mamassian, P., 2012. Predictive properties of visual adaptation. Curr Biol 22, 
622–6. 

Church, R.M., 1984. Properties of the Internal Clock. Ann N Y Acad Sci 423, 566–582. 

Coles, M., Rugg, M., 1995. Event-related brain potentials: An introduction, in: Coles, M., 
Rugg, M. (Eds.), Electrophysiology of Mind: Event-Related Brain Potentials and 
Cognition. Oxford University Press, London, pp. 1–26. 

Colonius, H., Diederich, A., 2010. The optimal time window of visual-auditory integration: a 
reaction time analysis. Front Integr Neurosci 4, 11. 



68 
 

Costa-Faidella, J., Baldeweg, T., Grimm, S., Escera, C., 2011. Interactions between “what” 
and “when” in the auditory system: temporal predictability enhances repetition 
suppression. J Neurosci 31, 18590–7. 

Coull, J.T., Vidal, F., Nazarian, B., Macar, F., 2004. Functional anatomy of the attentional 
modulation of time estimation. Science 303, 1506–8. 

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation 
and surface reconstruction. Neuroimage 9, 179–194. 

Engel, a K., König, P., Singer, W., 1991. Direct physiological evidence for scene 
segmentation by temporal coding. Proc Natl Acad Sci U S A 88, 9136–9140. 

Engel, A.K., Singer, W., 2001. Temporal binding and the neural correlates of sensory 
awareness. Trends Cogn Sci 5, 16–25. 

Ernst, M.O., Bülthoff, H.H., 2004. Merging the senses into a robust percept. Trends Cogn Sci 
8, 162–9. 

Fiebelkorn, I.C., Foxe, J.J., Butler, J.S., Mercier, M.R., Snyder, A.C., Molholm, S., 2011. 
Ready, set, reset: stimulus-locked periodicity in behavioral performance demonstrates 
the consequences of cross-sensory phase reset. J Neurosci 31, 9971–81. 

Fiebelkorn, I.C., Snyder, A.C., Mercier, M.R., Butler, J.S., Molholm, S., Foxe, J.J., 2013. 
Cortical cross-frequency coupling predicts perceptual outcomes. Neuroimage 69, 126–
37. 

Fischl, B., Dale, A.M., 2000. Measuring the thickness of the human cerebral cortex from 
magnetic resonance images. Proc Natl Acad Sci U S A 97, 11050–11055. 

Fisher, N.I., 1995. Statistical Analysis of Circular Data. Cambridge University Press, 
Cambridge. 

Fujisaki, W., Shimojo, S., Kashino, M., Nishida, S., 2004. Recalibration of audiovisual 
simultaneity. Nat Neurosci 7, 773–778. 

Gazzaley, A., Cooney, J.W., Rissman, J., D’Esposito, M., 2005. Top-down suppression 
deficit underlies working memory impairment in normal aging. Nat Neurosci 8, 1298–
300. 

Gho, M., Varela, F.J., 1988. A quantitative assessment of the dependency of the visual 
temporal frame upon the cortical rhythm. J Physiol (Paris) 83, 95–101. 

Giraud, A.-L., Poeppel, D., 2012. Cortical oscillations and speech processing: emerging 
computational principles and operations. Nat Neurosci 15, 511–7. 

Gomez-Ramirez, M., Kelly, S.P., Molholm, S., Sehatpour, P., Schwartz, T.H., Foxe, J.J., 
2011. Oscillatory Sensory Selection Mechanisms during Intersensory Attention to 
Rhythmic Auditory and Visual Inputs: A Human Electrocorticographic Investigation. J 
Neurosci 31, 18556–18567. 



69 
 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R., 
Jas, M., Brooks, T., Parkkonen, L., Hämäläinen, M., 2013a. MEG and EEG data analysis 
with MNE-Python. Frontiers in Neuroinformatics 7. 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., 
Parkkonen, L., Hämäläinen, M.S., 2013b. MNE software for processing MEG and EEG 
data. Neuroimage. 

Grill-Spector, K., Henson, R., Martin, A., 2006. Repetition and the brain: neural models of 
stimulus-specific effects. Trends Cogn Sci 10, 14–23. 

Gross, J., Baillet, S., Barnes, G.R., Henson, R.N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak, 
V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J.R., van Wassenhove, V., Wibral, 
M., Schoffelen, J.-M., 2013. Good practice for conducting and reporting MEG research. 
Neuroimage. 

Hämäläinen, M.S., Sarvas, J., 1989. Realistic conductivity geometry model of the human head 
for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36, 165–171. 

Harrington, D.L., Haaland, K.Y., Knight, R.T., 1998. Cortical Networks Underlying 
Mechanisms of Time Perception. J Neurosci 18, 1085–1095. 

Henry, M.J., Obleser, J., 2012. Frequency modulation entrains slow neural oscillations and 
optimizes human listening behavior. Proc Natl Acad Sci U S A 109, 20095–100. 

Heron, J., Roach, N.W., Whitaker, D., Hanson, J.V.M., 2010. Attention regulates the 
plasticity of multisensory timing. Eur J Neurosci 31, 1755–1762. 

Ivry, R.B., Schlerf, J.E., 2008. Dedicated and intrinsic models of time perception. Trends 
Cogn Sci 12, 273–80. 

Jensen, O., Bonnefond, M., VanRullen, R., 2012. An oscillatory mechanism for prioritizing 
salient unattended stimuli. Trends in Cognitive Sciences 16, 200–206. 

Johnston, A., Nishida, S., 2001. Time perception: brain time or event time? Curr Biol 11, 
R427–30. 

Karmarkar, U.R., Buonomano, D. V, 2007. Timing in the absence of clocks: encoding time in 
neural network states. Neuron 53, 427–38. 

Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E.S., Luck, S.J., Luu, P., 
Miller, G.A., Yee, C.M., 2013. Committee report: Publication guidelines and 
recommendations for studies using electroencephalography and 
magnetoencephalography. Psychophysiology 51, 1–21. 

Knudsen, E., Brainard, M., 1991. Visual instruction of the neural map of auditory space in the 
developing optic tectum. Science 253, 85–87. 

Kösem, A., van Wassenhove, V., 2012. Temporal structure in audiovisual sensory selection. 
PLoS One 7, e40936. 



70 
 

Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J., 1999. Measuring phase synchrony in 
brain signals. Hum Brain Mapp 8, 194–208. 

Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., Schroeder, C.E., 2008. Entrainment of 
neuronal oscillations as a mechanism of attentional selection. Science 320, 110–3. 

Lewald, J., Guski, R., 2003. Cross-modal perceptual integration of spatially and temporally 
disparate auditory and visual stimuli. Cognitive brain research 16, 468–478. 

Lin, F.-H., Belliveau, J.W., Dale, A.M., Hämäläinen, M.S., 2006. Distributed current 
estimates using cortical orientation constraints. Hum Brain Mapp 27, 1–13. 

Lisman, J., 2005. The theta/gamma discrete phase code occuring during the hippocampal 
phase precession may be a more general brain coding scheme. Hippocampus 15, 913–22. 

Lisman, J.E., Jensen, O., 2013. The Theta-Gamma Neural Code. Neuron 77, 1002–1016. 

Love, S.A., Petrini, K., Cheng, A., Pollick, F.E., 2013. A psychophysical investigation of 
differences between synchrony and temporal order judgments. PLoS One 8, e54798. 

Luo, H., Liu, Z., Poeppel, D., 2010. Auditory cortex tracks both auditory and visual stimulus 
dynamics using low-frequency neuronal phase modulation. PLoS Biol 8, e1000445. 

Madl, T., Baars, B.J., Franklin, S., 2011. The timing of the cognitive cycle. PLoS One 6, 
e14803. 

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data. J 
Neurosci Methods 164, 177–190. 

McDonald, J.J., Teder-Sälejärvi, W.A., Di Russo, F., Hillyard, S.A., 2005. Neural basis of 
auditory-induced shifts in visual time-order perception. Nat Neurosci 8, 1197–202. 

Meredith, M., Nemitz, J., Stein, B., 1987. Determinants of multisensory integration in 
superior colliculus neurons. I. Temporal factors. J Neurosci 7, 3215–3229. 

Mishra, J., Martinez, A., Sejnowski, T.J., Hillyard, S.A., 2007. Early cross-modal interactions 
in auditory and visual cortex underlie a sound-induced visual illusion. J Neurosci 27, 
4120–31. 

Miyazaki, M., Yamamoto, S., Uchida, S., Kitazawa, S., 2006. Bayesian calibration of 
simultaneity in tactile temporal order judgment. Nat Neurosci 9, 875–7. 

Monto, S., Palva, S., Voipio, J., Palva, J.M., 2008. Very slow EEG fluctuations predict the 
dynamics of stimulus detection and oscillation amplitudes in humans. J Neurosci 28, 
8268–8272. 

Morillon, B., Kell, C.A., Giraud, A.-L., 2009. Three stages and four neural systems in time 
estimation. J Neurosci 29, 14803–11. 



71 
 

Moutoussis, K., Zeki, S., 1997. A direct demonstration of perceptual asynchrony in vision. 
Proc Biol Sci 264, 393–9. 

Nadasdy, Z., 2010. Binding by asynchrony: the neuronal phase code. Front Neurosci 4. 

Navarra, J., Hartcher-O’Brien, J., Piazza, E., Spence, C., 2009. Adaptation to audiovisual 
asynchrony modulates the speeded detection of sound. Proc Natl Acad Sci U S A 106, 
9169–9173. 

Neuling, T., Rach, S., Wagner, S., Wolters, C.H., Herrmann, C.S., 2012. Good vibrations: 
Oscillatory phase shapes perception. Neuroimage 63, 771–778. 

Nozaradan, S., Peretz, I., Missal, M., Mouraux, A., 2011. Tagging the neuronal entrainment to 
beat and meter. J Neurosci 31, 10234–10240. 

Panzeri, S., Brunel, N., Logothetis, N.K., Kayser, C., 2010. Sensory neural codes using 
multiplexed temporal scales. Trends Neurosci 33, 111–20. 

Pöppel, E., 1997. A hierarchical model of temporal perception. Trends Cogn Sci 1, 56–61. 

Rees, A., Green, G.G.R., Kay, R.H., 1986. Steady-state evoked responses to sinusoidally 
amplitude-modulated sounds recorded in man. Hear Res 23, 123–133. 

Regan, D., 1966. Some characteristics of average steady-state and transient responses evoked 
by modulated light. Electroencephalogr Clin Neurophysiol 20, 238–248. 

Roelfsema, P., Engel, A., Konig, P., Singer, W., 1997. Visuomotor integration is associated 
with zero time-lag synchronization among cortical areas. Nature 385, 157–161. 

Romei, V., Gross, J., Thut, G., 2012. Sounds reset rhythms of visual cortex and corresponding 
human visual perception. Curr Biol 22, 807–813. 

Roopun, A.K., Kramer, M.A., Carracedo, L.M., Kaiser, M., Davies, C.H., Traub, R.D., 
Kopell, N.J., Whittington, M.A., 2008. Temporal Interactions between Cortical Rhythms. 
Front Neurosci 2, 145–54. 

Scharnowski, F., Rees, G., Walsh, V., 2013. Time and the brain: neurorelativity: The 
chronoarchitecture of the brain from the neuronal rather than the observer’s perspective. 
Trends Cogn Sci 17, 51–2. 

Schroeder, C.E., Lakatos, P., 2009. Low-frequency neuronal oscillations as instruments of 
sensory selection. Trends Neurosci 32, 9–18. 

Senkowski, D., Schneider, T.R., Foxe, J.J., Engel, A.K., 2008. Crossmodal binding through 
neural coherence: implications for multisensory processing. Trends Neurosci 31, 401–
409. 

Shaw, M.E., Hämäläinen, M.S., Gutschalk, A., 2013. How anatomical asymmetry of human 
auditory cortex can lead to a rightward bias in auditory evoked fields. Neuroimage 74, 
22–29. 



72 
 

Skaggs, W.E., Knierim, J.J., Kudrimoti, H.S., McNaughton, B.L., 1995. A model of the 
neural basis of the rat’s sense of direction. Adv Neural Inf Process Syst 7, 173–80. 

Slutsky, D.A., Recanzone, G.H., 2001. Temporal and spatial dependency of the ventriloquism 
effect. Neuroreport 12, 7–10. 

Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., Ulbert, I., 2010. Phase 
entrainment of human delta oscillations can mediate the effects of expectation on 
reaction speed. J Neurosci 30, 13578–13585. 

Stone, J. V, Hunkin, N.M., Porrill, J., Wood, R., Keeler, V., Beanland, M., Port, M., Porter, 
N.R., 2001. When is now? Perception of simultaneity. Proc Biol Sci 268, 31–38. 

Sugita, Y., Suzuki, Y., 2003. Implicit estimation of sound-arrival time. Nature 421. 

Summerfield, C., Trittschuh, E.H., Monti, J.M., Mesulam, M.M., Egner, T., 2008. Neural 
repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci 11, 1004–
6. 

Summerfield, C., Wyart, V., Johnen, V.M., de Gardelle, V., 2011. Human Scalp 
Electroencephalography Reveals that Repetition Suppression Varies with Expectation. 
Front Hum Neurosci 5, 67. 

Tallon-Baudry, C., Bertrand, O., 1999. Oscillatory gamma activity in humans and its role in 
object representation. Trends Cogn Sci 3, 151–162. 

Taulu, S., Kajola, M., Simola, J., 2003. Suppression of Interference and Artifacts by the 
Signal Space Separation Method. Brain Topogr 16, 269–275. 

Thorne, J.D., De Vos, M., Viola, F.C., Debener, S., 2011. Cross-modal phase reset predicts 
auditory task performance in humans. J Neurosci 31, 3853–61. 

Todorovic, A., de Lange, F.P., 2012. Repetition suppression and expectation suppression are 
dissociable in time in early auditory evoked fields. J Neurosci 32, 13389–95. 

Treisman, A., 1996. The binding problem. Curr Opin Neurobiol 6, 171–8. 

Treisman, M., 1963. Temporal discrimination and the indifference interval: Implications for a 
model of the “internal clock”. Psychological Monographs: General and Applied 77, 1. 

Treisman, M., 1984. Temporal Rhythms and Cerebral Rhythms. Ann N Y Acad Sci 423, 542–
565. 

Treisman, M., Faulkner, A., Naish, P.L., Brogan, D., 1990. The internal clock: Evidence for a 
temporal oscillator underlying time perception with some estimates of its characteristic 
frequency. Perception 19, 705–743. 

Treisman, M., Faulkner, A., Naish, P.L.N., 1992. On the Relation Between Time Perception 
and the Timing of Motor Action: Evidence for a Temporal Oscillator Controlling the 



73 
 

Timing of Movement. The Quarterly Journal of Experimental Psychology Section A 45, 
235–263. 

Uusitalo, M.A., Ilmoniemi, R.J., 1997. Signal-space projection method for separating MEG or 
EEG into components. Med Biol Eng Comput 35, 135–140. 

Van Eijk, R.L.J., Kolhlrausch, A., Juola, J.F., Van de Par, S., 2008. Audiovisual synchrony 
and temporal order judgments: Effects of experimental method and stimulus type. 
Perception & Psychophysics 70, 955–968. 

Van Wassenhove, V., 2009. Minding time in an amodal representational space. Philos Trans 
R Soc Lond B Biol Sci 364, 1815–1830. 

VanRullen, R., Koch, C., 2003. Is perception discrete or continuous? Trends Cogn Sci 7, 207–
213. 

VanRullen, R., Reddy, L., Koch, C., 2006. The continuous wagon wheel illusion is associated 
with changes in electroencephalogram power at approximately 13 Hz. J Neurosci 26, 
502–7. 

Varela, F., Toro, A., John, E.R., Schwartz, E., 1981. Perceptual framing and cortical alpha 
rhythm. Neuropsychologia 19, 675–686. 

Vibell, J., Klinge, C., Zampini, M., Spence, C., Nobre, A.C., 2007. Temporal order is coded 
temporally in the brain: early event-related potential latency shifts underlying prior entry 
in a cross-modal temporal order judgment task. J Cogn Neurosci 19, 109–20. 

Vroomen, J., Keetels, M., 2010. Perception of intersensory synchrony: a tutorial review. Atten 
Percept Psychophys 72, 871–884. 

Vroomen, J., Keetels, M., de Gelder, B., Bertelson, P., 2004. Recalibration of temporal order 
perception by exposure to audio-visual asynchrony. Brain Res Cogn Brain Res 22, 32–5. 

Wang, X., 2010. Neurophysiological and computational principles of cortical rhythms in 
cognition. Phys Review 90, 1195–1268. 

Watkins, S., Shams, L., Tanaka, S., Haynes, J.-D., Rees, G., 2006. Sound alters activity in 
human V1 in association with illusory visual perception. Neuroimage 31, 1247–1256. 

Witten, I.B., Knudsen, E.I., 2005. Why seeing is believing: merging auditory and visual 
worlds. Neuron 48, 489–96. 

Wittmann, M., 2009. The inner experience of time. Philos Trans R Soc Lond B Biol Sci 364, 
1955–67. 

Wittmann, M., 2013. The inner sense of time: how the brain creates a representation of 
duration. Nat Rev Neurosci 14, 217–23. 

Yamamoto, S., Miyazaki, M., Iwano, T., Kitazawa, S., 2012. Bayesian calibration of 
simultaneity in audiovisual temporal order judgments. PLoS One 7, e40379. 



74 
 

Zeki, S., Bartels, A., 1998. The asynchrony of consciousness. Proc Biol Sci 265, 1583–5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

 

SUPPLEMENTARY MATERIAL 

 

 

       S   A200V  V200A  

Auditory 

cortices  

beginning  0.39  t(15) = -1.5 

ns  

0.35  t(15) = - 0.1 

ns  

0.38  t(15) = 1.6 

ns   end 0.42  0.35  0.34  

Visual 

cortices  

beginning  0.35  t(15) = 0.4 

ns  

0.35  t(15) = 0.1 

ns 

0.36  t(15) = 0.7 

ns  end 0.34  0.35  0.34  

 

Supplementary Table S1: Grand average Phase-locking Values (PLVs) of 1Hz neural oscillations in 
auditory and visual cortices. PLVs were measured at auditory and visual onsets in auditory and visual cortices, 
respectively. No significant decreases in PLVs were observed between the beginning and the end of the lag-
adaptation. As PLVs reflect consistency in the phase-locking of 1Hz oscillations across trials, these results show 
that the robustness of the 1 Hz entrainment was preserved throughout the experimental trials. 
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Supplementary Figure S1: Phase analysis. The red patches indicate the overlapping of auditory (left) and 
visual (right) labels obtained for each individual and morphed onto a common Freesurfer averaged brain (see 
section 2.5.2.). 15 trials at the beginning (blue) and at the end (red) of each lag-adaptation block were compared 
in visual and auditory cortices. Single-trial source time series were convolved with a 1 Hz Morlet wavelet. The 
instantaneous phase was extracted from the resulting complex time series at the center of each epoch (for 
illustration, here at the auditory onset). For graphical reports, phase distributions were segmented into 20 degrees 
bins.   
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Supplementary Figure S2: Phase-shifts are specific to the frequency of the entrained neural oscillation. In 
order to test whether the reported phase shifts were specific to the entrained 1 Hz neural oscillation, identical 
analyses were carried out on the same neural responses filtered at 2 Hz (A) and 3Hz (B). In particular, if the 
observed phase shifts at 1 Hz were confounded by the evoked responses, identical PLVs and instantaneous phase 
shifts should be observed at higher frequencies by virtue of the wide spectral impact of evoked responses. Phase 
distributions and preferential instantaneous phase at 2 Hz and 3 Hz were computed at the beginning (light gray) 
and at the end (colored) of a given lag-adaptation block (S: black; A200V: red; V200A: green). Phase 
distributions were computed at visual onset in visual cortices and at sound onset in auditory cortices. Phase 
distributions were individually normalized to the preferred instantaneous phase observed at the beginning of a 
given lag-adaptation block. Hence, all Phase distributions at the beginning of a given block are centered on zero. 
No significant changes in 2Hz oscillation phase were seen between the beginning and the end of the lag-
adaptation for A200V or for S in visual and auditory cortices. Only one significant difference in the mean 
instantaneous phase distribution was observed for the V200A condition in auditory cortices. Note however that 2 
Hz is a harmonic of 1 Hz and may actually be a relevant spectral region to consider (albeit outside the scope of 
this report). No significant changes in 3Hz oscillatory behavior were seen except in visual cortex in condition 
A200V.  
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2.3. PHASE CODING WITHOUT ENTRAINMENT 

 
2.3.1. Motivation 

 

Entrainment is an ecological phenomenon that occurs when we listen to speech, to 

music, when we walk, and so on. Yet it is not a prevailing situation in the external world. 

