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CHAPTER 14

Reward-dependent learning in neuronal networks for
planning and decision making
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Introduction

Prefrontal cortex is thought to participate in
supervisory attentional functions of the human
brain by sclecting a cognitive strategy that seems
most appropriate to the task at hand and monitoring
its execution (Luria, 1966: Shallice, 1988; Fuster,
1989). Yet how is the appropriateness of a strategy
evaluated by prefrontal neurons? The neuronal
network models developed by Jean-Fierre
Changeux and myself have aimed at providing
testable hypotheses concerning the organization of
this evaluation and decision process as well as its
putative cerebral and molecular bases (Dehaene
and Changeux, 1989, 1991, 1993, 1996, 1997:
Dehaene et al., 1998).

Our two basic hypotheses are that tentative plans
or strategies of behavior are generated through the
variable activation of neuronal assemblies in pre-
frontal cortex, which thus acts as a ‘generator of
diversity’; and that reward signals act to select
among these activations those that are best adapted
to the current environment. The models that we
have introduced thus implement a generalized
variation/selection scheme, which was initially
explored under the name of ‘reinforcement learn-
ing” by computer scientists (e.g. Sutton and Barto,
1998) and has also been called ‘neural Darwinism’
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by neurcbiologists (Edelman, 1987, 1993;
Changeux and Dehaene, 1989).

This short review is focused on the biological
mechanisms and functional significance of reward
systems in this variation/selection scheme. We first
briefly describe the three main roles that have been
attributed to reward processes in models of learning
by neural networks: the control of synaptic mod-
ification, the anticipation of further rewards, and
the control of decision processes. We then focus on
the latter process: how can neural networks imple-
ment decision making under the control of reward
systems? A specific biological implementation is
presented, and three simulations are described in
which this mechanism was used. Finally, predic-
tions for neurophysiological and brain imaging
experiments are considered.

Three roles of reward in theoretical models of
reinforcement learning

Most neural network simulations are framed in a
supervised learning paradigm, in which an external
teacher provides instructive signals which directly
specify the patterns of neural output that must be
learned by the network; more realistic however,
from a biological standpoint, are simulations that
rely on reinforcement learning. In this situation, the
only feedback signal which is received by the
simulated organism is an occasional reward which
indicates the outcome of past actions, either right or
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wrong. The organism actively generates behavioral
strategies and must use reward signals to optimize
the adequacy of these strategies to the situation at
hand. A thorough review of reinforcement learning
algorithms can be found in (Sutton and Barte,
1998); here, we concentrate on three basic aspects
of reward processing that were found useful in
reinforcement learming models.

Use of reward signals in the control of synapric
modification

A first use of reward signals is in the control of
changes of synaptic efficacy that underlie learning.
In newral network models based on Hebbian
learning or back-propagation, only information
local to the synapses, such as recent pre- and post-
synaptic activity, is used to alter synaptic efficacy.
In reinforcement learning, however, an additional
global signal coding for recent rewards is used to
control the amplitude, and often the direction of
synaptic change in order to adapt subsequent
behavior to optimize the amount of reward
received. For instance, our simulations have been
based on a simple rule which, like the Hebb rule, is
sensible to correlation of pre- and post-synaptic
activity, but where the direction of the synaptic
modification is determined by the sign of the
reward signal received:

Aw=g 8,25, — R

where w is the synaptic weight, 5, and 5, are the
recent  presynaptic and postsynaptic  activities
ibetween 0 and 1), and R is the reward (between
— 1 and +1). When the reward is positive, this
equation implies that the classical Hebb rule is
followed, which tends to stabilize recent activa-
tions. When the reward is negative, however, an
anti-Hebbian rule is used which diminishes the
probability of reproducing similar behavior in the
future (Dehaene and Changeux, 1989, 1991, 1993,
1997; Dehaene et al., 1998). More complex rules,
such as the linear reward-penalty algorithm, have
been described (Sutton and Barto, 1998, Chapter
2).