In many cases, sensory stimulation does not contain any significant temporal information 

to build up temporal predictions; and by far time experiencers are still able to apprehend 

the temporality of their environment (Michon, 1985; Stone et al., 2001; Kopinska and 

Harris, 2004).  

In this pilot experiment, we tested whether endogenous fluctuations in auditory and 

visual cortices could provide a temporal reference frame for timing perception in the 

absence of explicit entrainment. In the previous experiment delta oscillations (1 Hz) were 

targeted. This was justified owing to previous reports, indicating a prominent role of 

these oscillations in audiovisual temporal binding (Lakatos et al., 2008; Schroeder and 

Lakatos, 2009; Besle et al., 2011; Gomez-Ramirez et al., 2011). Interestingly, these 

oscillations were found to impact audiovisual perception of temporally isolated 

audiovisual stimuli (Fiebelkorn et al., 2011, 2013). It thus suggests that endogenous ~1 

Hz oscillations have a specific role in audiovisual temporal perception, and might _ with 

or without entrainment _ provide a reference frame for subjective audiovisual timing. It is 

also possible that visual alpha oscillations take part in the encoding of event timing 

(Varela et al., 1981; Gho and Varela, 1988; Chakravarthi and Vanrullen, 2012). Finally, 

endogenous physiological, subcortical, or non-sensory cortical oscillations may take over 

temporal processing in the absence of external temporal regularities (James, 1886; Meck, 

1996; Matell and Meck, 2004; Wittmann and Paulus, 2008).  

 

2.3.2. Experiment 

 

Subjects 
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10 participants (4 female, mean age: 25 years old) took part in this study. All had normal 

or corrected-to-normal vision, normal color vision and normal hearing, and were naive as 

to the purpose of the study. Each participant provided a written informed consent in 

accordance with the Declaration of Helsinki (2008) and the Ethics Committee on Human 

Research at NeuroSpin (Gif-sur-Yvette, France). 

 

Experimental Paradigm 

 

The audiovisual stimuli were here composed of a sound via Etymotic earphones 

(Etymotic Research Inc., USA), and of a visual stimulus flashed with a LED. Sound and 

flash both had a duration of 30 ms.  

After 5-min familiarization to the task, subjects had to estimate the temporal order of 

audiovisual stimuli with various delays, ranging from +/-300, +/-240, +/-160, +/-120, 

+/-60, and 0 (a negative delay corresponds to auditory leads asynchronies). Each 

audiovisual delay was presented 10 times in random order. Each audiovisual stimulus 

was presented between 0.8 s and 1.2 s after button press. This block was performed to 

derive the psychometric curve of the subject. From this curve, the Point of Subjective 

Simultaneity (PSS) and the delays corresponding to 25 % and 75% of “Visual-First” 

responses (Just-Noticeable Differences or JND, Stekelenburg & Vroomen) were 

extracted. 

These 3 delays were used in the main experiment. As such the delays presented in this 

session were subject-specific. This choice was motivated by the psychophysical results in 

the first experiment. Knowing the large inter-subject variability in temporal order 

judgments, using fixed audiovisual delays (for instance 0 ms and + /-100ms) might have 

led to unbalanced temporal order responses. For instance, a subject with a PSS of -150 

ms (which occurred in our first experiment) would have mainly responded “Visual-first” 

responses with this setting. To avoid this issue, and to maximize our chances to get 50 % 

of each response, we calibrated the audiovisual delays according to each subject’s 

psychometric curve.  

 At this stage of the experiment the task remained identical with each audiovisual 

stimulus presented only 3s to 5s after button press. Participants were asked to remain still 
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during the absence of stimulation and to keep their gaze fixated on the LED. This long 

period of silence was introduced to measure the phase of low-frequency oscillations 

before stimulus onset (fig. 2.2a). 120 trials were presented for PSS, 25% JND, and 75% 

JND conditions, for a total of 360 trials. This session lasted 30 min and was divided into 

3 blocks of 8-9 min.   

 

 

Figure 2.2: Paradigm of control experiment (A) and Hypothesis (B). (A) Participants had to judge the 

temporal order of temporally isolated audiovisual stimuli. The next stimulus appeared 3 to 5 seconds after 

button press. This was done to measure the pre-stimulus phase of slow oscillations. (B) If events are 

mapped in time according to an endogenous “pacemaker” oscillation, then the phase of this oscillation 

should predict perceived temporal order response. By separating data according to subject’s response, two 

distinct phase distributions with strong phase locking and distinct preferential phases should be observed. 

This situation corresponds to a positive Bifurcation Index (BI) value. 

 

 

MEG analysis 

 

The method used for MEG data recording and preprocessing was identical to the method 

used in the previous experiment in accordance with typical MEG processing guidelines 

(Gross et al., 2013). Source space data analysis was performed with MNE-python 



82 
 

software (Gramfort et al., 2013).  Data analysis was restricted to the transverse temporal 

label and t primary visual cortices label taken from the “aparc” parcellation in the right 

hemisphere (fig. 2.3.). 

 

 

Figure 2.3: Source reconstruction of the (A) auditory and (B) visual evoked response. The white and 
green labels correspond to the region of interest for the computation of the Bifurcation Index. 

 

The Bifurcation Index (BI) (Busch et al., 2009) was used to test across different frequency 

bands whether the phase of prestimulus oscillatory activity could predict subject’s 

response of audiovisual temporal order. For each frequency f and time point t, the BI was 

computed as follows: 

 

BI(f,t) = (PLVAfirst(f,t)- PLVtot(f,t)) * (PLVVfirst(f,t)- PLVtot(f,t)) 

 

Where the PLV is the Phase Locking Value as defined by (Lachaux et al., 1999). 

PLVAfirst and PLVVfirst correspond to the PLVs of all the trials for which the participant 

responded “auditory stimulus-first” and “visual stimulus-first” respectively. PLVtot is the 

PLV calculated across all trials indistinctly of participant’s responses.  

A null BI either reflects similar phase distributions (same PLV and same preferential 

phase) between the two conditions of interest or phase locking in none of the conditions. 
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A negative BI corresponds to a difference in PLV between conditions, and a positive BI 

reflects that the preferential phase is different between the two conditions. Hence, a 

positive BI before stimulus presentation would indicate that the preferential phase of an 

endogenous oscillation predicts perceived timing (fig. 2.2b).   

 

The BI was computed for PSS conditions, e.g. for audiovisual delays at which subjects 

discriminated temporal order at change level during phase 2. It was computed for each 

time point in the interval [-2s, 0s] prior to the first stimulus onset (that differs between 

subjects depending on their PSS). The frequencies of interest were chosen from a log 

linear scale between 1 Hz and 50 Hz, e.g. 1, 1.4, 1.8, 2.5, 3.3, 4.5, 6.1, 8.2, 11, 15, 20, 27, 

37, and 50 Hz. We used a log scale to privilege the investigation of low frequency 

oscillations (<15 Hz). 

 

The significance of the BI index was assessed for each subject using a bootstrap 

procedure. Surrogate BI were computed from two sets of trials that were randomly 

chosen from the whole data set (irrespective of the response “A-first” or “V-first”). This 

procedure was repeated 100 times to produce a distribution of surrogate BI data. The 

statistical significance threshold was established for each subject by looking at the 95th 

percentile of the surrogate BI distribution at each time-frequency point. 

 

2.3.3. Results 

 

Each subject presented various profiles in the BI prior to stimulus onset in both auditory 

(fig. 2.4) and visual (fig. 2.5) cortices. While various positive peaks in BI were observed, 

these peaks did not reach statistical significance (uncorrected p_value for multiple 

comparison > 0.05).   
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Figure 2.4: Bifurcation Index in auditory cortex for each subject. Each panel corresponds to the BI 
calculated for each subject before the presentation of audiovisual stimuli in the PSS condition. For subjects 
s01 to s08 who had a negative PSS, the sound appeared before the flash in the PSS condition. The BI was 

thus calculated prior to sound onset. Subjects s09 and s10 had a positive PSS, accordingly their BI at 
calculated prior to flash onset. Color maps are restricted to [-0.05, a+0.05] BI values. In addition, color bars 
indicate the maximal and minimal values for each BI plot. We observed a large variability in the maximal 
BI values across subjects.  We think this variability is due to the difference in the number of trials that were 

selected to compute the BI for each subject. For example, s01, s02 and s08 had few trials (~20 trials per 
condition) and had large BI values. We suspect these large values are caused by the inaccurate estimation 
of the PLV in each condition. Overall, no significant positive BI peaks were observed at the subject level 
(uncorrected p_value for multiple comparison > 0.05). And no clear BI profile appears consistent across 

subjects. 

 



85 
 

 

 

Figure 2.5: Bifurcation Index in visual cortex for each subject. Each panel corresponds to the BI 
calculated for each subject before the presentation of audiovisual stimuli in the PSS condition. For subjects 
s01 to s08 who had a negative PSS, the sound appeared before the flash in the PSS condition. The BI was 

thus calculated prior to sound onset. Subjects s09 and s10 had a positive PSS, accordingly their BI at 
calculated prior to flash onset. Color maps are restricted to [-0.05, a+0.05] BI values. In addition, color bars 

indicate the maximal and minimal values for each BI plot. Again, we observed a large variability in the 
maximal BI values across subjects, and in particular s01, s02 and s08 had large BI values. Overall, no 

significant positive BI peaks were observed at the subject level (uncorrected p_value for multiple 
comparison > 0.05). And no clear BI profile appears consistent across subjects. 
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2.3.4. Discussion 

 

The preliminary results of this experiment remain inconclusive regarding to the existence 

of endogenous “pacemaker” oscillations in visual nor in auditory cortices.  

Please note that the number of trials in our experiment are probably  a limiting factor for 

the accurate computation of the BI. In our experiment, 120 trials were presented with the 

PSS delay, leading to ideally 60 trials for which the sound was perceived first, and 60 

trials for which the flash was perceived first. This relatively few amount of trials was 

chosen as a compromise between amount of collected trials the and the arduousness of 

the task. In addition to that, some participants (such as s01, s02 and s08)  preserved some 

bias in temporal order perception, so that the proportion of perceived sound-first and 

perceived flash-first trials was imbalanced at the PSS condition. To cope with this 

imbalanced data issue, we matched the numbrer of trials in the two data sets by rejecting 

randomly chosen trials of the largest dataset. This procedure came at the cost of BI 

precision cost. Hence for these subjects in particular, the reported BI may not be 

trustable. 

For the other subjects, even if not significant, the peaks in th BI profiles corresponded to 

non uniform phase distributions according to perceived temporal order. For instance, for 

subject s04 the preferential phase in visual cortices at 2 Hz frequency 1 s before stimulus 

presentation seemed to predict subsequent temporal order jugdment. Current analysis is 

performed to test the influence of neural oscillations at frequencies that are subject-

specific. This analysis is justified by the hypothesis that timing perception, in the absence 

of entrainment, could recruit endogenous oscillations that are specific to subject’s past 

experience. 

Nevertheless, the fact that we did not observed clear BI profiles in the other subjects 

could also question whether sensory timing could be retrieved through the dynamics of 

sensory areas in the absence of external temporal regularities. It may further suggest that the 

reported phase temporal tagging effects reported in the previous experiment may be 

restricted to neural entrainment situations. This interpretation would be in agreement 

with the idea that oscillatory timers could be implemented outside sensory areas. 

Temporal pacemakers could originate from subcortical rhythms in thalamus (Bushara et 
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al., 2001; Schwartze and Kotz, 2013), hippocampus (Sirota et al., 2008) or substantia 

nigra (Meck, 1996). In addition, the Striatal Beat Model suggests that striatal neurons 

might read temporal information within the activity of a large range of areas (Matell and 

Meck, 2004; Buhusi and Meck, 2005). In particular, frontal neurons that inherently fire 

rhythmically could serve as “absolute” markers of time perception in the absence of clear 

external temporal input (Matell and Meck, 2004; Buhusi and Meck, 2005). We also est 

this alternative hypothesis: we currently perform source space analysis to investigate the 

potential existence of temporal sensory pacemakers outside primary areas.  
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CHAPTER 3:  

LOW RESOLUTION OF MULTISENSORY 

TEMPORAL BINDING 

 

 

3.1. INTRODUCTION 

 

 
3.1.1. Motivation 
 

Chapter 2 demonstrates a prominent role of low-frequency oscillations (1 Hz) 

entrainment in audiovisual timing perception.  

The choice of 1 Hz as the frequency of entrainment was motivated by recent work which 

emphasized the implication of delta oscillations in the temporal expectancy of 

audiovisual features. Oscillations in the delta band in auditory cortex can phase-lock to 

the time of arrival of target sound (Luo et al., 2010; Stefanics et al., 2010b; Besle et al., 

2011; Cravo et al., 2013; Hsu et al., 2013) and the likelihood of phase-locking steadily 

increases with the increased probability of the appearance of the target (Stefanics et al., 

2010b). As such, low-frequency oscillations are assumed to take part in the construction 

of sensory temporal predictions. In multisensory context, visual (auditory) inputs can 

cause significant delta phase reset in primary auditory (visual) cortex (Lakatos et al., 

2008; Besle et al., 2011; Gomez-Ramirez et al., 2011) but phase-resetting is only seen if 

the visual (auditory) stimuli are attended. If they are ignored, these stimuli have no 

detectable impact on cortical oscillations (Lakatos et al., 2008; Besle et al., 2011). These 

results highlight the role of low-frequency oscillations under the process of attentive 

selection in time (Lakatos et al., 2008; Besle et al., 2011), by applying goal-directed (top-

down) attentional selection to either auditory or visual inputs.  
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Yet, audiovisual attentional selection can also be tuned to the presence of salient 

unexpected stimuli (Van der Burg et al., 2008, 2011; Talsma et al., 2010). In particular, 

the search of a dynamic visual target is facilitated in the presence of salient sound beeps 

that are synchronous to target’s changes of appearance (Van der Burg et al., 2008). The 

modulation of visual search by sound was characterized by early modulations in parietal 

and primary sensory areas (Van der Burg et al., 2011). Hence, in line with previous early 

multisensory effects in stimulus evoked responses (Giard and Peronnet, 1999; van 

Wassenhove et al., 2005), stimulus-driven attention engages fast multisensory binding 

processes (50-100 ms post stimulus onset). If multisensory integration relies on fast 

communicating mechanisms, it is then possible that selective attention in time could also 

capitalize on the fined-grained dynamics of the world, and not only on its very slow 

fluctuations as previously suggested. Therefore, entrainment to fast temporal regularities 

could also facilitate audiovisual temporal binding. Here we thus asked the range for 

which temporal regularities facilitate audiovisual integration. 

 

3.1.2. Experiment 

 

In this experiment we modified the visual search task paradigm introduced by van der 

Burg and colleagues (2008). Specifically, we used a dynamic visual conjunction search 

task, with auditory cues that are synchronized with the color change of the target 

(horizontal or vertical bar). Here, sounds and visual elements were displayed at a pseudo-

regular rate which varied between 0.6 Hz and 10 Hz. If the temporal synchrony between 

the auditory and visual streams of stimuli is sufficient to induce binding, then visual 

search should be facilitated for all temporal rates. However, if audiovisual temporal 

binding is limited by the temporal constrains of the recruited mechanisms, then visual 

search should also be bound to rather slow stimuli dynamics. 

 

3.1.3. Summary of the results 

 

Visual search was improved when the sound was synchronized to the visual target’s 

dynamic changes. In line with previous reports, these results support that rhythmic 

information could afford predictability of sensory information, and also indicate that 
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stimulus-driven temporal attentional selection can be crossmodal. However, the benefits 

from auditory cues could only be observed for temporal rates below 1.4 Hz. These 

findings further support the hypothesis that audiovisual binding mechanisms are 

restricted to slow-dynamics in the delta range. 

 

 

3.2. ARTICLE 

 

Kösem, A., & van Wassenhove, V. (2012). Temporal Structure in Audiovisual Sensory 
Selection. PloS one, 7(7), e40936. 
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ABSTRACT 

In natural environments, sensory information is embedded in temporally contiguous streams 

of events. This is typically the case when seeing and listening to a speaker or when engaged in 

scene analysis. In such contexts, two mechanisms are needed to single out and build a reliable 

representation of an event (or object): the temporal parsing of information and the selection of 

relevant information in the stream.  It has previously been shown that rhythmic events 

naturally build temporal expectations that improve sensory processing at predictable points in 

time. Here, we asked to which extent temporal regularities can improve the detection and 

identification of events across sensory modalities. To do so, we used a dynamic visual 

conjunction search task accompanied by auditory cues synchronized or not with the color 

change of the target (horizontal or vertical bar). Sounds synchronized with the visual target 

improved search efficiency for temporal rates below 1.4 Hz but did not affect efficiency 

above that stimulation rate. Desynchronized auditory cues consistently impaired visual search 

below 3.3 Hz. Our results are interpreted in the context of the Dynamic Attending Theory: 

specifically, we suggest that a cognitive operation structures events in time irrespective of the 

sensory modality of input. Our results further support and specify recent neurophysiological 

findings by showing strong temporal selectivity for audiovisual integration in the auditory-

driven improvement of visual search efficiency. 

 

 

KEYWORDS: multisensory perception; attentional selection; binding problem; neural 

oscillation; perceptual grouping; dynamic attending theory. 
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1. INTRODUCTION 

 

Many ecologically relevant events (such as speech, auditory and visual scenes, music…) 

present natural periodicities or statistical temporal regularities [1-4]. These temporal 

regularities provide useful cues to help parse and structure events out of complex sensory 

streams notably by building strong temporal expectations on the upcoming sensory inputs. 

For instance, it has previously been shown that a steady rhythmic presentation improves the 

detection of an event in a stream [5-7]: the detection of an auditory (visual) event is improved 

when it appears one period after the last auditory (visual) event, but impaired when it is 

presented earlier or later than at the instant predicted on the basis of the previous stimulation 

rate [5-7]. Such results have been interpreted in the context of the Dynamic Attending Theory 

(DAT) [8] (Figure S1).  

The DAT provides a mechanism for selective attention in time i.e. for the parsing of objects 

based on their inherent temporal structure or based on the temporal structure of an internal 

oscillator. One strong assumption of the DAT is that the brain can not only keep track of 

temporal regularities (or environmental rhythms) but also predict, on this basis, the arrival 

time of a transient event that fluctuates at the same rate. As such, the ‘temporal context’, 

defined as the relative timing between past AV events, becomes an important factor for 

attentional selection in time. One implementation of attentional selection in time heavily relies 

on oscillatory mechanisms that lock to the temporal structure of sensory events [8,9]. This 

process can be compared to an expectancy profile that naturally allows attention to be 

engaged at the very point in time at which a stimulus is anticipated to appear or change [5-7].  

This temporally precise allocation of attention could bear functional relevance for the early 

encoding and selection of features across sensory modalities. Thus, DAT sketches an 

attentional-tracking mechanism over time that is understudied yet offers interesting 

complementary views to more traditional space-, feature- or object-tracking approaches in the 

study of attention [10,11]. Here, we asked whether the DAT could be extended across sensory 

modalities and whether temporal regularities can be shown to operate automatically in the 

selection of appropriate audiovisual (AV) events. 

A first motivation for this experimental work is that the temporal structure of events is a well-

known constraint for multisensory integration [12-19]; yet, previous studies have provided 

contradictory results regarding the automaticity of attentional selection for synchronous 
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streams of AV stimuli. Using visual search paradigms with dynamic stimuli, the presence of 

rhythmic auditory stimuli synchronized with visual targets can either improve [20, 21] or have 

no effect [22] on visual search efficiency. One major difference in these studies was the rate at 

which AV events were displayed: no AV search efficiency was observed for 10Hz [22] but 

improvements were reported for 1.1Hz [20]. Second, recent neurophysiological findings have 

suggested that tracking the temporal structure of AV events likely operates in particular 

temporal regimes [23-25]. Neural oscillations are classically known to entrain to rhythmic 

stimuli [26, 27], thereby providing a direct mechanistic implementation for the DAT (Figure 

S1): neural entrainment modulates the excitability of tuned neural population through time. 

As such, the processing of events in phase with the entrained oscillation is facilitated due to 

higher neural excitability [28]. In AV context, it has been shown that rhythmic sounds lead to 

neural entrainment not only in auditory cortex but also in visual cortices [24]; this suggests 

that rhythmic auditory stimulation can modulate visual processing at relevant points in time 

and could presumably affect visual detection rates. Third, the AV modulation of neural 

excitability across sensory cortices has been demonstrated for neural oscillations of 1-2 Hz or 

“delta band” [23-25].The specific involvement of slow frequency oscillations (1-2 Hz range) 

may optimize early AV integration for stimuli in that dynamic range.  

The temporal rates between studies [20] and [22], the known importance of AV transience for 

multisensory integration [21, 29-31], and the temporal structure of AV events [12, 17, 18] can 

all be limiting factors for automaticity in AV integration. Hence, we were interested in the 

effect of AV temporal rate and the temporal context it confers to visual search efficiency. 

Specifically, on neurophysiological grounds, the existence of a temporal threshold (1-2 Hz) 

on the automaticity of AV integration is here predicted.  

 

To test this hypothesis, we build on the visual conjunction search paradigm developed by van 

der Burg and colleagues [20]: a horizontal or vertical bar (visual target) surrounded by 

distracters of various orientations changed colors at particular temporal rates (Figure 1, Video 

S1). We used seven temporal rates and three set sizes to test whether the rate at which the 

visual target changed color alone (V), with a synchronized sound (AVc) or with a sound 

synchronized with a distracter (AVi) was a determining factor for search efficiency.  
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Figure 1: Experimental Paradigm. Each trial started with a fixation point lasting between 1 and 4 seconds 
(randomized across trials). In the audiovisual conditions (AVc, AVi) two or three sounds appeared before the 
visual display in order to avoid a surprise effect at the onset of the first sound. This was followed by the visual 
display with or without a sound (AVc and AVi or V, respectively). Participants were asked to find a horizontal 
or a vertical bar in the visual display while maintaining their gaze on the fixation point at all times. They were 

asked to answer as fast and as accurately as possible by pressing the space bar on the keyboard.  One trial lasted 
a maximum of 10 seconds during which the participant was expected to have detected the target. After detection, 
participants were asked to identify the orientation of the detected target (vertical or horizontal). If the participant 

had not detected the target, he was nevertheless asked to make a guess. Therefore, this design allowed 
quantifying two dependent variables: reaction times (RTs – with a 10 sec imparted limit for the participant’s 

detection) and identification rate. In subsequent analysis, trials in which the target was not detected within 10 s 
were discarded for RTs. The experiment was run in 3 pseudo-randomized blocks corresponding to the display 

condition (V, AVc and AVi). 

 

2. RESULTS  

 

Visual search efficiency was quantified in terms of RTs and identification rate: for each trial, 

participants were asked to press a button as fast as possible when they saw the target; after 

detection, they reported its orientation in a 2-Alternative-Forced-Choice (2-AFC, “vertical” or 

“horizontal”) allowing the assessment of the correct identification rate. Statistical analysis 

was performed using a linear mixed effects model for RTs and a logistic regression model for 

identification rate [32, 33]. The fixed factors were display condition (3: AVc, AVi, and V), set 
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size (continuous factor) and temporal rate (7 discrete levels). Subjects (n=24) were a random 

effect. Significant fixed factors were assessed by means of a regression model simplification 

using the Akaike Information Criterion (AIC). Each model’s goodness of fit was evaluated 

against the inclusion of each variable and interactions across variables of interests. Table 1 

summarizes the comparison of the obtained models. The ‘set size’, ‘temporal rate’ and their 

interaction with the predictor ‘display condition’ accounted for a significant amount of 

variance on RTs and identification rate (Table 1: model 5 and 4, respectively). The 

interpretation of all models preceding model 5 and 4 are provided in text. The additional 

statistical analyses were conducted with the regression models containing all significant 

predictors and interactions for each dependent variable: namely, model 5 for RTs and model 4 

identification rates. Specifically, all regression coefficients used to assess statistical 

significance (t-tests, Wald tests (yielding Z)) were directly drawn from these two models.  

 

2.1. Transient sounds affect visual search efficiency irrespective of temporal 

stimulation  rate 

 

Participants were faster and more accurate at detecting the target in AVc than in V 

(significance of contrast coefficient AVc vs. V for RTs: t = 3.2, p < 0.001; for identification: 

Z= -5.8, p < 0.001) but slower and less accurate in detecting the target in AVi than in V 

(significance of contrast coefficient AVi vs. V for RTs: t = -5.9, p < 0.001; for identification: 

Z = 8.5, p<0.001). An AV congruency effect (contrast AVc vs. AVi) was observed in both 

RTs and identification rates (RTs: t = 9.7, p<0.001; identification: Z = -13.3, p < 0.001). 

These results suggest that a transient sound facilitates the detection of a synchronized visual 

target but also impairs target detection when it is synchronized with a distracter, in line with 

prior reports [20]. 

A main effect of set size was found (Figure 2; Table 1, “model 2: model 1+ set size”): across 

all display conditions, search efficiency decreases when the number of distracters increases 

(RT slope = 7 ± 2 ms / item, t = 4.3, p < 0.001). As shown in Figure 2, the set size impaired 

RTs more in AVi than in AVc (AVi slope value: 11 ± 3 ms / item; AVc slope value: 4 ± 3 ms 

/ item; t = 2.7, p < 0.01). When gathering data across all temporal rates, no significant effect 

was found between the AVc and V slopes (V slope value 11 ± 2 ms / item; t= 1.8, p = 0.058) 



98 
 

or between the AVi and V slopes (t = -0.8, p = 0.4). Thus, the number of distracters influences 

the visual search less in AVc than in AVi or in V.  

 

 

Figure 2: Effect of number of distracters on RT and identification rate collapsed over all temporal rates. 
Mean response times (A) and detection rates (B) per condition and per subject as a function of set size. Bars 

denote two SEM. A significant interaction was found between display condition and set size for RTs. The slope 
of the curve RTs = f(set size) was significantly lower in condition AVc than in condition AVi. The number of 

distracters affected the visual search less when a sound was synchronized with a target color change than in the 
absence of sound (V) or in desynchronized condition (AVi). 

 

 

However, RTs cannot be taken as definite evidence for improvements in perceptual 

processing [34, 35].  No significant interaction between display condition and set size was 

observed for identification (Table 1) and the slopes for correct identification did not 

significantly differ across modalities when temporal rates were taken out of the model (Figure 

2). Identification rates decreased with increasing number of distracters whereas the search 

remained most efficient in AVc and least efficient in AVi. According to our hypothesis, 

efficient AV search may not occur across all temporal rates (cf. main effects of temporal rates 

in RT and identification rate in Table 1, model 3) and we thus turn to the specific effects of 

temporal rate on visual search efficiency. 
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RTs 

Regression models 

Df model AIC ChisqChi Df   Pr(>Chisq) 

model 1: display condition + (1|subject) 

model 2: 1+ set size 

model 3: 2+ temporal rate 

model 4: 3+ display condition * temporal  rate 

model 5: 4+ display condition * set size 

model 6: 5+ set size * temporal rate 

 5 

 6 

12 

24 

26 

32 

55263 

55243   

55118 

55090 

55086 

55091 

 

22.92 

136.85 

51.43 

8.46 

7.03 

 

1 

6 

12 

2 

6 

  

 1.69e-16  *** 

< 2.2e-16   *** 

   7.84e-7   ***   

0.0015 * 

   0.32 

 IDENTIFICATION 

Regression models  

Df Model  AIC ChisqChi Df   Pr(>Chisq) 

model 1:display condition + (1|subject) 

model 2: 1+ set size 

model 3: 2+ temporal rate 

model 4:3+ display condition * temporal rate 

model 5: 4+ display condition * set size 

model 6:5+ set size * temporal rate 

4 

5 

11 

23 

 

25 

31 

 8055.3 

 7965.9 

 7923.1 

7875.9 

  

7877.8 

 7885.4 

 

91.3227 

54.8172 

71.2673 

 

2.0273 

4.3897 

 

1 

6 

12 

 

2 

6 

  

< 2.2e-16  *** 

 5.047e-10 ***        

 1.854e-10 *** 

       

      0.362 

      0.624 

 

Table 1: Summary of linear mixed regression analyses. Regression model minimization used the Akaike 

Information Criterion (AIC) and likelihood ratio. Three factors were analyzed: display condition (3 levels), set 

size (continuous factor) and temporal rate (7 discrete levels) plus one random effect (24: participants). Six 

models were tested to explain the data with increasing order of complexity, namely: model (1): the effect of 

display condition; model (2): model 1 + set size; model (3): model 2 + temporal rate; model (4): model 3 + 

display condition x set size; model (5): model 4 + display condition x temporal rate; model (6): model 5 + set 

size x temporal rate. Bold models designate those variables significantly contributing to model estimate. 

 

2.2. Temporal rates and attentional selection 
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Temporal rates accounted for a significant amount of RT and identification rate variance 

(Table 1, model 3): significant effects were observed for both RT and identification rates 

between the different temporal rates (Tables S1 and S2, respectively). Overall, participants 

were faster and more accurate at temporal rates below 1.4 Hz compared to rates above 3.3 Hz 

irrespective of modality and set size (Figure 3, Table S1 and S2). Abrupt visual onsets are 

known to capture exogenous attention [36]. In this paradigm, as the temporal rate increases so 

does the number of color changes: this could lead to a larger temporal crowding effect in 

which individuating the visual target in time may become particularly challenging  [37]. 

Interestingly, temporal rates significantly affected both RTs and identification rates in AVc 

and in V but not in AVi (Tables S3 and S4, respectively).  The temporal margin introduced in 

our paradigm could have diminished the temporal crowding effect and benefited target 

identification in AVc but impaired it in AVi.  However, the lack of temporal rate effect on the 

identification rate in AVi suggests that, consistent with the observed slower RTs, auditory 

information may either be disregarded or compete with desynchronized visual information (in 

this case, the target). 

 

2.2.1. Search efficiency and temporal stimulation rate 

 

RTs were significantly faster in AVc than in V for almost all temporal rates (significance of 

contrast coefficients AVc vs. V at each temporal rate: t0.6 Hz = 3.5, p < 0.001; t0.8 Hz = 2.4, p < 

0.05; t1.1 Hz = 1.95, p = 0.05; t1.4 Hz = 2.7, p < 0.01; t2 Hz = 3.2, p < 0.01. t3.3 Hz = 2.3, p < 0.01. 

t10 Hz = 1.95, p = 0.05) but slower in AVi compared to V only for temporal rates below 3.3 Hz 

(significance of contrast coefficients AVi vs. V at each temporal rate: t0.6 Hz = -5.3, p < 0.001; 

t0.8 Hz = -5.8, p < 0.001; t1.1 Hz = -5.8, p < 0.001; t1.4 Hz = -4.2, p < 0.001; t2 Hz = 3.2, p < 0.01. t3.3 

Hz = -1.3, ns; t10 Hz = -1.1, ns). Note however that the limit of 3.3 Hz in AVi is not due to the 

interaction of RTs with temporal rate but rather to the slowing down of RTs in AVc and V 

with increasing temporal rates (cf. Fig. 3a). The constant RT difference (about 320 ms) across 

temporal rates between AVc and V support  an effect of overall alertness affecting the central 

decision stage [38].  
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Figure 3: Main effect of temporal rates collapsed across all set sizes on reaction times and identification 
rate. Mean response times (A) and detection rates (B) per condition (V: crosses, AVc: filled circles and AVi: 

open circles). Bars denote are two SEM. A sound synchronized with the visual target color change fastens RTs 
for all temporal rates (Fig. 3a) and improves target detection only below 1.4 Hz (Fig. 3b). The level of 

significance between AV (AVc and AVi) and V conditions are reported as follows: *: p<0.05; **: p<0.01; ***: 
p<0.001, #: p<0.055. 

 

Identification was significantly worse in AVi compared to V, below 3.3 Hz (AVi vs. V: Z0.6Hz 

= 2.5, p < 0.05; Z0.8Hz = 2.9, p < 0.01; Z1.1Hz = 3.8, p < 0.001; Z1.4Hz = 5.2, p < 0.001; Z2Hz 

=4.3, p < 0.001; Z3.3Hz = 1.4, p = 0.15; Z10Hz < 1); for temporal rates below 1.4 Hz, 

identification in AVc was significantly better than in V (AVc vs V: z0.6 Hz = -3.5, p < 0.001; 
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Z0.8 Hz = -3.3, p < 0.01; Z1.1 Hz = -2.7, p < 0.01; Z1.4 Hz = -1.8, p = 0.07; Z2 Hz <1; Z3.3 Hz = -1.9, p 

= 0.055; Z10 Hz = -1.4, p = 0.2).  

These results suggest that true AV benefits in search efficiency (considering both RT and 

identification rate) are constrained to temporal rates below1.4 Hz: informational gain could be 

uniquely obtained in the range of temporal rates in which auditory information affects visual 

analysis and/or the robustness of the target representation and within which the temporal 

structure of events can be tracked. 

 

2.2.2. Two search regimes based on temporal rate 

 

To establish whether AV search operates in two modes based on the temporal structure of 

events (namely, one of automatic AV integration at low temporal rates and one of AV 

competition at higher temporal rates), data were divided into two groups (temporal rates 

below and above 1.4 Hz; preliminary statistical analysis was conducted to determine this 

grouping albeit details are not reported here for sake of clarity).  

 A main effect of display condition on RTs was found for the below 1.4 Hz group (AVc vs. 

AVi: t = 14.77, p < 0.001; AVc vs. V: t = 4.58, p < 0.001; AVi vs. V: t = -9.99, p < 0.001) and 

the above 1.4 Hz group (AVc vs. AVi: t = 11.54, p < 0.001; AVc vs. V: t=5.09, p < 0.001; 

AVi vs. V: t= -6.27, p < 0.001). Similarly, a main effect of display condition was found for 

identification rates in the below 1.4 Hz group (AVc vs. AVi: Z = -10.14, p < 0.001; AVc vs. 

V: Z = -5.41, p < 0.001; AVi vs. V: Z= 5.61, p < 0.001) and in the above 1.4 Hz group (AVc 

vs. AVi: Z = -7.71, p < 0.001; AVc vs. V: Z =-2.06, p < 0.05; AVi vs. V: Z = 5.62, p < 0.001). 

However, differences in identification rate between AVc vs. V and AVi vs. V conditions 

obtained in the below 1.4 Hz group were twice as large as those obtained in the above 1.4 Hz 

group (Figure 4).   

More importantly, the effect size was only found to be significant for the below 1.4 Hz group 

between the conditions of interests (Figure 4), namely RTs and identification rates were less 

affected by the number of distracters in AVc than in V in this group (RT: AVc slope value: 1 

± 3 ms / item, V slope value:11  ±  3  ms / item;  t = -2.1, p < 0.05; identification AVc slope 

value: -0.1 ± 0.02 % /item, V slope value:-0.2 ± 0.07 % /item: z = 2.1, p < 0.05). The slope of 

RTs was also found to be much steeper in AVi than in AVc (AVi slope value:  13 ± 4 

ms/item;t = -2.0, p<0.05). Additionally, no difference in slopes was found between AVi and 
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V (RTs: t = 0.3, ns, identification: z = 0.2, ns). The major decrease in AVc slope compared to 

other conditions suggests that the target is more immune to the presence of visual distracters 

in this display condition; 1.4 Hz appears to be a temporal rate below which a synchronous 

sound automatically improves visual search efficiency by helping the individualization or 

segregation of visual targets presented in a dynamic stream of events. 

 

 

 
Figure 4: Grouped RTs and identification rates as a function of set size. Grouped RTs (upper panels) and 
identification rates (lower panels) as a function of set size for temporal rates under (A) and above (B) 1.4Hz. 
Bars are two SEM. In the below 1.4Hz group, slopes in AVc are shallower than in AVi and V conditions; this 

suggests that visual search is less impaired by distracters in AVc. In the above 1.4Hz group, no significant 
differences in slopes were found. 
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3.  DISCUSSION 

 

In this study, we first replicated prior findings showing that RT and identification of a visual 

target in a dynamic conjunction search task is more efficient when a transient sound is 

synchronized with the visual target color change (AVc) at 1.1 Hz [20]. Additionally, we 

showed that visual search efficiency is impaired in AVi - sound synchronized with a visual 

distracter color change - compared to V or AVc. Crucially, we showed the existence of two 

temporal regimes: one in which AVc search reveals an automaticity profile for temporal rates 

below 1.4 Hz (no effect of number of distracters on RT or identification rate), and the other in 

which a competition profile is seen above 1.4 Hz.  

The 1.4 Hz temporal limit found here may provide an insight on how to disambiguate 

conflicting results in the literature: whereas some studies have supported the existence of 

automaticity in AV integration [20], others have postulated that AV integration was post-

attentional [22]. Our first working hypothesis was that both studies used a very different 

temporal rate (1.1 Hz in the former, ~10 Hz in the latter). We now show that these temporal 

rates are indeed in and out of the efficiency search range observed here, respectively. Thus, 

our study suggests that the presence of transient events may be a necessary [21] but 

insufficient condition for automatic AV integration: specifically, we suggest that shared 

temporal structure between auditory and visual events matters. 

 

3.1. AV attentional selection depends on temporal structure 

 

In this paradigm, two properties were shared between audition and vision: first, the transience 

of a sound aligned in time with the abrupt visual color change of the target or distracter and 

second, the temporal context, namely the relative temporal history between past AV events. 

One question is thus whether AV synchrony is a determining factor in sensory selection 

[20,21] or whether the temporal structure of sensory events also matters for the observed 

improvements in AV search efficiency. 

First , it has previously been argued that AV synchrony and the transience of events were 

critical factors for improved visual search efficiency [21]. If improved search efficiency solely 



105 
 

relied on instantaneous AV integration (i.e. independently of the temporal context), the 

temporal stimulation rate effects could be argued to be a consequence of visual temporal 

crowding effects. Specifically, as the number of visual event changes increase (with faster 

temporal rate), visual search efficiency should decrease (slower RT, poorer identification 

rate). Such temporal crowding effect in vision should equally affect search efficiency 

irrespective of the modality of presentation (V, AVc, AVi). Our results clearly suggest that 

this is not the case: the profiles observed as a function of distracter number under different 

temporal rates indicate specificities both in the RT and in the identification rates with distinct 

patterns under and above 1.4 Hz.  It could be argued that at higher temporal rates, the search 

becomes inefficient due to the inability to extract temporal anchors from the acoustic stream. 

Recent evidence [39] suggests that multisensory integration is pre-attentive when the spatial 

location of a visual stimulus is already resolved. The discrepancy between Alsius et al. [39] 

and van der Burg et al. [20] were deemed to rely on the nature of audiovisual stimuli: AV 

speech in the former case, transients AV events in the latter. If transient sounds can provide 

strong temporal anchors for the parsing of visual events thereby enhancing visual spatial 

search, temporal information extracted from auditory speech stream may be more subdued 

and less informative for visual segmentation [39].  In our experiment, transient tones were 

used (similar to [20]). It could be argued that temporal cues provided by the sound become 

weaker as temporal rate increases, thereby alleviating any benefit for visual search. However, 

the fastest temporal rate in our experiment was 10 Hz (one 15 ms tone every 100 ms on 

average). Even at this high display rate, sounds are perceptually discrete and preserve the 

ability to affect in a non-random fashion the discrimination of temporal visual structure [12]. 

One interesting question is thus whether systematic manipulation of the salience in the natural 

temporal modulation of AV speech could affect the results reported in Alsius et al. [39].   