Two properties that characterize the use of
reward signals for synaptic modification may be
relevant for real biclogical reward systems: First,

information about rewards must be available to all
synaptic sites at which reward-dependent plasticity
is needed; this suggests that the reward must be
transmitted by widely distributed neuromodulatory
projections. This provides a functional interpreta-
tion for the well-known widespread distribution of
neuromaodulatory  noradrenergic,  seroloninergic,
cholinergic, and dopaminergic projections to the
cortex, although many of these systems may of
course be implicated in non-reward-related global
modulation functions such as arousal. Second, the
above-described reward mechanism leads 1o beha-
vioral adaptation on a slow time scale; due to the
necessity of small and widespread cumulative
synaptic modifications, learning typically takes
hundreds to thousands of trials. Thus, this mecha-
nism is compatible with the time scale of operant
conditioning procedures in animals, but less so with
the fast behavioral adaptation seen in humans and
several other anmimal species. Further below we
propose another mechanism for such fast reward-
dependent adaptation.

Anticipation of reward

A second aspect of reward processing which has
been found useful in neural network models 15 the
anticipation of reward, also called ‘value predic-
tion” (Friston et al., 1994; Sutton and Barto, 1998),
‘reward expectation’ (Schultz et al.. 1997) or “aulo-
evaluation” (Dehaene and Changeux, 1991). In
many environments, rewards are often infrequent;
for instance, for a predator, the reward of eating the
prey comes after a long non-rewarded chase.
Likewise, for the backgammon player, the ultimate
reward, winning the game, only comes after a long
series of trials whose value remains uncertain until
the very end. To circumvent this problem, theorists
have shown that it is useful to incorporate an
internal mechanism of reward prediction which
anticipates on future external rewards. The output
of this reward expeciation system, rather than the
actual external reward itself, is then used 1o direct
adaptative behavioral changes. Possessing such an
auto-evaluation loop is advaniageous because it
speeds up learning and partially solves the credit-
assignment problem since each action can be
immediately associated with an . increase or



decrease in the probability of subsequent rewards
( Sutton and Barto, 1998). Most importantly, it gives
the organism access to an internal mode of *‘mental
simulation” in which various courses of action can
be evaluated without taking the risk of trying them
out on the external world (Dehaene and Changeux,
1991, 1997).

Schultz and his collaborators (Schultz et al.,
1993, 1997} have suggested that a circuit involving
dopaminergic neurons in the ventral tegmental area
and substantia nigra implemenis the expectation of
rewards. Dopaminergic neurons normally fire in
response to various appetitive stimuli such as food,
but in the course of learning they can also become
responsive Lo stimuli such as a light or a tone, that
are not themselves primary rewards, but that
reliably signal subsequent reward delivery. Mon-
tague and colleagues (Montague et al., 1996;
Schultiz et al., 1997) have suggesied that the
characteristics of this reward expectation property
can be captured by a theoretical model of reinforce-
ment learning, the temporal-difference (TD)
algorithm, which was originally developed for
computer-science purposes by Barto and Sutton
(see Sutton and Barto, 1998). Currently, this
specific theory, which interprets dopamine signals
as indicating deviation from anticipated reward,
remains coniroversial (see e.g. Pennartz, 1995;
Redgrave et al., 1999; Spanagel and Weiss, 1999).
Yet more generally, there is no doubt that the
nervous system incorporates auto-evaluation mech-
anisms, which are at least reflected in, if not
causally related to, the firing properties of dopami-
nergic neurcns as well as cortical prefrontal and
parietal neurons (e.g. Watanabe, 1996, Platt and
Glimcher, 1999).

Selection of an appropriate decision

A third use of reward signals is in the direct conirol
of neural activity. It is often necessary for an
organism to react immediately to the occurrence of
a positive or negative reward; for instance, a bee
which evaluates the potential reward value of
several flowers must rapidly decide in favour of one
or the other (Montague et al., 1995). The synaptic
modification mechanisms discussed earlier in this
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section are too slow to support such fast, reward-
based decision: hence. neural networks meodels
have also incorporated additional hypotheses about
how rewards lead to explicit changes in on-line
behavior. In many cases, no explicit biological
mechanism has been proposed for this important
function of reward systems. For instance, in the
work of Montague and colleagues (Montague et al.,
199, 1996; Schultz et al., 1997), an unspecified
‘action selection” mechanism is posmlated to lead
the simulated organism to select the action which is
associated with the greatest expected reward.