Second, the temporal distance between visual events (target and distracters alike) was 

carefully controlled so that when a sound occurred, only one auditory and one visual event 

could be integrated at a time (see Methods). For most temporal rates tested here (except 

arguably 10 Hz, see Methods) the temporal distance was large enough for the visual target 

and the sound cue to integrate. If improvement in visual search efficiency solely relied on the 

integration of a single AV occurrence, no temporal rate effect should be observed. Hence, the 

significant temporal rate effects suggest that AV synchrony is not the sole factor in the 

sensory selection process: namely, the temporal context plays a critical role (in vision see 

also[40-42]).  
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 The role of temporal context can further provide an account of the empirical discrepancies 

regarding the effect of a temporally incongruent sound in visual search.  In our study, the 

sound-distracter pairing was temporally uncorrelated with the target’s color change, i.e. no 

temporal structure was shared between distracters and targets. In van der Burg et al. [20], the 

authors reported that a sound could improve visual search even when synchronized with a 

visual distracter: when a sound-distracter’s color change shortly preceded the target’s color 

change, efficient search was observed. However, in this control condition, the sound 

preserved its temporal cueing property with respect to the target: the sound-distracter pair and 

the target was systematically and on average separated by 200 ms. It is thus not entirely 

surprising that the sound-distracter pair kept on improving the target detection in [20] since 

temporal correlations between sound-distracter and target color changes were maintained.  

 

For these reasons, we suggest that the improvement (impairment) observed in AVc (AVi) 

search efficiency below 1.4 Hz originates from AV perceptual grouping in time.  One 

important issue in multisensory integration is whether the identity of AV information matters 

in the integration process. This has lead to two hypotheses: “multisensory enhancement 

hypothesis” or “perceptual grouping” hypothesis [29, 30]. Although our paradigm essentially 

addressed the former issue, our results are consistent with the ‘common-fate’ Gestalt 

principle, namely, features that have the same dynamics are more likely to be perceived as 

belonging to the same perceptual object. This has previously been demonstrated in visual [40-

42] and in auditory grouping [43-44]. Our data add to this literature and suggest that a similar 

principle may be driving AV integration for certain temporal regimes. AV synchrony [20] but 

also, and crucially, AV temporal structure are fundamental to perceptual grouping in AV 

integration.  

 

3.2. AV temporal prediction benefits visual encoding 

 

In line with - and as a multisensory extension of – the original DAT proposal [8] (Figure S1 

panel A), selective attention can fluctuate in time and predict the arrival of future events based 

on the rate of presentation of the preceding stimuli. This, we suggest, may occur irrespective 

of the sensory modality of input. Additionally, the rhythmic occurrence of AV events may 
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enable the elicitation of a (AV) temporal expectancy profile. It is noteworthy that two to three 

auditory events occurred before the visual display was shown thereby enabling a temporal 

expectancy profile to emerge even before the visual target first changed color. This may partly 

account for the overall faster RT observed in our study as compared to original findings [20].  

Importantly, at rates below 1.4 Hz, both RTs and identification rates improved suggesting 

specificity in the AVc integration process. As observed within modalities [5-7], AV stimulus 

repetition may improve the precision of visual encoding. For instance, in agreement with the 

repetition-expectation effect [45], the extraction of visual information may be enhanced by the 

temporal predictability of the visual target based on the AVc temporal rate. Said differently, 

the shared temporal structure of AV events enables precise temporal prediction of the timing 

of the visual target change (Figure S1, panel B) . In AVi condition, AV integration is 

prevented as sounds cue for the color change of a distracter (Figure S1, panel C). Additional 

experiments are needed to explore to which extent auditory and visual streams may enter in 

competition for attentional selection at these rates. 

Like the DAT, alternative approaches based on the temporal statistics of events [46, 47] 

predict the establishment of an expectancy profile after the presentation of rhythmic stimuli. 

Based on the interval-based mechanism of perceptual timing [46], the extraction of temporal 

properties of a stimulus relies on the memory of interval durations between previous stimuli, 

not on the synchrony of events entrained by an internal oscillator. In our study, the arrival 

time of the next AV event would thus be computed based on the distribution of previous 

temporal delays between AV events. The central tendency and the dispersion of the 

distribution could encode the nature and the strength of the temporal expectancy.  However, 

our main finding cannot be accounted for by these models: specifically, in case of jittered 

rhythmic stimulation, such models predict an increase in strength and accuracy of the 

temporal prediction. In this paradigm, this would translate into a more efficient search for 

high temporal rates – considering that more events are displayed per second. The opposite 

effect was found here.    

 

3. 3. The attentional selection threshold is consistent with neurophysiological 

findings 
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Recent neurophysiological finding have suggested that attentional selection across sensory 

modalities may be implemented as entrainment of neural oscillations whether stimuli are 

rhythmic or present inherently a complex temporal structure [23-25,28, 48-50]. Using simple 

rhythmic AV stimuli, the neural entrainment of auditory and visual cortices has been 

demonstrated in the 1-2 Hz range (“delta band”) [23- 25].  

One mechanistic view of brain function is that cortical oscillations naturally impose their 

temporal granularity on the parsing of sensory information. This has been shown in speech 

[51], in vision [48, 52] and extended to AV parsing [3]. If AV attentional selection operates in 

the 1-2 Hz range as suggested by monkey neurophysiology work [23- 25], this mechanism 

should bear functional relevance to the central question of automaticity in AV integration 

[53]. These findings constitute a major prediction for the existence of a temporal boundary for 

AV attentional selection.  

The 1.4 Hz limit in AV search efficiency is thus in line with neurophysiological predictions: 

specifically, neural entrainment above that temporal modulation would lead to a processing 

bottleneck of event tracking in time (Figure S1, panel B, cases illustrating the > 1.4 Hz). 

Neural entrainment is characterized by an increased neural excitability at a particular phase of 

the entrained oscillation: if (i) neural entrainment is conceived as the mechanistic 

implementation of the expectancy profile hypothesized in the DAT [7] and (ii) auditory 

stimuli can entrain oscillations in visual cortices [24], then our results suggest that the 

encoding of visual events co-occurring with the sound will be more efficient at the time 

predicted by the auditory stimuli. In this context, the encoding of a visual event is as efficient 

for a target as for a distracter, as long as it shares its temporal structure with the auditory 

stream. Hence, when the visual event is a target, RTs and identification benefit from this 

automatic attention selection mechanism; when the visual event is a distracter, this 

mechanism impairs efficient detection of the target. In AVi, the automaticity of temporal 

parsing induced by the auditory rhythm hinders, and perhaps competes with, the detection of 

the visual stream that does not share the same temporal structure. Indeed, in AVi, the visual 

target stream cannot be tracked automatically and requires additional attentional resources as 

can readily be seen with the RTs increase and the lower identification rate irrespective of 

temporal rates (Figure 3). This attentional selection mechanism provides specific and testable 

neurophysiological predictions of increased (AVc) and decreased (AVi) search efficiency - or 

decreased and increased AV competition, respectively (Figure S1, panel B and C).  
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One limitation remains in both our study and early neurophysiological findings [23- 25], 

namely: the temporal structure of events is imposed by the stimulation rate and not 

necessarily imposed by ongoing neural oscillations. Automaticity is demonstrated in the 

context of salient entrainment of AV stimuli but it is unclear whether a similar limit on the 

automaticity of attentional selection would be observed for AV stimuli with more complex 

dynamics (e.g. as in AV speech [39]) or using a very different paradigmatic approach (e.g. as 

in [29-30]). Nevertheless, a recent behavioral study [54] using non-rhythmic stimulation 

further suggests that similar selection attentional mechanisms can affect perception: in a 

visual detection task, hit rates were shown to change periodically through time and maximum 

hit rates were phase-locked to the sound onset. The authors reported that the hit rates 

periodicity approximated 1 Hz although different temporal rates were not explicitly tested.  

 

3.5.Conclusion 

 

In a visual conjunction search paradigm, sounds can improve and impair search efficiency 

when synchronized or desynchronized with a visual target, respectively. Major improvements 

in search efficiency are limited to temporal stimulation rate slower than 1.4 Hz whereas 

impairments are consistent across temporal rates. Our results are interpreted in the context of 

the DAT [8] in the temporal frequency range predicted by monkey and human 

neurophysiology [23, 24, 25]: specifically, brain rhythms in the 1-2 Hz range naturally impose 

a limit on the attentional selection of events in time irrespective of sensory inputs. This can be 

considered a temporal Gestalt that operates at a slow rate across sensory modalities and 

enables automatic audiovisual integration. 

 

4. MATERIAL AND METHODS 

 

4.1.Subjects 

 

Twenty-four volunteers (13 females, mean age: 22.5 years old) participated in the study. All 

had normal, corrected-to-normal vision, normal color vision and normal hearing, and were 



110 
 

naive as to the purpose of the study. Each participant provided an informed consent in 

accordance with the Declaration of Helsinki (2008) and the Ethics Committee on Human 

Research at NeuroSpin (Gif-sur-Yvette, France). 

 

4.2.Stimuli 

 

Experiments were run in a darkened soundproof cabin. Participants were positioned on a 

headrest apparatus 70 cm away from a Viewsonic CRT monitor (19”, 60 Hz). Auditory 

stimuli were presented via two speakers located on each side of the monitor.  Visual stimuli 

consisted of an array of colored bars displayed on a black background (Figure 1). All bars 

were the same size (length: 0.57°; width: 0.19°) and randomly placed on a circular display 

with maximal eccentricity at 30°. All bars had random orientations except for the target which 

was vertical or horizontal. In each trial, the set size was 36, 48 or 60. A target could never 

appear within a radius of 3° around the white fixation point. In the initial frame, a color (red 

and green) was randomly assigned to each bar. All bars changed color through time. The 

timing of color changes was manipulated so that they always occurred at a given average 

temporal rate within one trial (but differed across trials). The temporal rates (F) tested were 

0.56, 0.77, 1.1, 1.4, 2, 3.3 and 10 Hz. For a given trial presented at F, the delay between two 

color changes of a given bar was randomly chosen following a normal distribution with a 

mean of 1/F and a standard deviation of 1/4F. Three modalities of presentation were 

examined. In V, visual stimuli were displayed without any sound. In AV, a 15 ms (incl. 5 ms 

fade-in and -out) 2 kHz tone (44.1 kHz sample rate, 16 bit, mono) was synchronized with the 

color changes of a given bar in the display. In AVc, the sound was synchronized with the 

color change of the target; in AVi, the sound was synchronized with a randomly chosen 

distracter (the same one within a trial). Importantly, a sound had to be synchronized with only 

one bar at a time: to minimize the perceived synchrony between the color changes of the 

distracters and the sound, a temporal margin surrounding the sound/target onset was 

introduced during which no bars could change color. This temporal margin was scaled on the 

tested F: ± 16.7 ms for 10 Hz, ± 50.1 ms for 3.3 Hz, ± 83.5 ms for 2.0 Hz, and ± 117 ms for 

the remaining rates. In V and AVc, the temporal protection margin was applied to the target; 

in AVi, it was applied to the distracter. 
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4.3.Procedure 

 

Participants were asked to find as fast and as accurately as possible the target while 

maintaining their gaze on a central fixation point. Each trial started with the presentation of 

the fixation point for a random duration (1-4 seconds) followed by the visual display. In AVc 

and AVi, two or three sounds were played before the visual onset to avoid surprise effects at 

the onset of the first sound. The presence of a sound synchronized with the target was 

expected to improve the speed of target detection [20]. In our paradigm, the sound onset was 

directly tied to F, namely, the higher the F, the earlier the auditory onset. To avoid a 

confounded faster RT, the first color change of the target occurred systematically at 300 ms 

after the display onset in all conditions. After detection or after 10 s has elapsed, participants 

reported the orientation of the target in a 2-Alternative-Forced-Choice (vertical or horizontal). 

The efficiency in visual search was quantified in terms of reaction times (RTs) and correct 

detection rate. We excluded the RTs from trials in which the target was not detected within 10 

s (14% of the trials) from the data analysis. Each condition was repeated 15 times. The 

experiment was run in 3 blocks corresponding to the modality of presentation. Participants 

were told to ignore sounds as they were irrelevant to the task.  The order of block presentation 

was counterbalanced across participants. The first block was used as a training session for all 

participants. The analysis focused on the last two blocks, when participants had reached 

asymptote on the task.  

 

4.4 Statistical analysis 

 

Statistical analysis was performed using Linear Mixed Effects models [32] with R [55] (R 

Foundation for statistical computing). Linear mixed models can be thought of as a 

generalization of linear regression models: in mixed regression models, data are not 

aggregated, and statistics are made on all observations. Specifically, participants were 

considered as a random effect and separate regression models were fitted to the entire data set 

(i.e. one for each participant). This approach increases statistical power without over-fitting 

the data. On the contrary, classical regression models and repeated measures ANOVAs are 
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based on the comparisons of measured means according to variables of interest (or fixed 

factors). Hence, unlike repeated measures ANOVAs in which comparisons are made between 

averaged data (information carried out by each observation is lost), in the mixed models used 

here, each observation is taken into account while considering the variability between subjects 

as a random effect. Additionally, the analysis of a categorical dependent variable (e.g. 

identification rate) is possible using a logistic mixed regression whereas ANOVAs may bring 

spurious results [33]. 

Thus, we selected this method as it is best suited for this study: fixed factors were display 

condition (3: AVc, AVi, and V), set size (continuous factor) and temporal rate (7 discrete 

levels). Subjects (n=24) were a random effect. We considered ‘set size’ as a continuous factor 

because the RTs and identification rates as a function of set size fit well with the assumptions 

of a linear regression. We considered ‘temporal rate’ as a discrete factor because the 

dependency of RTs and identification rates as a function of temporal rate is not linear. 

Significant fixed factors can be assessed in two ways: (i) a regression model simplification 

using the Akaike Information Criterion (AIC) or (ii) the likelihood ratio using Chi square. The 

AIC is a measure that optimizes model fit by taking into account the amount of explained 

variance as well as the degrees of freedom. This procedure ensures that the obtained model 

achieves the best fit to the data with the minimum number of predictor variables. When two 

models are compared, the AIC provides information about whether the predictors added in the 

second model account for a significant amount of variance in the dependent variable. The best 

model corresponds to the minimal AIC. For instance, in the reported tables (e.g. Table 1), the 

list of models is provided along with their respective AIC index. The model that best fit the 

data is the one with the minimal AIC, here model 5 (for the RTs) and model 4 (for the 

identification rates). Consistent with this, the best models can also be found using Chi square.  

The best model using the likelihood measure is defined by a significant Chi square test (Pr 

(>Chisq)) comparing one model in the list to the next (e.g.: model 1 vs. 2, then model 2 vs. 3 

and so on). The last comparison providing a significant effect points to the best model: 

namely, in our example, model 5 (RTs) and 4 (identification rates). The “ChisqChi” value 

corresponds to twice the difference of the log likelihood of the two models. Both AIC and 

Chisqu values are reported in Table 1.  

Simpler models (for instance, let’s consider models 1 to 4 for RTs in Table 1) do provide 

crucial information. Low AIC or significant Chi square tests for these models are interpreted 

as follows: the factor of interest (e.g. model 2, factor of set size) significantly impacts the 
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model fit irrespective of all other factors – and hence, has a significant effect in our paradigm. 

This is analogous to stating a “main effect” for the more classic ANOVA approach. Here, the 

procedure is iterative such that adding another factor may enable better model fit (e.g. model 

3 and so on) leading to the preferred model that explains most of the data (model 5 in our 

example). Hence, all factors up to model 5 (including their interactions) showed significant 

RTs effect. 

The lme4 package [56] was used to obtain parameter estimates and the language package [32] 

was used to obtain the reported p-values. The ‘lmer’ function yielded regression coefficients 

and related t statistics (exclude degrees of freedom), and p-values were derived from a 

Markov Chain Monte Carlo (MCMC) [32]. Statistical tests were carried out on the contrast 

coefficients resulting from the selected linear mixed effect model. For instance, contrasting 

two levels for the display condition (AVc vs. V) yields a contrast coefficient submitted to a t-

test for RTs and Wald test for identification rates. As a rule of thumb, statistical tests reported 

here vary according to the dependent variables, namely Student t-tests for the RTs and Wald 

tests for the identification rates [33].  
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SUPPLEMENTARY MATERIAL 

 
 
Figure S1: Dynamic Attending Theory (DAT), neural implementation as oscillatory entrainment and 
relevance for findings on AV selective attention. (A) The DAT [8] postulates that attention is a dynamical 
process which oscillates in time and entrains to the temporal structure of events. Event Timing: dynamics of 
stimuli in a scene. Stimuli need not be isochronous – for illustrative purposes, events are represented with a 
particular rhythm. Events can be auditory or visual. Modulation of attentional focus over time: a temporal 
expectation profile builds up over time (i.e. after several occurrence of a same event) leading to a narrowing of 
attentional focus (from ‘‘wide’’ to ‘‘narrow’’, [5]). The ‘‘narrow foci’’ are also times of high expectation 
(temporal prediction). Thus, the attentional profile oscillates between periods of high and low temporal 
expectation. Implementation: one suggested implementation of the DAT [5,7] is via an oscillatory mechanism 
represented here as a simple waveform entrained to the rhythm of events. Recent neurophysiological evidence 
has suggested a similar neural implementation for attentional selection across auditory and visual sensory 
modalities, specifically with neural oscillations in the 1–2 Hz range [23–25]. In neural terms, high temporal 
expectations (or narrow attentional foci) are periods of high neural excitability. The encoding of events at the 
entrained rhythm is more efficient during period of increased neural excitability. For synchronized AV events, 
the auditory entrainment of oscillations in visual cortices leads to high expectation/excitability periods 
synchronized to the sound [23–25]. We now illustrate the implications for the AVc and AVi conditions tested in 
this study. (B) In AVc, the high expectation/excitability period is aligned to the target enabling faster RTs and 
improved identification rate. (C) In AVi, these periods are aligned with a distracter, leading to slower RTs and 
poorer identification rate. Temporal rate effects: modulation of visual search efficiency by the temporal rate of 
AV displays. The working hypothesis was that visual search efficiency would be frequency-specific: search 
would be efficient in the range of oscillatory entrainment but not above. Data revealed a 1.4 Hz boundary. 
Neural predictions: oscillations in visual cortex are entrained to the sound. Neural entrainment (alternation of 
high and low excitability phases) yields an expectancy profile favoring the encoding of visual events 
synchronized with the sounds (either the target (B), or one distracter (C)). When the temporal rate is above the 
oscillatory mechanism (B or C, right panels), the sound phase resets the entrained oscillation before it reaches a 
low excitability state. As the system is continuously solicited, no expectancy profile can be built and visual 
targets cannot benefit from the sound despite sharing the same temporal structure. 
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RTs 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz        

contrast coefficient -0.06 0.01 -0.04 0.1 0.31 0.47 

t value, significance -1 ns 0.2 ns -0.7 ns 1.7 ns 5.7  *** 8.0 *** 

0.8 Hz  0.07  0.02 0.16 0.39 0.54 

  1.2 ns 0.3 ns 2.7 * 6.6  *** 8.9 *** 

1.1 Hz   -0.05 0.09 0.33 0.47 

   -0.8 ns 1.5 ns 5.4  *** 7.7 *** 

1.4 Hz    0.14 0.38 0.52 

    2.3 * 6.2  *** 8.5 *** 

2.0 Hz     0.24 0.38 

     3.8  *** 6.1 *** 

3.3 Hz      0.14 

      2.2 * 

 
 

Table S1: Effect of temporal rate on RTs irrespective of display condition (V, AVc and AVi combined). 
Table shows contrast coefficients (italics, regression coefficients referring to contrast between two levels of one 
factor) between the different temporal rates and their related t values. Statistics were computed using mixed 
regression analysis with model 4 (cf. Table 1). Corrected p values were estimated using a Monte Carlo 
procedure. The reported significance values are as follows: *p,0.05; **p,0.01;***p,0.001 
 

 
 
 
 

Identification 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz       

contrast coefficient -0.1 -0.13 -0.12 -0.16 -0.54 -0.57 

Z value, significance -0.4 ns -0.9 ns -1.0 ns -1.4 ns -4.8 *** -5.2 *** 

0.8 Hz  -0.05 -0.05 -0.08 -0.47 -0.45 

  -0.5 ns -0.5 ns -0.8 ns -4.2 *** -4.5 *** 

1.1 Hz   0.05 -0.23 -0.42 -0.44 

   -0.5 ns -1.9 ns -3.8 *** -4.1 *** 

1.4 Hz    -0.04 -0.42 -0.45 

    -0.4 ns -4.0 *** -4.1 *** 

2.0 Hz     -0.39 -0.42 

     -3.5* ** -3.8 *** 

3.3 Hz      0.03 

      0.7 ns 

 
 

Table S2: Effect of temporal rate on identification rate irrespective of display condition (V, AVc and AVi 
combined). Table shows contrast coefficients (italics, regression coefficients referring to contrast between two 
levels of one factor) between the different temporal rates and their related Z values (Wald tests). Statistics were 
computed using mixed regression analysis with model 4 (cf. Table 1). Corrected p values were estimated using a 
Monte Carlo procedure. The reported significance values are as follows: *p,0.05; **p,0.01; ***p,0.001 
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AVc 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz -0.02 0.06 0.01 0.13 0.54 0.77 

 -0.3 ns 0.7 ns  0.1 ns 1.4 ns 5 .7 *** 8.2 *** 

0.8 Hz  0.09 0.04 0.15 0.56 0.79 

  1.0 ns 0.4 ns 1.6 ns 6.0  *** 8.4 *** 

1.1 Hz   -0.05 0.07 0.48 0.71 

   -0.5 ns 0.7 ns 4.9  *** 7.3 *** 

1.4 Hz    0.12 0.53 0.76 

    1.2 ns 5.4  *** 7.7 *** 

2.0 Hz     0.41 0.64 

     4.1  *** 6.4 *** 

3.3 Hz      0.23 

      2.3 * 

AVi 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz -0.07 -0.02  -0.004 0.06  0.01 0.08 

 -0.6 ns -0.1 ns -0.1 ns 0.5 ns 0.1 ns 0.7 ns 

0.8 Hz   0.06  006 0.13  0.08 0.15 

  0.1 ns 0.6 ns 1.1 ns 0.7 ns 1.4 ns 

1.1 Hz     0.01 0.08  0.03 0.10 

   0.1 ns 0.6 ns 0.2 ns 0.8 ns 

1.4 Hz    0.06  0.02 0.08 

    0.5 ns 0.2 ns 0.8 ns 

2.0 Hz     -0.05 0.02 

     -0.4 ns 0.2 ns 

3.3 Hz      0.07 

      0.6 ns 

V 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz -0.08 0.01 -0.11 0.11 0.43 0.56 

 -0.7 ns -0.1 ns  -1.1 ns 1.2 ns 4.4 *** 5.6 *** 

0.8 Hz   0.07  -0.03 0.20 0.51 0.64 

  0.8 ns -0.3 ns 2.0 * 5.2  *** 6.3 *** 

1.1 Hz    -0.11 0.12 0.44 0.56 

   -1.1 ns 1.2 ns 4.4  *** 5.5 *** 

1.4 Hz    0.23 0.55 0.67 

    2.3 * 5.5  *** 6.6 *** 

2.0 Hz     0.33 0.45 

     3.1  ** 4.2 *** 

3.3 Hz      0.12 

      1.1 ns 

 

Table S3: Effect of temporal rate on RTs per display condition. Table shows contrast coefficients between 
temporal rates for each display condition level and their related t values. Statistics were computed using mixed 
regression analysis with model 4 (cf. Table 1). Corrected p values were estimated using a Monte Carlo 
procedure. The reported significance values are as follows:*p,0.05; **p,0.01; ***p,0.001. 
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AVc 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz -0.13 -0.24 -0.38 -0.72 -1.28 -1.40 

 -0.84 ns -0.97 ns -1.71 ns -3.11 ** -5.25 *** -5.82 *** 

0.8 Hz  -0.11  -0.25 -0.59 -1.15 -1.27 

  -0. 13 ns 0.89 ns -2.34 * -4.61 *** -5.23 *** 

1.1 Hz   -0.19 -0.54 -1.03 -1.16 

   -0.76 ns -2.23 * -4.52 *** -5.14 *** 

1.4 Hz    -0.34 -0.84 -0.97 

    -1.49 ns -3.89 *** -4.52 *** 

2.0 Hz     -0.50 -0.62 

     -2.46 * -3.15 ** 

3.3 Hz      -0.13 

      -0.71 ns 

AVi 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz -0.03 -0.20 -0.17 -0.05 -0.03 0.14 

 -0.18 ns -1.12 ns -0.98 ns -0.26 ns -0.16 ns 0.73 ns 

0.8 Hz  -0.16 -0.14 -0.01 0 0.17 

  -0.94 ns -0.80 ns -0.08 ns 0.01 ns 0.91 ns 

1.1 Hz   0.02 0.15  0.17 0.33 

   0.14 ns 0.86 ns 0.95 ns 1.90 ns 

1.4 Hz    0.13 0.14 0.31 

    0.72 ns 0.81 ns 1.70 ns 

2.0 Hz     0.02 0.18 

     0.09 ns 0.99 ns 

3.3 Hz      0.17 

      0.89 ns 

V 0.8 Hz 1.1 Hz 1.4 Hz 2.0 Hz 3.3 Hz 10 Hz 

0.6 Hz -0.06 0.02 0.13 0.11 -0.63 -0.73 

 -0.28ns 0.16 ns 0.64 ns 0.55 ns -3.36 *** -3.94 *** 

0.8 Hz  0.08 0.19 0.17 -0.58 -0.68 

  0.40 ns 0.93 ns 0.83 ns -3.13 ** -3.72 *** 

1.1 Hz   0.11 0.09 -0.67 -0.77 

   0.53 ns 0.43 ns -3.52 *** -4.11 *** 

1.4 Hz    -0.02 -0.78 -0.89 

    -0.09 ns -4.03 *** -4.61 *** 

2.0 Hz     -0.76 -0.86 

     -3.93 *** -4.51 *** 

3.3 Hz      -0.10 

      -0.63ns 

 

Table S4: Effect of temporal rate on identification rate per display condition. Table shows contrast 
coefficients between the temporal rates for each display condition and their related Z-values. Statistics were 
computed using mixed regression analysis with model 4 (cf. Table 1). Corrected p values were estimated using a 
Monte Carlo procedure. The reported significance values are as follows: *p,0.05; **p,0.01; ***p,0.001. 
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CHAPTER 4:  

PHASE ENCODING OF IMPLICIT TIMING 

 

 

4.1. INTRODUCTION 

 

4.1.1. Motivation 

 

The data from the first study (Chapter 2) suggest that entrainment in auditory cortex 

inform on the subjective report of explicit audiovisual timing. In addition, these results 

show that the encoding of timing is already modulated at early stages of sensory 

processing, i.e. in primary sensory areas. This is consistent with previous reports, which 

proposed that the modulation of perceived event’s timing with rhythmic adaptation is 

modifying sensory encoding and not decisional biases (Fujisaki et al., 2004; Yamamoto 

et al., 2012). Importantly, if entrainment affects sensory event encoding, it may not be 

restricted to explicit temporal tasks. In this third chapter, we tested whether similar time 

encoding mechanisms could be found in cognitive tasks for which timing is not explicitly 

computed.   

For this, we focused on speech parsing mechanisms. To understand the meaning of a 

spoken sentence, it is necessary to know when to parse the acoustic signal into 

representational chunks relevant for speech and language processing, such as phonemes, 

syllables, or words. This chunking mechanism has been hypothesized to arise through the 

oscillatory mechanisms in auditory cortex (fig. 4.1) (Poeppel, 2003; Schroeder et al., 

2008; Ghitza, 2011; Giraud and Poeppel, 2012). First, the envelope of the speech signal 

presents some strong rhythmicity at syllabic rate (3-8 Hz). Listening to speech is a classic 

case of ecological neural entrainment. Accordingly, slow oscillations in the theta range 

(3-8 Hz) are known to be entrained to the envelope of the stimulus (Ahissar et al., 2001; 

Howard and Poeppel, 2010; Zion Golumbic et al., 2013). The strong entrainment of slow 
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oscillations will generate pulsed inhibition of auditory networks excitability, manifested 

through cross-frequency coupling and specifically through theta phase – gamma 

amplitude nesting mechanisms. Owing to theta-gamma coupling, neural excitability will 

align to the relevant features of auditory speech. Altogether, this mechanism affords 

periods of strong excitability during the encoding of a syllable, and periods of network 

silence in between syllables. As such, it has been put forward as an efficient code for 

speech encoding, maximizing information processing at relevant time points (Giraud and 

Poeppel, 2012).  

 

 

Figure 4.1: Brain oscillations model of speech parsing mechanisms in five steps. 1. Stimulus onset 

causes phase reset of theta oscillations. 2. Theta oscillations track the speech envelope. 3. Theta modulates 

gamma activity in time though phase-amplitude coupling. 4. Gamma activity reflects neural excitability. 5. 

Neural excitability through this process aligns to the fluctuations of the acoustic signal. Adapted from 

(Giraud and Poeppel, 2012) 

 

However, it also suggests that the coupling between theta and gamma oscillations in 

auditory cortex should provide information about when a syllable starts and when it ends. As 

such, the minima of the theta modulated gamma power should correspond to the 

junctions between perceived syllables. This hypothesis predicts that any change of 

temporal position of the gamma power minima should entail a change in perceived 
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syllabic junctions. The acoustic signal should be chunked differently, leading to a change 

in the perceptual content of speech. 

 

4.1.2. Experiment 

 

To test the role of oscillations in the parsing of speech signals, participants listened to 

ambiguous bistable auditory speech while being recorded with MEG. Specifically, 

participants listened to a series of words that were repeated at a 3Hz syllabic rate (fig. 

4.2.). The repetition of words in sequences is known to induce changes in speech 

perception called “verbal transformations” (Sato et al., 2006). Of particular interest, these 

transformations are akin to modulations in the timing of syllable chunking: for instance, 

the repetition of the word “life” leads to bistable perception with the main concurrent 

percept being the word “fly”. Similarly in French, the repetition of the word “plan” 

(map) leads to the alternate percept “lampe” (lamp). Hence the same speech sequence 

can be perceptually chunked differently, and we asked whether neural oscillations in 

auditory cortex can account for bistability in auditory speech e perception.   

If theta-gamma coupling mechanisms are implicated in the chunking of speech into 

syllables, they should indicate when the speech signal is perceptually chunked into percept 

1 or into percept 2.  Specifically, evidence suggests that there is a fixed relation between 

slow oscillation phase and network excitability (Lakatos et al., 2005; Haegens et al., 

2011). Precisely, maximal network excitability _ associated with gamma power _ should 

occur at the trough of the slow oscillation. The only possibility for the encoding window 

to move is to change the phase locking between the slow oscillation and the acoustic 

signal (fig. 4.2.). Interestingly, the phase of entrainment of slow oscillations is modulated 

by attention and predictability (Lakatos et al., 2008; Stefanics et al., 2010b). The 

attentional modulation of low-frequency oscillations has been shown to be crucial when 

listening to speech in a crowded environment (Zion Golumbic et al., 2013). In addition, 

we have shown in chapter 2 that entrainment is not steady and could be modulated in 

time. It is probable that, when listening to an ambiguous speech sequence, the phase of 

oscillatory entrainment slowly shifts in time. If speech parsing mechanisms uses the 

entrained neural oscillation to cut the acoustic signal into syllables, then a shift in the 

phase of entrainment should cause a shift in the syllabic parsing window (fig. 4.2.). In 
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this experiment, we tested whether bistable chunking of the acoustic signal was caused by 

a shift in the oscillation that is entrained at the syllabic rate. 

 

Figure 4.2: Working hypothesis. Verbal transformations can be caused by phase shifts in the theta 

oscillation entrainment to syllabic rhythm.  

 

4.1.3. Summary of the results 

 

As expected, listening to the repeated syllables caused entrainment to syllabic rhythm in 

auditory cortices. Changes in words percepts were associated with small phase shifts of 

the entrained oscillations. These results confirm that slow oscillation entrainment is not 

only reflecting pure stimulus-driven activity. However, the observed phase shifts 

corresponded to small shifts in the timing of the entrained oscillation (~8-10 ms). 

Therefore the results cannot completely validate our first working hypothesis: a temporal 

shift of 80-100 ms, corresponding to the distance between the 2 consonants’ onsets would 

have been necessary to account for the perceptual shift.  

An alternative hypothesis is that the theta phase –gamma amplitude coupling is not fixed. 

In this case, theta activity would still provide a temporal reference for sensory encoding, 

and the position of maximal gamma power according to the theta reference could reflect 

the perceived word (fig. 3.3). This alternative hypothesis is currently under investigation. 
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Figure 4.3: Alternative hypothesis. Changes in word perception could be explained from the shift of the 

peak in gamma power according to the theta temporal reference. 

 

 

4.2. ARTICLE 

Oscillatory mechanisms of ambiguous speech parsing (in preparation) 
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OSCILLATORY MECHANISMS OF AMBIGUOUS SPEECH PARSING 

 

 

ABSTRACT 

In this MEG study, we investigated the role of cortical oscillations in parsing linguistic units 

during speech listening. To do so, we used sequences of multistable acoustic signals, which 

could perceptually be parsed into two distinct speech or non-speech percepts. The changes in 

perceptual parsing were associated with changes in the preferential phase of neural 

oscillations in auditory cortex. Crucially, the peak frequency of the observed neural 

oscillations was indicative of the size of the speech unit: specifically, changes in mono-

syllabic words perception recruited oscillations at syllabic rate (here, 3Hz) whereas the sub-

harmonics were implicated in bi-syllabic word parsing (here, 1.5 Hz). In line with previous 

reports, these results thus suggest that cortical oscillations reflect at once the tracking of 

acoustic features and the parsing of distinctive features necessary for speech processing. 

Surprisingly however, phase shifts of neural oscillations were too small to account for a true 

shift of the temporal parsing window. As such, the present findings question the role of 

auditory cortex oscillations as “parsers” of the speech signal.  

 

 

KEYWORDS 

Speech parsing, distinctive features, entrainment, theta, delta, verbal transformations, 

auditory, multistable perception, phase of neural oscillations, MEG                   
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1. INTRODUCTION 
 

The parsing of the continuous acoustic signal is required in speech to extract the discrete 

perceptual units or distinctive features used in the elaboration of more complex linguistic 

units (Poeppel et al., 2008). Speech signals are constituted of a hierarchy of linguistic features 

that are conveyed at different time scales, namely: words and sentences, evolve at a rate 0.5-

3Hz and are composed of syllables produced at rate of 3-8Hz and syllables themselves 

comprised of phonemes occuring at a rate of 20-50 Hz (Poeppel, 2003). The temporal 

structure in speech inputs suggests the existence of a hierarchical organization of speech 

parsing mechanisms, with multiple processors sampling the signal at different time scales in 

parallel (Poeppel et al., 2008; Ghitza, 2011; Giraud and Poeppel, 2012). Consistent with this 

proposal, neural oscillations present temporal regularities that match the time scales of speech 

features (Poeppel, 2003; Ghitza, 2011; Giraud and Poeppel, 2012; Luo and Poeppel, 2012) 

and  neural oscillations at different times scales are not strictly independent of each other: 

high frequency oscillations can be nested to the envelope of lower frequencies dynamics, 

suggesting a hierarchy in neural encoding mechanisms (Lakatos et al., 2005; Canolty et al., 

2006; Canolty and Knight, 2010; Akam and Kullmann, 2014).  

A recent body of work pointing to the role of neural oscillations in speech parsing (Schroeder 

et al., 2008; Ghitza, 2011; Giraud and Poeppel, 2012) focused on the coupling of neural 

oscillations in the theta (3-8 Hz) and gamma (30-50 Hz) range. In a recent model proposed by 

Giraud and Poeppel (2012), theta oscillations are shown to track the temporal regularities of 

speech in the syllabic range, while gamma oscillations encode phonemic information. 

Importantly for our study, gamma oscillations have been proposed to be modulated in power 

by the phase of theta oscillations, meaning that phonemic encoding is modulated in time at the 

syllabic rate. Hence, owing to the theta Phase-gamma Amplitude Coupling (PAC), the 

encoding capacity in auditory cortex is aligned to the relevant acoustic features of speech 

across different time scales (Giraud and Poeppel, 2012).  

In this model, the theta tracking at the syllabic rate appears to be the first crucial step to parse 

speech into meaningful segments. In line with this proposal, theta entrainment to the temporal 

speech envelope (Poeppel, 2003; Luo and Poeppel, 2007; Howard and Poeppel, 2010) has 

been closely linked to speech intelligibility (Ahissar et al., 2001; Gross et al., 2013; Hertrich 

et al., 2013; Peelle et al., 2013; Doelling et al., 2014). Yet, the model makes the finer 
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prediction that theta imposes periods of shunting of the phonemic processing (as reflected by 

gamma oscillations), and as such defines syllabic parsing windows. Interestingly, there is 

evidence that PAC mechanisms have a fixed relationship in which a maximal high-frequency 

power occurs at the trough of the low-frequency oscillation (Lakatos et al., 2005). Hence, if 

the theta modulated gamma power defines temporal windows of syllabic encoding, then the 

minima of gamma power _ or the peaks of theta oscillations _ should correspond to 

perceptual syllabic junctions. Hence, the phase of theta oscillations should be an indicator of 

when the acoustic signal is parsed into syllables.  

From the original model (Poeppel, 2003; Ghitza, 2011; Giraud and Poeppel, 2012), any 

change in the parsing of the same acoustic signal should lead to a different speech percept and 

hence correspond to a different phase in the theta band. To test this hypothesis, we departed 

from a perceptual phenomenon called verbal transformation. Verbal transformation consists in 

the experience a bistable change of percept when listening to a repetitive word stream without 

pausing (Warren, 1968; Pitt and Shoaf, 2002; Sato et al., 2006; Basirat et al., 2012). Verbal 

transformation is produced by a change in the timing of syllable segmentation and for 

instance, the repetition of the word “fly” will alternate with the perception of the word “life”. 

Hence, and crucially, verbal transformations show that for a given acoustic utterance, the 

speech signal could be chunked into different units, suggesting that parsing mechanisms may 

be endogenous and not purely acoustic-based. This perceptual phenomenon is further in line 

with the prediction that low-frequency oscillations are instrumental for sensory selection 

(Schroeder and Lakatos, 2009), and can be modulated by the subject’s attention and stimulus 

expectation  (Lakatos et al., 2008; Schroeder and Lakatos, 2009; Stefanics et al., 2010; Besle 

et al., 2011; Gomez-Ramirez et al., 2011), in particular during speech listening 

(Zion Golumbic et al., 2013).  

We thus tested whether any change in the perceived word during verbal transformations could 

be predicted by the phase of the entrained low-frequency oscillation in auditory cortex. 

Participants performed a verbal transformation task in which syllables were repeated at 3Hz in 

sequences of approximately one minute. In a first experimental block, we asked participants 

to spontaneously report the words they perceived during each sequence; in a second block 

(“volitional”), we asked participants to maintain the perception of one of the two possible 

percepts. Our preliminary results show small modulations in the theta phase with the 

perceived chunking of the signal, consistent with the hypothesis that theta entrainment reflects 

both the processing of low-level acoustical features and endogenous parsing. In addition, the 
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power of the first sub-harmonic in the delta range was noticeable in the perception of bi-

syllabic words. Altogether, our preliminary results suggest that delta and theta oscillations 

characterize both bottom-up acoustic tracking and top-down speech parsing. By far however, 

the effects we observe are small and question the role of the slow oscillations as parsers per 

se; instead, we emit a complementary hypothesis in which slow oscillations have a role of 

temporal taggers of sensory information. 

 

2. MATERIALS AND METHODS 

 
2.1. Participants 

 

15 participants (5 females, mean age: 23 years old) took part in the study. All were native 

French speakers who had normal hearing and were naive as to the purpose of the study. Prior 

to taking part in the study, each participant provided a written informed consent in accordance 

with the Declaration of Helsinki (2008) and the Ethics Committee on Human Research at 

NeuroSpin (Gif-sur-Yvette, France).  

 

2.2. Experimental paradigm 

 

2.2.1. Stimuli  

Eight auditory sequences (adapted from the work of (Sato et al., 2007; Basirat et al., 2012)) 

were presented to participants via Etymotic Earphones (Etymotic Research Inc., USA). Four 

sequences consisted of the repetition of non-words that were either monosyllabic “pse” (/psə/) 

and “sep” (/səp/) (in one sequence /psə/ was repeated, in the other /səp/ was repeated), or 

bisyllabic “pata” (/pata/) and “tapa” (/tapa/) (one sequence repeating the pseudoword  /pata/, 

the other /tapa/). Four additional sequences consisted in the repetition of French words that 

were either monosyllabic “plan” (/plã/, meaning “map”) and “lampe” (/lãp/, meaning “lampe) 

or bi-syllabic “képi” (/kepi/) and “piquer” (/pike/, meaning “to sting”) (two sequences of each 

defined by the repeated word).  All syllables composing the auditory sequences were recorded 
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(16 bit resolution, 22.05-kHz sampling rate) in a soundproof room by a native French speaker 

(A.K.). The speaker pronounced each syllable naturally, and maintained an even intonation 

and vocal intensity while producing the sequences. For the bi-syllabic sequences, one syllable 

of each token /pa/, /ta/, /ke/, and /pi/ was selected; the selection criterion consisted in the 

syllable that matched as closely as possible to the sequence rate of 3Hz (1 syllable / 333 ms). 

Stimuli sequences were then constructed using the Praat freeware (Boersma, 2002). For the 

mono-syllabic word and non-word sequences, one clearly articulated token /psə/, /səp/, /plã/ 

and /lãp/ of 333-ms duration was selected from the record and repeated 150 times in Praat. 

For the bi-syllabic word and non-word sequences, pairs of syllables were assembled and 

repeated 100 times. For all recordings the syllabic length was of 333 ms, leading to a 

repetition rate of 1.5 Hz in bi-syllabic sequences and 3 Hz in mono-syllabic sequences. All 

syllables had equalized sound-levels. 

 

2.2.2. Procedure 

The experiment was divided into 2 main experimental blocks. In the first MEG block 

(“spontaneous”, fig. 1a), the experiment started with a verbal transformation task (Basirat et 

al., 2012), in which participants reported spontaneously their perception while listening to the 

auditory sequence. Participants were told that they would hear a sequence consisted of 

repeated acoustic utterances and that their perception of the auditory utterance could change 

in the course of the sequence.  During the sequence, participants were asked to keep pressing 

on a button that corresponded to the currently perceived utterance, and to switch button as 

soon as their perception had changed. Three button responses were assigned during the 

experience: two corresponded to the main reported speech utterances of each sequence 

(/kepi/vs. /pike/; /pata/ vs. /tapa/; /psə/ vs. /səp/; /plã/ vs. /lãp/) and a third one was given to 

participants to report any other percept. All auditory sequences were presented in a block 

design according to the type of perceptual outcome (/kepi/vs. /pike/; /pata/ vs. /tapa/; /psə/ vs. 

/səp/; /plã/ vs. /lãp/). The mono-syllabic word and non-word sequences were repeated twice 

(300 repetitions each); the bi-syllabic word and non-word sequences were repeated 3 times 

(200 repetition each). Blocks were presented in random order across individuals. 

In the second experimental block (“volitional”, fig. 1b), participants were asked to maintain a 

given percept a long as possible while listening to a sequence. Four sequences were chosen: 

/kepi/, /pata/, /lãp/, and /səp/. Subjects listened twice to each sequence, and asked to maintain 
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either one or the other of the main auditory utterances. Subjects reported that they succeeded 

in maintaining the required percept by pressing the button ‘maintain’; if they failed to 

maintain the required percept, they were asked to report it by pressing the button 

corresponding to the other auditory utterance or the button ‘other’ would they perceive a third 

token.  

 

Figure 1: Example of behavioral response during (A) the spontaneous task and (B) the volitional task. 
While listening to the speech sequence, participants had to keep the button that was related to their perception 

pressed. Two buttons were associated with the main perceived speech utterances in the signal (for instance 
“plan” and “lampe”), the last button “other” was pressed if participants heard a different speech utterance. (A) 
During the spontaneous task, participants provided spontaneous perceptual changes. (B) The volitional task, 
participants heard twice the same sequence. In the first sequence they had to keep in mind as long as possible 

one of the main speech utterances (e.g. “lampe”). In the second sequence they had to maintain the other speech 
utterance (e.g. “plan”). If they failed to maintain the required percept, participants had to indicate it by pressing 
another response button. Only trials which concerned the successful maintenance of the required were kept for 

MEG analysis 

 

2.3. Psychophysical data analysis 

 

Subjects’ perception of bistable auditory sequences were evaluated during the first MEG 

block, i.e. the “spontaneous” verbal transformation task, and their ability to voluntarily 

control speech perception was assessed during the second block, i.e. the “volitional” task. 
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Two measures assessed perceptual bistability: (1) the proportion of time spent by participants 

in perceiving each utterance during the sequence, and (2) the durations of the alternating 

percepts. The first measure captured the average dominance of the perceived utterance when 

listening to one sequence and the other quantified the stability of the speech percepts, i.e. how 

often subjects’ perception changed over the sequence. 

For each duet of speech sequences (“kepi/piquer”, “pata/tapa”, “plan/lampe”, “pse/sep”), a 

repeated measures ANOVA was performed to assess the influence of the type of word being 

repeated on the proportion of perceived words. Specifically, the factors of interest were 

Sequence Order (2 levels: “repeating word1” / “repeating word2”), Percept (3 levels: 

“percept1”, “percept2”, “other”), and Subjects as random factor. Following a significant main 

effect, a Tukey-Kramer multiple comparisons procedure (alpha = 0.05) was performed to 

assess significant differences between the different levels of the factor. 

The histograms of durations of alternative bistable percepts follow a log-normal distribution 

in agreement with previous research (Pressnitzer and Hupé, 2006). To assess the influence of 

speech sequences on perceptual stability, repeated measure ANOVA were performed on log 

durations. The factors of interest were Speech Sequence (4 levels: “kepi/piquer”, “pata/tapa”, 

“plan/lampe”, “pse/sep”), Sequence Order (2 levels: “repeating word1” / “repeating word2”), 

and Sequence Type (2 levels: “word”, and “pseudo-word”, Speech Sequence nested in 

Sequence Type). 

 

2.4. MEG analysis 

2.4.1. MEG data acquisition 

Brain magnetic fields were collected in a magnetically shielded room using the whole-head 

Elekta Neuromag Vector View 306 MEG system (Neuromag Elekta LTD, Helsinki) equipped 

with 102 triple-sensor elements (two orthogonal planar gradiometers and one magnetometer 

per location). Participants were seated in upright position. Participants’ head position was 

measured before each block with four head position coils (HPI) placed over frontal and 

mastoïd areas. MEG recordings were sampled at 1 kHz, band-pass filtered between 0.03 Hz 

and 330 Hz and used Maxshield. The electro-occulograms (EOG, horizontal and vertical eye 

movements) and electrocardiogram (ECG) were simultaneous recorded with MEG.  
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2.4.2. MEG data preprocessing 

Signal Space Separation (SSS) method was applied to decrease the impact of external noise 

(Taulu et al., 2003). SSS correction, head movement compensation, and bad channel rejection 

was done using MaxFilter Software (Elekta Neuromag). Signal-space projection (SSP) were 

computed by principal component analysis (PCA) using Graph software (Elekta Neuromag) 

to correct for eye-blinks and cardiac artifacts (Uusitalo and Ilmoniemi, 1997). A rejection 

criterion for epochs was applied for gradiometers with amplitude exceeding 4000 e-13T/m. 

 

2.4.3. Evoked response analysis 

MEG analysis was restricted to gradiometers channels. Data were segmented in epochs of 

1.5s centered at the onset of the plosive burst in the speech signal. Epochs were filtered 

between 1Hz and 40 Hz. Epochs were averaged across left and right temporal gradiometer 

channels (see Fig. S1, black dots). SSP was estimated on evoked data covariance. The 

resulting spatial filter was used for channel averaging. This procedure was done to weight the 

sensors and privilege those which were strongly modulated by the evoked component of the 

signal, and to alleviate sensor cancellation due to opposite signal polarities.   

 

Fig S1: Topography of Steady State Responses (3 Hz SSRs) and channel selection. Grand-averaged 
topography of SSRs (norms of gradiometers). Black dots represent the sensors of interest delimiting left and 

right hemispheres. These regions of interest were considered for further analysis. 
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The comparisons of evoked responses between conditions were computed using a non-

parametric permutation test. Correction for multiple comparisons was performed with cluster 

level statistics using as base statistic Student t-test computed at each time sample (Maris and 

Oostenveld, 2007). Only temporal clusters with corrected p-value ≤ 0.05 are reported. 

 

2.4.4. Frequency analysis 

The MEG signals were divided into epochs of 8.2 s in order to compute the Power Spectrum 

Density (PSD) for each sequence condition in each hemisphere. To extract the frequency 

peaks of neural entrainment to the acoustic utterances, the 1/f component was removed by 

subtracting at each frequency bin the mean power of the neighboring frequency values (4 

frequency values were: [fo – 0.24Hz ; fo – 0.12 Hz; fo + 0.12 Hz; fo + 0.24 Hz] (Nozaradan et 

al., 2011). The 1/f subtraction procedure relies on the assumption that the power at a specific 

frequency bin should be similar to the power of its surrounding frequencies. 

After subtraction, one-sample t-tests were performed at the entrainment frequency (3Hz), its 

sub-harmonic (1.5 Hz) and each of its harmonics (4.5, 6, 7.5 and 9 Hz) to examine which 

frequency significantly entrained to the acoustic utterance – i.e. had a power significantly 

higher than zero. Repeated-measures ANOVA were then performed to assess the 

contributions of each target frequency according to hemisphere, speech sequence and 

perceived word.  

 

2.4.5. Phase analysis 

The phase variations of the 3 Hz neural entrainment and its sub-harmonic (1. 5 Hz) were 

tested. To do so, single trial data were convolved with a 3-cycle Morlet at 1.5 Hz frequency 

for the computation of 1.5 Hz preferential phase. Convolution between single trial data and a 

4-cycles Morlet at 3 Hz frequency was performed to compute 3 Hz preferential phase.  

The Phase-Locking Value (PLV) (Lachaux et al., 1999) was computed as: 
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where K is the number of trials , and  θ(t,k) is the instantaneous phase at time t and trial k. 

PLVs were computed to assess intra-subject variability in the preferential phase. In all 

sequences, PLV and instantaneous phase are computed at the onset of the plosive burst. 

To assess statistical significance of phase shifts between the 2 verbal transformation percepts 

during one speech sequence (e.g. “plan” and “lampe”), the difference in the preferential phase 

of entrainment was computed on a per individual basis. Bootstrap measures of 95% 

confidence intervals were used on the phase distribution of the differences (Fisher, 1995). 

Phase distributions were statistically different if the mean of the difference was statistically 

different from zero, i.e. if zero lied outside the measured confidence interval (p ≤ 0. 05).  

 

3. RESULTS 

 
3.1.Psychophysics 

 

As predicted, participants perceived verbal transformations while listening to each speech 

sequence during the spontaneous task. Participants mainly perceived the two proposed 

bistable speech percepts, with a few “other” responses (Fig. 2b, Table S1). Participants 

dominantly perceived the two proposed speech utterances in all conditions (main effect of 

Percept: “kepi” / “piquer” sequences, F[2,28] =5.8; p=0.008. “pata” / “tapa”, F[2,28] =10.1, 

p<0.001. “plan” / “lampe”, F[2,28] =14.5; p<0.001. “pse” / “sep”, F[2,28] =17.2, p<0.001). 

Post-hoc analyses revealed that the proportion of the two main percepts was significantly 

greater than the “other” percepts. Additionally, participants more often reported the percepts 

“piquer” in the “kepi” / “piquer” sequences (Fig. 1b, top panel) and the “sep” in the “pse” / 

“sep” sequences (Fig. 2b, bottom panel). The dominance of “piquer” and “sep” percepts was 

surprising considering that previous reports showed biases in the other direction, namely 

“pse” was more dominant in “sep”/ “pse” verbal transformation tasks (Sato et al., 2007). Also 

contrary to previous reports (Sato et al., 2007; Basirat et al., 2012), the word being repeated in 

the sequence did not affect the proportions of perceived words, except for “pse”/ “sep” 

sequences (Fig. 2a, F[1,14]=2.76, p = 0.02). Even for this condition, the mono-syllabic 
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sequences elicited more verbal transformations than previously reported (Sato et al., 2007; 

Basirat et al., 2012).  

Overall, the reports in the spontaneous block confirmed that all speech sequences successfully 

elicited verbal transformations. It should be noted that, as expected, the main verbal 

transformations were related to changes in the parsing of the acoustic signal at syllabic or bi-

syllabic level.  

 

Figure 2: Proportion of responses in the spontaneous verbal transformation block. (A) Responses 

according to the repeated word in the sequence. (B) Grand average responses across sequences. Error bars 

denote s.e.m. 
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 Phonetic 
modifications 

Lexical/Semantic 
modifications 

Segmentation 
modifications 

Streaming 

Képi-
Piquer 

. /keli/ 

. /ike/ 

. /epi/ 

. /pie/ 

. Mickey 

. Gouter 

. t’es où 

  

Pata-
Tapa 

. /tafa/ 

. /ata/ 

. /pia/ 

. lapin  

. tape 
. /terata/ 
. /taota/ 
. /pa/-/ta/ 

. /p/-/t/ /a/-/a/ 
 

Plan-
Lampe 

. /ã/ . nan 
. lent 

 . /pl/ -/ã/ 

Pse-Sep . /pia/ . tout ça  . /p/-/sə/ 
. /ə/-/ə/ 

Table S1: List of “other” percepts. Words accounting for less than 15% of the total percepts were 

spontaneously reported by participants during debriefing. 

 

We then assessed the mean duration of percepts which differed across auditory sequences. 

Figure 3 reports the distributions of durations for each sequences “kepi”-“piquer” (A), “pata”-

“tapa” (B),”plan/lampe” (C) and “pse”-“sep” (D).  Distributions were highly asymmetric and 

followed a log normal distribution (Figure 3e-h, Kolmogorov-Smirnov test for normality of 

each distribution of log(duration): p>0.05).  Surprisingly, the durations of the word percepts 

were shorter than for pseudo-words (F[1,14]=9.2; p=0.009). No difference were perceived 

between “kepi” and “plan” sequences, nor between “pse” and “pata” sequences (F[2,28] = 

1.1, p = 0.35). This suggests that participants switched more their perception when listening to 

ambiguous word sequences than pseudo-words sequences. At first glance, these results seem 

to contradict previous reports (Pitt and Shoaf, 2002; Shoaf and Pitt, 2002), showing that 

words are less sensitive to verbal transformations than non-words. In these experiments, 

verbal transformations competed in a speech sequence could either elicit the perception of a 

real word or a non-word. Participants perceived in proportion more real words than non-

words. These findings indicated that lexical processing influenced the verbal transformation 

task, and suggested that lexical representation could serve the stabilization of speech 

perception (Shoaf and Pitt, 2002). However, in our experiment, the two utterances in 

competition were either both words or both non-words. We thus argue that our results are in 

line with the previous verbal transformation reports, and that the shortening of percept 

duration in word sequences could reflect lexical competition. In agreement with this view, 

reports showed that speech word parsing heavily relied on lexical effects (Elman and 
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McClelland, 1988; Vroomen et al., 1996; Billig et al., 2013), suggesting that speech 

processing is inherently predictive (Gagnepain et al., 2012).  

 

Figure 3: Normalized histograms of percepts durations in the spontaneous verbal transformation task. 

Histograms on the left represent percept durations on a linear scale for (A) “kepi” / “piquer” sequences, (B) 

“pata’ / “tapa” sequences, (C) “plan” / “lampe” sequences, (D) “pse” / “sep” sequences. Histograms on right 

represent the same data on a logarithmic scale. The vertical bars represent the averaged median of the 

distributions across subjects. Word percepts (red) were less stable over time than pseudo-words (blue) percepts. 

 

During the maintenance task, participants were successful in maintaining the required 

stimulus in all conditions (F[2,28] = 32.0, p<0.001) (fig. 4). However; multiple comparison 

procedure showed that the percept “pse” was significantly harder to maintain than the other 

percepts (59% maintenance, against 85% to 96% in the other conditions); nevertheless, this 

percept was still dominant compared to the alternative percept “sep” (37 %). The duration of a 

given percept was also significantly longer when participants were asked to maintain than 

when they were asked to ignore it (fig. 5). As the ignored distribution of residuals did not 

follow a normal distribution (significant Kolmogorov-Smirnov test) a Kruskal-Wallis test was 

performed: Chi2[1,14] = 16.4, p<0.001) .  
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Figure 4: Proportion of perceived words during the volition task. Errors bars denote s.e.m. Each sequence 

(A) “kepi”, (B) “pata”, (C) “lampe”, (D) “sep” was repeated twice. Subjects were asked to maintain the 

perception of one bistable word in one sequence (left panels), and to maintain the other bistable word in the 

second sequence (right panels). On average subjects performed well the task.  

 

Figure 5: Percept duration during the volition task. Duration distributions of percepts if maintained (red) or 

ignored (blue) are displayed in log scale. Maintained percepts were more stable than ignored percepts. 
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Importantly, percepts were more stable in the “volitional” than in the “spontaneous” task: the 

average percept duration during spontaneous reports was 4.5 s and 8.6 s in the volition task.  

In light of this successful experimental manipulation, we decided to test the main hypothesis 

on the MEG data recorded during the volitional task. 

 

3.2. Different frequency profiles according to speech sequence 

 

Oscillations in auditory cortex are known to track the temporal regularities of external inputs 

(Regan, 1966; Hari, 1989; Besle et al., 2011) and hypothesized to play a crucial role in 

parsing when listening to speech (Ghitza, 2011; Giraud and Poeppel, 2012). Hence, neural 

oscillations in auditory cortex should reflect how the acoustic signal is being chunked into 

perceptual units. Here, we specifically hypothesized that verbal transformations were caused 

by changes in auditory speech tracking mechanisms.  

To test this, we first checked whether the presentation of different speech sequences elicited 

neural entrainment in auditory cortices. Power Spectra Density (PSD) analysis was performed 

in the left and right hemispheres (see Methods). Detrended power analysis was performed to 

remove 1/f endogenous neural component (Nozaradan et al., 2011) allowing to assess whether 

MEG signals followed the 3 Hz rhythmic input, and whether its harmonics were present (see 

Methods). Significant steady-states component are reported in Figure 6. As expected, auditory 

cortices showed a significant 3 Hz rhythm in all conditions as well as its first harmonic at 6 

Hz. Interestingly, listening to bisyllabic words induced a 1.5 Hz frequency response in 

auditory cortex. The 1.5 Hz peak was clearly visible in MEG data frequency spectrum during 

“kepi” sequence listening (Fig. 6a) as well during “pata” sequences in right auditory cortex 

(Fig. 6b). Crucially, this frequency component was not present when listening to the repetition 

of mono-syllabic words (Fig. 6 c-d). 

As bi-syllabic sequences consisted in the repetition of acoustic patterns at 1.5 Hz, the acoustic 

signal may have already contained a frequency peak at 1.5 Hz to which auditory cortex would 

entrain; as such, the 1.5 Hz observed in the PSD may just reflect a bottom-up signal frequency 

tagging. To test this, PSD was computed on the envelope of the acoustic sequences (Fig. S2): 

while the “kepi” auditory sequence PSD showed a peak at 1.5 Hz, no peak was detectable in 

the “pata” auditory sequence PSD.  Hence, the 1.5 Hz component that is present in MEG 
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signal when listening to the “pata” sequence cannot reflect pure acoustic signal tracking, and 

may be a consequence of endogenous perceptual parsing: the 1.5 Hz oscillation could have 

been recruited due to the temporal contingencies of the task (the relevant parsing window 

occurs at a rate of 1.5 Hz for bi-syllabic sequences).  

 

 

 

Figure 6: Detrended frequency power spectra. (A) Listening to the repetition of “kepi” words entrained 

auditory cortices at 1. 5 Hz and direct harmonics: 3 Hz, 4.5 Hz, 6 Hz, 7.5 Hz and 9 Hz (B) “pata” sequences 

elicited entrainment at 3 Hz and 6 Hz in the left hemispheric sensors, and at 1.5 Hz, 3 Hz, 6 Hz and 9 Hz in the 

right hemisphere sensors. (C) “lampe” sequences elicited neural entrainment at 3 Hz, 6 Hz, 7.5 Hz and 9 Hz in 

left temporal lobe, and at 3 Hz, 6 Hz and 9 Hz in right temporal lobe. (D) “sep” sequences elicited entrainment at 

3 Hz and 6 Hz. 
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Figure S2: Frequency power spectra of the acoustic stimuli. The “kepi” sequence is the only acoustic signal 

that presents a peak at 1.5 Hz in its frequency power spectrum. 

 

In the next analysis, we tested whether these steady-state components were modulated 

according to the perceived word and if there were hemispheric asymmetries. In accordance 

with the detrend fluctuation analysis, 1.5 Hz power was higher in bi- than in mono-syllabic 

sequences (F[3,42] = 5.3, p = 0.004; post-hoc analysis: significant difference between [kepi-

pata] and [lampe-sep] sequences). 1.5 Hz power was however not indicative of perceived 

word (F[1,14]<1), and did not differ between hemispheres (F[1,14]<1).   

The 3 Hz component was also modulated by the speech sequence (F[3,42] = 4.7, p = 0.006). 

Post-hoc analysis revealed that the peak in “lampe” sequences were higher than in the other 

speech sequences conditions. 3 Hz power was not modulated by percept (F[1,14]<1). Again, 

no hemispheric bias in 3 Hz power was detected (F[1,14]<1). The absence of asymmetry is 

surprising considering the previous reports of a rightward bias of slow oscillation neural 

tracking (Boemio et al., 2005; Giraud et al., 2007).  

The 6 Hz component was also modulated by speech sequence (F[3,42] = 3.28, p = 0.03). The 

6 Hz peak represents a harmonic of the rhythm of entrainment (3 Hz) and is present for all 

speech signals, post-hoc test suggest however that 6 Hz power is higher for bi-syllabic 
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sequences than mono-syllabic sequences.  6Hz power changes were not observed depending 

on percept (F[1,14]<1) with no hemispheric bias (F[1,14]<1).  

 

 

Figure 7: Frequency power spectra across conditions. Red and blue lines correspond to the frequency spectra 

of the main speech utterances in (A) “kepi” (B) “pata” (C) “lampe” and (D) “plan” sequences. The grey areas 

highlight the main peaks in frequency power, e.g. 1.5 Hz, 3 Hz, 4.5 Hz, 6 Hz, and alpha (8 Hz-12 Hz). 

 

In addition to steady- state components a prominent peak was observe at alpha frequency (8-

12 Hz) (fig. 7). Alpha power was no modulated by speech sequence (F[3,42] = 2.1, p = 0.12), 

and no difference were observed between hemispheres (F[1,14]<1). Results however show a 

modulation of alpha power according to percept (F[1,14]=9.4, p=0.008). More alpha power 

was observed for percepts “piquer” than “kepi”, “tapa” than “pata”, “lampe” than “plan” and 

“sep” than “sep”. Crucially, for the bi-syllabic sequences, the percepts associated with higher 

alpha power correspond to the words that were perceived in higher proportion (Fig. 2a-b). For 
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mono-syllabic sequences, it corresponds to the repeated word in the sequence, i.e. the easiest 

word to maintain. Hence, we interpret the change of alpha power as an attentional effect in the 

volitional task: more attention is required to perceive the “less” easy word, which entails a 

global decrease in alpha power. 

 

3.3. Verbal transformations elicited phase shifts in 1.5 Hz and 3 Hz oscillations 

 

Here, we examined the hypothesis that auditory cortex oscillations provide a mechanistic 

means for the brain to parse the acoustic signal into relevant perceptual units (Ghitza, 2011; 

Giraud and Poeppel, 2012).  According to this view, each cycle of the oscillation should 

correspond to the parsing of one linguistic unit. Hence, any temporal shift in the oscillatory 

cycle according to the acoustic signal should lead to a change in the perceived speech unit. In 

our task, speech utterances were either repeated at 1.5 Hz or 3 Hz frequencies; we thus 

hypothesized that the reported verbal transformations would be elicited by phase shifts of 

neural oscillations at 1.5 Hz and 3 Hz, respectively.   

The 3 Hz preferential phase was computed for each condition at the onset of the plosive burst. 

As expected, listening to the rhythmic sequences elicited strong 3 Hz phase locking (table 1 

and 2). Interestingly in the left temporal lobe, Phase-Locking Values (PLVs) tended to be 

higher when the perceived word in the utterance started with a plosive, but this trend was only 

significant when contrasting “pse”/ “sep” sequences (table 1). No PLV difference was 

observed between the different perceived in the right hemisphere.   

 

Perceived word PLV Perceived word PLV Difference (t, pval) 

Lampe 0.62 Plan 0.65 t = 2.1, p = 0.055 

Sep 0.55 Pse 0.62 t = 2.2, p = 0.03 

Képi 0.49 Piquer 0.46 t = 1.1, p = 0.3 

Tapa 0.50 Pata 0.55 t = 1.9, p = 0.08 

Table 1: Phase Locking Values (PLVs) at 3 Hz for left hemisphere sensors. 
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Perceived word PLV Perceived word PLV Difference (t,pval) 

Lampe 0.62 Plan 0.63 t = 0.4, p = 0.69 

Sep 0.57 Pse 0.56 t = -0.05; p = 0.95 

Képi 0.46 Piquer 0.45 t = -0.37, p = 0.72 

Tapa 0.49 Pata 0.55 t = 2.1; p = 0.055 

Table 2: Phase Locking Values (PLVs) at 3 Hz for right hemisphere sensors. 

 

Crucially, the 3 Hz preferential phase was significantly modulated according to the perceived 

word: significant phase differences of -8° and -9° distinguishing the perceived percepts were 

obtained for mono-syllabic sequences in the right temporal hemisphere sensors (Fig. 8c-d). 

These phase differences signified that, compared to the default state in which “lampe” was 

perceived, perceiving “plan” was associated with a shift of 8° of the 3 Hz component. This 

phase shift corresponds to a temporal delay of 7 ms of the 3 Hz oscillation and is consistent 

with a latency shift observed in the evoked steady-state response (Fig. 8c-d). However, no 

significant effects were seen in the ERF analysis suggesting that oscillatory phase analysis 

may provide a more sensitive measure of neural latency than classic evoked response 

analysis.  

Additionally, significant differences in the phase of the 3 Hz response were observed between 

perceiving “pata” and perceiving “tapa”: for this speech sequence, the difference in 3 Hz 

phase was accompanied with significant changes in the ERF amplitude (Fig 8b). No 

significant changes were observed between the different percepts of the “kepi” sequence (fig. 

1a). 
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Fig. 8: Event-Related Fields (ERFs) and 3 Hz phase shifts in (A) “kepi” (B) “pata” (C) “lampe” and “sep” 

sequences. ERFs and phase distributions in top panels correspond to left temporal lobe, middle panels 

correspond to right temporal lobe. Bottom panels depict the speech signal for each sequence condition. Polar 

plots denote the 3 Hz phase difference between the 2 percept conditions: each grey bar denotes the phase 

difference between the two percepts conditions for one subject, the black bar corresponds to the average phase 

shift across subjects.   

 

Similarly, the perceptual changes in the “kepi” and “pata” sequences were expected to be 

accompanied by modulations of the 1.5 Hz oscillatory component. Significant changes in the 

PLV and in the preferential phases were observed in the left hemisphere sensors between the 

perceived words in “kepi” sequences (Table 3, Fig. 9a). No differences were observed in the 

right temporal sensors, and in the non-word sequence “pata” (Table 3, 4, Fig. 9)  
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Perceived word PLV Perceived word PLV Difference (t, pval) 

Képi 0.34 Piquer 0.27 t = 2.2, p = 0.04 

Tapa 0.25 Pata 0.25 t = 0.02, p = 0.98 

Table 3: Phase Locking Values (PLVs) at 1.5 Hz for left temporal sensors. 

 

Perceived word PLV Perceived word PLV Difference (t, pval) 

Képi 0.33 Piquer 0.24 t = 1.9, p = 0.08 

Tapa 0.21 Pata 0.21 t =-0.03 , p = 0.97 

Table 4: Phase Locking Values (PLVs) at 1.5 Hz for right temporal sensors. 

 

 

Figure 9: Differences in preferential phase between percept conditions at 1.5 Hz frequency. Each grey bar 

denotes the phase difference between the two percepts conditions for one subject; the black bar corresponds to 

the average phase shift across subjects. (A) During the listening of “kepi” sequences, change in perceived word 

was associated with significant phase shift in 1.5 Hz oscillations in left temporal lobe (mean phase shift of -23° 

(-63ms), CI = [-52°, -2°]). Phase shifts of the same amplitude were observed in right temporal lobe, but were not 

significant (mean phase shift of -20°, CI = [-51, 15°]). (B) No constant 1.5 Hz phase shifts were observed during 

“pata” sequences listening (mean phase shift in left temporal lobe: -47° (-131 ms), CI= [-151°, 158°], mean 

phase shift in right temporal lobe: -54° (-151 ms) [-123°, 44°]). 
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4. DISCUSSION 

 
4.1. Modulation of slow neural oscillations reflect endogenous parsing 

 

Using a verbal transformation task, we tested the hypothesis that cortical oscillations in 

auditory cortices reflect an endogenous speech parsing mechanism constrained by internal 

linguistic representational units (Poeppel, 2003; Poeppel et al., 2008). More precisely, we 

asked whether changes in cortical oscillations could inform us on when the speech signal was 

parsed into such representational units. A growing body of evidence shows that neural 

oscillations can track the temporal regularities of auditory speech signals and influence 

intelligibility (Ahissar et al., 2001; Luo and Poeppel, 2007, 2012; Gross et al., 2013; Peelle et 

al., 2013; Doelling et al., 2014) yet their causal role with regards to speech comprehension 

remains debated (Howard and Poeppel, 2010; Obleser et al., 2012). In particular, oscillatory 

tracking may principally reflect the temporal statistics of the speech signals – i.e. following or 

frequency-tagged responses - from which linguistic processing would be derived. To the 

contrary, our results suggest that low-frequency neural oscillations do not simply follow the 

temporal dynamics of the speech signal; rather, the reported changes in auditory response 

latencies appear to be commensurate with the observed changes in conscious perceptual 

parsing.  

Specifically, the phase of neural oscillations following syllabic rate (3 Hz) was modulated in 

both monosyllabic and bisyllabic verbal transformations. Of interest here, the phase 

differences observed in the right hemisphere could indicate the perceived word in 

monosyllabic sequences, i.e. the “lampe” and “sep” sequences. The observed right bias in the 

encoding of slow speech dynamics is consistent with previous reports of an asymmetry in 

speech sampling mechanisms across hemispheres (Poeppel, 2003; Boemio et al., 2005; 

Giraud et al., 2007). Additionally, the sub-harmonic (1.5 Hz) oscillation was present only in 

bi-syllabic sequences suggesting that, when needed, supplementary brain oscillators are 

recruited for speech parsing. The PLV and phase of 1.5 Hz oscillations could also 

discriminate perceived word in the “kepi” word sequence, suggesting that 1.5 Hz dynamics 

could reflect parsing mechanisms. In agreement with previous reports, these results point to 

an important role of slow dynamics in speech perception (Luo and Poeppel, 2007; Peelle et 

al., 2013; Zion Golumbic et al., 2013; Doelling et al., 2014). Consistently, rhythms in the 1-3 

Hz (delta) range are associated with the prosodic dynamics in the speech signal (Poeppel, 
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2003). These slow fluctuations give strong cues for speech parsing (Greenberg et al., 2003), 

that are reliable even in the presence of noise (Ding and Simon, 2012). 

We also found a correlation between perceive speech utterance and alpha power. There is 

evidence that alpha power suppression is associated with intelligibility (Obleser and Weisz, 

2012; Doelling et al., 2014). In our study, if low alpha power maximizes intelligibility then it 

would have to be associated with the perception of the veridical repeated utterance in the 

monosyllabic sequences. Hence, less alpha power should be linked with the percept “lampe” 

in the “lampe” sequence, and “sep” in the “sep” sequence. Yet, the opposite is observed: the 

perception of the veridical utterance was correlated is higher alpha power compared to the 

perception of the transformed utterance (here, “plan” or “pse”). For the bi-syllabic sequences, 

the sequences were elaborated through the concatenation of syllables; as such there is no 

“veridical” bi-syllabic speech utterance in the signal: for example, despite the starting 

syllables both “kepi and “piquer” acoustic sequences are similar. Yet, we know from the 

participant’s spontaneous reports that one word is more easily perceivable in these sequences 

(fig. 1). Then, the word that is more often reported during the spontaneous sequence should 

also be easier to maintain during the volitional task. Interestingly, more alpha power is 

observed during the maintenance of these words, linking alpha power to the difficulty of the 

volitional task. Therefore, we rather interpret changes in alpha power as an attentional effect. 

Alpha power decreases when the volitional task is harder, i.e. when the word to maintain is 

less spontaneously perceived within the speech sequence. This is in agreement with prior 

reports demonstrating that decrease in alpha power is observed at the locus of attention 

(Klimesch et al., 1998; Herrmann and Knight, 2001; Sauseng et al., 2005). 

 

4.2. Are slow oscillations parsing the acoustic signal? 

 

While we report differences in 1.5 Hz and 3 Hz phase according to speech percept, the phase 

differences appear too small to confirm the brain oscillatory parsing hypothesis (Ghitza, 2011; 

Giraud and Poeppel, 2012). For mono-syllabic sequences, phase shifts in the 3 Hz neural 

oscillations were of 8-9° which corresponded to changes in neural latency of 7-8 ms yet the 

temporal distance between the two consecutive consonants in the mono-syllabic sequences 

“lampe” ans “sep” were of 80-100 ms. Hence, if 3 Hz oscillations parsed the signal into 

perceptual word chunks during the verbal transformation task, a phase difference of 80-100 

ms (~ 90-110°) would have been expected. Similarly, phase differences at 1.5 Hz should have 



152 

 

been radically bigger: out-of phase differences were expected if 1.5 Hz parsed the signal into 

bi-syllabic units.  

These results seem to question the imputed role of brain oscillations as parsers of the acoustic 

signals. Yet, due to the poor spatial resolution of our MEG analysis, it is possible that our 

findings reflect the combined activity of distinct brain areas that serve dissociable 

mechanisms. Previous studies have indeed suggested that distinct networks reflect pure 

bottom-up processing and lexical and phonemic parsing. In particular, the tracking of fine-

grained acoustic features is hypothesized to be restricted to primary auditory areas (Kubanek 

et al., 2013), while envelope tracking in higher order regions (as STS or Broca’s region) and 

might be specialized for speech processing (Boemio et al., 2005; Kubanek et al., 2013; 

Zion Golumbic et al., 2013), and for attentional selection (Besle et al., 2011; Zion Golumbic 

et al., 2013). In other words, our MEG data might capture analogous stimulus-tracking 

mechanisms in primary auditory cortices and brain oscillators for perceptual speech parsing in 

higher order areas. 

Alternatively, our results might suggest that during speech listening, neural low-frequency 

dynamics mostly reflect stimulus tracking and that delta-theta oscillation phase is weakly 

modulated by endogenous factors. The discrepancy between our small effects and the strong 

out-of phase modulations reported during audiovisual attentional selection (Lakatos et al., 

2008; Besle et al., 2011; Gomez-Ramirez et al., 2011) and cocktail party effects 

(Zion Golumbic et al., 2013) might be explained by the presence of competing sensory inputs. 

In these experiments, two distinct rhythmic inputs were competing for attentional selection, 

and the phase of slow oscillations was reflecting the dynamics of the selected sensory input 

(Lakatos et al., 2008; Besle et al., 2011; Gomez-Ramirez et al., 2011). Even if these selective 

mechanisms are drastically modulated depending on the attended stimulus (Zion Golumbic et 

al., 2013) their dynamics are always based of existing external temporal information. It is thus 

possible that the slow dynamics reflect primarily the gain relevant sensory information, rather 

than endogenous temporal parsing. In our experiment, there is only one stream of information, 

as such the contribution of gain mechanisms might be small as there are no competing sensory 

inputs. To account for changes in perceptual parsing, we now explore a new hypothesis that 

the phase of coupling between the entrained syllabic oscillation and higher frequencies might 

encode perceptual parsing windows. This hypothesis is based on our previous findings and on 

previous evidence (Kayser et al., 2012; Ng et al., 2013) which suggest that low frequency 

oscillations provide reliable temporal metrics for sensory processing. Hence the position of 
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gamma oscillations (which is hypothesized to reflect phonemic encoding) according to the 

theta cycle may be a crucial cue for segmenting speech into syllables. In other words, we now 

test whether the modulation of PAC between the entrained slow oscillations and gamma 

power predicts perceived speech parsing.  

 

4.3. Volitional and spontaneous speech perception 

 

The present MEG report concerns the voluntary control of speech perception during the 

presentation of the ambiguous speech sequence. The volitional session was particularly 

interesting to analyze, considering that speech percepts were more stable in this session than 

during the spontaneous task. Yet, it is possible that distinct mechanisms are recruited during 

these two sessions. In particular, we expect that the reported alpha power modulations are 

restricted to the volitional task, but that slow oscillations phase predicts the perceived word in 

the sequence in the spontaneous task as well. Ongoing work is investigating the link between 

spontaneous and voluntary report of speech segmentation.   
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CHAPTER 5:  

GENERAL DISCUSSION 

 

 

5.1. SUMMARY OF THE FINDINGS 

 

As outlined in the introduction, neural oscillations are ideal candidates to encode 

perceptual timing. First, they represent periodic fluctuations in time thereby providing 

reliable temporal metrics to construct a brain-centric reference for neural timing (Panzeri 

et al., 2010; Kayser et al., 2012). Second, the brain likely uses oscillations as a 

communication system across sensory cortices, and oscillations are hypothesized to play 

a crucial role in temporal binding (Engel and Singer, 2001a; Fries, 2005).  Third, neural 

oscillations are modulated stimulus-driven rhythms. Oscillations could then manifest the 

tuning of brain activity to external temporal contingencies (Schroeder and Lakatos, 2009; 

Stefanics et al., 2010a). Finally, oscillations are also modulated by top-down control 

(Lakatos et al., 2008; Besle et al., 2011). Actually, large scale dynamics as captured 

through oscillatory activity even constitute a form of top down modulation of the signal. 

“Top-down” is usually seen as feedback influence of higher hierarchy to local networks 

activity. Yet, top-down processing could also concern any other modulation of the 

sensory signal which manifests past experience (Engel et al., 2001; Arnal and Giraud, 

2012). Hence, oscillatory behavior could both explain the reliance of perceptual timing to 

external information and the departure of perceptual timing from veridical timing. 

The distinct studies of this thesis provide evidence in support to the role of brain 

oscillations in the encoding of event timing for perception. In the Chapter 2, we showed 

that the shift in the phase of low-frequency neural oscillation in auditory cortices could 

predict the subjective perception of audiovisual timing. Specifically, we showed that the 

auditory and visual cortices could tune neural activity to the temporal regularities of 
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sensory inputs. The variation of this tuning in auditory cortices over time was 

commensurate with variations of perceptual timing. We interpret these results as the 

emergence of a “pacemaker” oscillation through neural entrainment. The phase of the 

pacemaker oscillation would in particular serve the tagging of event timing for 

perception. In other words, we argue that entrained oscillations provide an internal 

reference of timing for perception and that the modulation of this reference explains 

distortions of perceptual timing. However, phase encoding of timing may be specific to 

entrainment situations. When no external temporal information was given prior to 

temporal judgments, no clear pacemaker oscillation was observed in auditory or in visual 

cortices. The present findings in chapter 2 point to a specific role of neural entrainment in 

multisensory temporal correspondence, but its characterization in terms of frequency was 

fixed at a slow rate, leaving unanswered the possible role of higher frequency oscillations 

in audiovisual perceptual timing. The impact of the frequency of neural entrainment in 

the building up of multisensory temporal expectations was reported in Chapter 3. Results 

show that optimal temporal binding occurs at relatively low stimulation temporal rates. 

This suggests that the mechanisms underlying audiovisual temporal communication 

systems are bounded in the delta range (1-2 Hz).  Finally, we tried to replicate these 

findings in chapter 4 in a task where event timing was implicitly measured. To do so we 

used a speech comprehension task. We tested whether changes in the timing of 

perceptual parsing of the acoustic signal was commensurate with shifts in auditory cortex 

oscillations. The present results show that changes in low frequency oscillation 

entrainment could predict perceptual speech parsing. Yet the observed phase shifts were 

too small to account for the perceptual temporal shifts in the speech parsing window. 

These results could hint at an important role of the coupling between the phase of the low 

frequency oscillations and higher frequencies.   

 

5.2. TWO ROLES FOR THE PHASE OF SLOW-OSCILLATIONS IN 

EEG/MEG RECORDINGS? 

 

5.2.1. Absolute and relative phase 
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Our results, in line with previous reports, provide evidence that cortical rhythms serve as 

temporal reference frames for events processing. Specifically, results in the first 

experiment in chapter 2 have prompted the notion that the relative position of the evoked 

response within the entrained oscillation cycle provides information on perceived 

stimulus timing. These findings point to a special role of relative phase in neural 

encoding schemes. Yet, the phase of low-frequency oscillations in the LFP signal was 

first found to be associated with an excitability state of the recorded neural network 

(Lakatos et al., 2005; Canolty et al., 2006; Womelsdorf et al., 2007). It is suggested that 

there is an absolute relationship between low-frequency phase and neural excitability, 

such as maximal firing occurs at the trough of the low-frequency oscillation (Lakatos et 

al., 2005). As such, this mechanism is expected to suppress neural activity at specific time 

periods, and should have major consequences on perception over time. Human M/EEG 

studies consistently find a link between the phase of neural oscillation and perceptual 

performance in time (Monto et al., 2008; Busch et al., 2009; Mathewson et al., 2009; 

Chakravarthi and Vanrullen, 2012; Henry and Obleser, 2012; Neuling et al., 2012b; 

Fiebelkorn et al., 2013). In these reports, a specific phase of the slow oscillation is 

associated with maximal perceptual performance (in stimulus detection or 

discrimination), while the opposite phase is associated with minimal performance.  

In most of these studies, the phase linked with optimal performance was not fixed among 

subjects.  Variation was reported in the preferential phase of maximal excitability (Busch 

et al., 2009; Chakravarthi and Vanrullen, 2012; Ng et al., 2012; Fiebelkorn et al., 2013) 

or in the phase of neural entrainment (Besle et al., 2011; Henry and Obleser, 2012). Phase 

normalization procedures were used in order to quantify phase effects at the inter-subject 

level (Busch et al., 2009; Chakravarthi and Vanrullen, 2012; Ng et al., 2012; Fiebelkorn 

et al., 2013). The variability in phase across individuals is striking: it shows that best 

performance does not correspond to the same phase across subjects thus raising concerns 

with regards to the optimal excitability in the phase of low frequency oscillations. 

Specifically, if we consider that the absolute phase carries excitability characteristics (i.e. 

oscillatory peaks correspond to periods of inhibition), and that best performance is 

associated to maximal excitability of the recruited sensory system, the phase of the neural 

oscillation should be consistent across individuals. In line with these counterintuitive 

findings, we also report in our studies a large variability in the preferential phases of the 

auditory and visual entrainment (fig. 5.1). Here again, a small inter-subject variability 
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was expected, considering that entrainment should reflect alignment of neural excitability 

to the dynamics of external stimulation. 

 

 

Figure 5.1.: Inter-subject variability in the absolute phase of entrainment. A. Correlation between the 

preferential phase computed at auditory onset and the phase computed at visual onset at the end of the 

adaptation period in the study presented in chapter 2. Each dot corresponds to one subject. The phase 

computed at auditory onset is highly correlated with the phase at visual onset across conditions. Here, 

auditory and visual onsets are separated by 200 ms, hence the reported correlations are a marker of 

oscillatory entrainment. Importantly, the variability across individuals is very high. B. Preferential phase 

distributions for each individual in the speech parsing experiment presented in chapter 4. Each black bar 

corresponds to one subject. Again inter-subject variability in entrainment is observed.  
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The normalization procedure in M/EEG studies are justified with the fact that absolute 

polarity of EEG and MEG signals are hard to quantify. Contrary to LFP studies, the 

polarity of electrical activity as recorded with EEG and MEG techniques is 

undetermined. In EEG, the absolute value depends on the choice of the reference. The 

electric and magnetic fields could be recorded from distinct sensors with opposite 

polarities. As such it is not possible to know this exactitude whether a peak in a M/EEG 

oscillation corresponds to a through in neural excitability. It is therefore difficult to 

interpret absolute phase values with these techniques. But polarity effects cannot explain 

the reported subject variability, as polarity effects would lead to strongly oriented bipolar 

distributions, and the distributions that we report have a different shape (fig. 5.1.).   

The ambiguity between absolute and relative phase coding is also present in neuro-

physiological and neuroimaging studies that report neural synchronization between 

distinct brain regions. Indeed, reported “oscillation synchrony” can refer to two distinct 

observations. First, oscillation synchrony can relate to the true synchronization of 

neuronal activity within and between neural assemblies. True synchrony was reported in 

seminal neurophysiological studies, which showed gamma oscillations in the cross-

correlation between neural signals from neural assemblies. Crucially, the peak of the 

cross-correlogram was centered around 0 ms, suggesting that the two neural assemblies 

were fluctuating synchronously at gamma rate (Gray et al., 1989; Engel and Kreiter, 

1991; Engel et al., 1991d) (fig. 1.11). In comparison, it is much harder to detect true 

synchrony of local neural ensembles when using EEG or MEG neuroimaging 

techniques, because the spatial resolution is much lower than with intracranial 

recordings. An augmentation in local synchronization could still be observed through an 

increase in oscillation power: if a network resonates at a specific frequency, this should 

cause a global increase in oscillation power that could be captured with EEG and MEG 

sensors (von Stein and Sarnthein, 2000). The second observation of oscillation synchrony 

refers to the coherence of neural activity across distinct brain regions. In this particular 

scenario, synchronization is observed when two regions present similar temporal patterns 

of activity, albeit some neural delays. In other words, neural coherence analysis captures 

brain regions that present comparable temporal fluctuations in oscillatory activity but do 

not necessarily fire synchronously. 0 ms-coherence can be problematic in neuroimaging 

data, as it reflects artifactual synchrony due to volume conduction spread-out of neural 

activity (i.e. that sensors do not capture independent signatures of the neural signal) 
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(Tognoli and Kelso, 2009). As such 0 ms-coherence synchrony is often discarded from 

the results (Lachaux et al., 1999; von Stein and Sarnthein, 2000; Palva and Palva, 2011). 

Hence, a lot of evidence for oscillatory synchronization may reflect delayed coherence 

between brains regions.  

The observed phase shifts in neural coherence could possibly reflect the transmission 

delay of information between the two communicating networks (Gregoriou et al., 2009). 

However, we show in this thesis that relative phase shifts in oscillations can be modified 

with experience. They may reflect more than direct transmission delays and can give 

insightful information about perceptual content. As a result, we suspect that the relative 

delays in neural activity_ especially at low frequencies _ could provide a valuable code 

for coordinating cell assemblies in time in the context of temporal perception. 

 

5.2.2. Temporal integration and segregation 

  

Neural oscillations have been associated with two distinct temporal mechanisms: 

temporal integration and temporal ordering. Temporal integration (or temporal 

sampling) relates to the fusion of sensory information over a certain period of time. A 

consequence of this fusion is that all the information of the sub-elements that are fused 

should be lost. By analogy, it is as if the brain digitalizes sensory information: when a 

picture or a sound is digitalized, the information that was contained within a pixel or a 

sound sample cannot be retrieved anymore. Yet, several studies suggest to the contrary 

that these elements are not lost, but hierarchically organized with banks of brain 

oscillators (Lakatos et al., 2005; Schroeder et al., 2008; Canolty and Knight, 2010; 

Ghitza, 2011; Giraud and Poeppel, 2012).  

This hierarchical oscillatory code is particularly interesting as it would permit to 

multiplex multiple cognitive processing via different oscillations (Akam and Kullmann, 

2010). Hence distinct processes could be recruited depending on the task and temporal 

demands. The parallelization of the different oscillators should lead to distinct temporal 

windows of interest. When performing a certain task, the relevant information could be 

selected by filtering the neural signal at the good frequency (Akam and Kullmann, 2010, 

2014). The resulting signal would have a temporal resolution that is directly imposed by 
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the recruited oscillation. Hence, the temporal level at which the sensory signal will be 

fused into a unified percept depends on the cognitive task.  

Following this idea, brain mechanisms for temporal integration and for segregation 

should be hierarchically organized. Based on our results and on previous reports, we 

argue that integration/ sampling  mechanisms recruit essentially slow oscillation 

mechanisms, while temporal coding of sub-elements are preserved in nested higher 

oscillations (Akam and Kullmann, 2010, 2014; Buzsáki, 2010). First, previous 

distinctions between temporal window of encoding and temporal window of integration 

suggest that integration windows are of a coarser time scale than encoding windows 

(Theunissen and Miller, 1995; van Wassenhove, 2013). The temporal window of 

encoding reflects the minimal temporal window below which the two sensory inputs 

cannot be distinguished. Conversely, the temporal window of integration includes the 

temporal window of encoding plus some temporal tolerance to timing noise (Theunissen 

and Miller, 1995). In other words, the temporal windows of integration should always be 

bigger than the temporal window of encoding. 

Temporal integration mechanisms are usually known to be of different temporal scales 

between sensory modalities (Hirsh and Sherrick Jr., 1961; Shimojo, 2001) and stimulus 

complexity (van Wassenhove et al., 2007; van Wassenhove, 2009, 2013). Interestingly, 

perceptual reports in sensory binding usually have a coarser temporal scale for congruent 

audiovisual features than incongruent features (van Wassenhove et al., 2007). This 

suggests that possible integration between features increases tolerance to temporal delay. 

Furthermore, dissociations can be made between the different types of timing reports. 

There is emerging consensus that perceptual reports of sensory synchrony and temporal 

order operate via different mechanisms (Van Eijk et al., 2008; Vatakis et al., 2008; Ipser 

et al., 2012; Love et al., 2013). Numerous studies have found dissociations between 

Temporal Order Judgments (TOJ) and synchrony judgments (SJ), as well as between 

TOJ and audiovisual binding measures, such as the proportion of McGurk illusion (Ipser 

et al., 2012; Freeman et al., 2013). To the contrary, SJ and McGurk temporal windows 

seem to correlate positively (Martin et al., 2013). Interestingly, perceptual synchrony 

reflects the perception of temporal unity between two distinct features, and is close to that 

sense to sensory integration. To the contrary, temporal order judgments rely on the 

accurate temporal dissociation between two sensory events. Hence it is plausible that 
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temporal order judgments require finer temporal resolution that synchrony or sensory 

integration mechanisms. Temporal order judgments may thus recruit oscillatory 

mechanisms on a higher temporal scale than simultaneity judgments and temporal 

integration.  

Yet, a direct consequence of the parallelization of oscillatory codes is that cognitive 

processes that work at slow and fast dynamics are interdependent. Of interest our results 

in chapter 2 and 3 suggest that audiovisual temporal order and integration both recruit 

slow oscillations in the same temporal scale (~1 Hz). However, they seem to take 

advantage of different information that is conveyed through the slow rhythm. We 

showed in Chapter 3 that automatic audiovisual binding has a coarse temporal window, 

suggesting that audiovisual perceptual units might be computed in one cycle of the slow 

oscillation. Further studies reported consistent effects, and suggest that ~1 Hz oscillations 

play a crucial role in audiovisual integration (Lakatos et al., 2008; Fiebelkorn et al., 2011, 

2013; Gomez-Ramirez et al., 2011). Yet audiovisual integration mechanisms do not 

alleviate event timing information, which could be retrieved through the relative phase of 

the slow oscillation cycle. Hence, we propose that the dissociation between the “what” 

and “when” of sensory information could be explained by the same oscillatory 

mechanism. However, the “what” of sensory information would correspond to the 

information arriving within the time window delimited by one cycle of the recruited 

oscillation; while the “when” would be encoded within the phase of the slower 

oscillation. 

 

5.3. MULTI- AND AR- RHYTHMIC BRAIN MECHANISMS OF EVENT 

TIMING 

 

5.3.1. Multiplexing of temporal information with multiple brain oscillators 

 

If oscillations provide metrics of timing, it is possible that they do not only concern one 

carrier frequency. The brain should indeed capitalize on multiple oscillators to accurately 

tune to the external rhythmicity of the world. This characteristic was exemplified in 
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particular in chapter 3. There is emerging consensus that speech listening mechanisms 

involve brain oscillations at phrasal, syllabic and phonemic temporal rates (Arnal and 

Giraud, 2012; Luo and Poeppel, 2012; Doelling et al., 2014). Consistent with this, as 

presented in chapter 4, listening to mono-syllabic stimuli engendered the emergence of 

entrained oscillation at syllabic rate, but sub-harmonic oscillations were representative of 

perceived words when bi-syllabic. These findings suggest that the brain creates rhythms 

that are not physically present in the signal to process it with better accuracy. 

Accordingly, the perception of meter in music perception also relies on brain oscillatory 

mechanisms (Nozaradan et al., 2011). Specifically, when listening to an isochronous 

acoustic rhythm, individuals tend to naturally group these sequences by two or more 

elements (Jones, 1987; Grahn, 2012; Grahn and Rowe, 2013). This grouping refers to 

meter in music. Asking musicians to imagine that these sequences were elaborated from a 

binary (groups of 2 crotchets) or ternary (groups of 3 crotchets) meter, makes the auditory 

cortex fluctuate at this imagined rhythm (Nozaradan et al., 2011). In a similar vein, 

perceiving complex rhythmic structures generates rhythmic activity in auditory cortex 

that are consistent with both perceived beat and metrical structure (Nozaradan et al., 

2012).  

These findings are in line with more complex forms of the dynamic attending theory 

(DAT) (Jones, 1976; Large and Jones, 1999). The DAT suggests that temporal 

expectations of subsequent sensory information could be built based on the temporal 

structure of previous stimulation (Jones, 1976). While most evidence for the DAT stands 

for the influence of simple rhythmic sequences (Jones and Boltz, 1989; Barnes and Jones, 

2000; Jones et al., 2002; Mathewson et al., 2010), it is expected that complex rhythmic 

sequences also entails temporal predictions. Hence, brain tuning when listening to music 

could produce expectation at sub-tempo level (Mcauley, 1995). Similarly, finger tapping 

in synchrony with complex sounds is affected by both beat rate and subdivisions of 

rhythms (Repp, 2008). Further work is needed to test whether these behavioral effects 

emerge from the parallel phase tuning of multiple neural oscillators. 

The existence of multiple oscillators provides an additional line of direction for the 

interpretation and analysis of the MEG data presented in chapter 4. In this chapter, we 

focused on the role of low frequency oscillations in the perceptual parsing of syllabic and 

bi-syllabic words within acoustic sequences. Yet other neural oscillations in higher 
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frequency bands are suggested to take part in speech comprehension mechanisms; in 

particular low gamma oscillations could represent phonemic encoding (Poeppel, 2003; 

Boemio et al., 2005; Lehongre et al., 2011; Giraud and Poeppel, 2012; Luo and Poeppel, 

2012), and beta oscillations could serve the parsing of dyads (i.e. the acoustic boundary 

between phones) (Ghitza, 2011). In the Tempo model introduced by Ghitza (2011), it is 

the relative phase of these higher frequency oscillators according to the theta reference 

that determines the temporal parsing window of speech. Hence, slow oscillations may 

principally track the temporal regularities of the acoustic signal, and then give the 

“tempo” to higher frequency oscillators that decode the content of speech. This model 

offers new perspective and refines our proposal of how slow oscillations could constitute 

an internal temporal reference for speech perception. 

  

5.3.2. Entrainment vs. arrhythmic stimulation 

 

Here, the results presented in Chapter 2 and 4 highlight the role of cortical oscillations in 

the presence of external rhythmic stimulation. Yet, stimulus presentation can be highly 

arrhythmic. Furthermore, detecting the transience of events in time is actually an 

important cue for attentional selection and accurate perception.  

The data presented in chapter 2 may suggest that distinct mechanisms are involved in the 

encoding of time in the presence or absence of external temporal regularities. As 

discussed in chapter 2, while neural entrainment could provide temporal metrics for 

timing perception, no clear endogenous pacemaker oscillation was observed when no 

temporal information was given prior to temporal order judgments. In particular, we 

either expected the involvement of oscillations in the delta range in the construction of 

subjective audiovisual timing. This was based on the results of the entrained experiment, 

and also as delta-frequency oscillations are known to affect audiovisual binding even with 

arrhythmic stimulation (Fiebelkorn et al., 2011, 2013). The participation of strong 

endogenous oscillatory components was also emitted as an alternative hypothesis. In 

particular alpha phase in visual cortex was previously shown to affect visual synchrony 

and temporal order judgments (Varela et al., 1981; Gho and Varela, 1988; Chakravarthi 

and Vanrullen, 2012). From the lack of significant results in our experiment we cannot 

conclude whether endogenous oscillations in sensory cortices take part in subjective 
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timing processes. Based on the big inter-subject variability in our preliminary results, we 

suspect that if endogenous mechanisms in sensory cortices serve the encoding of time in 

this absence of entrainment, they should recruit oscillators of distinct frequencies that are 

subject-specific. We consider also the possibility that, in the absence of stimulation, 

temporal pacemakers originate from other brain regions, in particular frontal regions as 

previously suggested (Matell and Meck, 2004; Buhusi and Meck, 2005).  

In addition, the lack of endogenous pacemakers for audiovisual timing may relate to the 

apparent asymmetry in temporal processing between visual and auditory/ audiovisual 

processing: evidence of visual sampling through alpha band oscillations have been put 

forward. While sound processing is also hypothesized to rely on oscillatory parsing 

mechanisms in the auditory cortex (Schroeder et al., 2008; Ghitza, 2011; Giraud and 

Poeppel, 2012), alpha oscillations behavior does not seem to have the same impact in 

auditory and in visual cortices (İlhan and VanRullen, 2012). In general, no specific 

frequency oscillation has been found to sample auditory information in the absence of 

external temporal regularities (Thorne and Debener, 2014). Periodic sampling is an 

efficient way to extract sensory information, because it entails a reduction in sensory 

information complexity (all the detailed fluctuations within the sample are reduced to 

one data point), and is energetically advantageous (neural processing is shunt 

periodically). Visual processing could indeed benefit from such system, as all the 

elements in the visual scene can be captured within a very short amount of time. To the 

contrary, auditory information is by essence transmitted via temporal changes or air 

pressures in the signal. As such, the precise capture of temporal information is crucial to 

accurately retrieve the sound content. It seems obvious that sampling sounds periodically 

with no knowledge of the acoustic signal would have damaging consequences on 

perception. Yet, auditory processing could capitalize on external rhythms to build 

temporal expectations on the arrival of next relevant events. Interestingly, the most 

common rhythmic stimulations in the external world _ speech, music, and movement 

namely _ are in the auditory and motor domain. Hence it seems reasonable to think that 

brain tuning to external regularities has more consequences for auditory information than 

visual information (Thorne and Debener, 2014). In conclusion, while visual processing 

could rely on non-informed sampling mechanisms to efficiently process information in 

time, this strategy cannot be applied in the auditory domain due to the necessity of fine 

temporal accuracy. Yet, audition could still take advantage of the temporal cues given by 
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the environment to parse the signal into perceptually meaningful units, while preserving 

the finer temporal resolution of information for accurate content extraction. 

 

 

5.4. CONCLUSION 

 

Watching a movie without noticing the succession of images and the asynchrony of 

dubbing, thinking that the day never ends when reading a boring text, all these situations 

signal that perceptual timing is an inaccurate construct of reality. The departure of 

perceptual timing from physical timing was thought to originate from the dynamics of 

sensory processing. In accordance with this view, our work provides evidence that the 

perceptual timing of events relies on an internal reference frame that is generated from 

brain rhythms. Specifically, we show that low-frequency oscillations (in 1-3 Hz range) in 

auditory cortices make the link between the physical timing of events and its distorted 

perception. We discussed previously possible explanations for the specific impact of low-

frequency oscillations in multisensory temporal binding and the inherent asymmetry 

between visual and auditory processes in the encoding of timing. Yet, these explanations 

are still speculative and remain to be tested. Additionally, it would be interesting to test if 

the reported timing phase code extends to other sensory modalities and to sensorimotor 

timing. Overall, this thesis exposes the initial elements of a phase code model of 

perceptual timing. Further research is needed to understand the exact contributions of 

cortical oscillations in the emergence of time awareness.  
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