Our models include an implementation and
simulation of an elementary mechanism of decision
selection guided by an auto-evaluated reward
(Dehaene and Changeux, 1989, 1991, 1993, 1997;
Dehaene et al., 1998) (see Fig. 1). In these models,
prefrontal connectivity is modeled at a coarse level
by postulating that various clusters of prefrontal
neurons, with a high level of spontaneous activity,
encode a repertoire of rules whose activation
modulates a lower-level sensori-motor network.
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Fig. 1. Theoretical mechanism for the cellular and molecular
implementation of a rewand-dependent change in neuronal
activity associated with decision making. Clusters of neurons in
prefrontal cortex maintain a long-lasting activity through self-
sustaining recurrent connections (top). The efficacy of those
connections is assumed t© be submitted o rewand-dependent
desensitization. thus allowing for a rapid change of activity
following emors. One plausible molecular mechanism assumes
a fast transition of posisynaptic receptor molecules 0 a
desensitized state when a conjunction of a reward signal and a
recent activation signal is present (bottom) (redrown from
Dehaene and Changeux., 1991 ).
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Clusters are postulated to have a strong recurrent
connectivity which implies that, although mathe-
matically their activity can wvary continuously
anywhere between 0 and 1, they have two stable
modes of activity: one in which the cluster is
inactive (activity close to zero), and the other in
which activity remains at a high level for a
prolonged period (activity close to 1). Once
activated, clusters can therefore remain in a state of
self-sustained activation for a long duration through
their local reverberating circuitry.

Action selection is implemented by a destabiliza-
tion mechanism. Negative reinforcement, when
impacting on an excitatory synapse between two
currently active neurons, is assumed to cause a fast
synaptic desensitization with a time scale of a few
tens of milliseconds; later, the synapse sponta-
neously recovers its original strength with a slower
time scale of a few seconds (for mathematical
implementations of corresponding updating rules,
see e.g. Dehaene and Changeux, 1989, 1991,
1997). The net result of this mechanism is that
whenever negative reinforcement is received, recur-
rent connections within the currently active cluster
rapidly decrease in strength, thus depriving the
neurons in this cluster of their self-sustaining
recurrent inputs. Once the cluster has lost most of
its reverberating support, its activity vanishes, thus
releasing the neighboring clusters from lateral
inhibition. Spontaneous activity can then vary
again from one cluster to another, giving the
organism the chance to try out a different beha-
vioral option; thus, reward signals function as
effective selection signals that either maintain or
suppress currently active prefrontal representations
as a function of their current adequacy. Note that a
limit of our approach is that no attempt is made
here to solve the temporal credit-assignment prob-
lem; for simplicity, we merely assume that, in order
to be selected, the prefrontal representation must
still be active at the time when reward is received.

At the molecular level, the reward signal is
postulated to be a neurotransmitter such as dopa-
mine, acetylcholine or a coexisting messenger
exerting a global modulatory action either via
volume transmission or via targeted synaptic triads.
Although most models of synaptic modification are
based on the coincidence-detection properties of

the NMDA glutamate receptor, our own tentative
molecular mechanism for how a reward signal is
used in decision selection is based on the known
allosteric properties of a large body of non-NMDA
receptor molecules, the archetype of which is the
nicotinic acetylcholine receptor (Changeux, 1981).
The latter can exist under four different states
accessible via discrete conformational transitions: a
resting, activatable state (with ion channel closed),
an active state (ion channel open), and two
desensitized states, respectively with fast (- 100
ms) and slow (seconds) dynamics, in which the ion
channel is closed.

Our proposed mechanism (Fig. 1) assumes that
fast synaptic depression can be achieved through a
desensitization reaction, in which postsynaptic
receptor molecules switch to a desensitized state.
We assume that the desensitisation reaction is
enhanced by the co-occurrence of two signals
converging on the same postsynaptic receptor
molecules. The first one, endogenous to the post-
synaptic cell, signals the recent activation of the
synapse; this role may be assumed, for instance, by
the high local intracellular concentration of calcium
or a high extracellular concentration of neuro-
transmitter or of co-existing messengers. The
second signal, diffused to all synapses throughout
the relevant network, indicates a recent negative
reward. Such gating of synaptic modifications by
reward may be achieved for instance by diffuse
neuromodulatory  projections  of catecholamine
neurons from the mesencephalon to the prefrontal
cortex. The simultaneous reception of these two
comverging signals would trigger a conformational
change of receptor molecules into a state where the
ion channel is closed, and thus the synapse
depressed; recovery by the reverse reaction would
occur on the 0.1-1 s. time scale.

This scheme is made more plausible by the
observation that dopaminergic inputs to prefrontal
cortex participate in “synaptic triads’ (Williams and
Goldman-Rakic, 1993) : many of them are pre-
cisely targeted to dendritic spines on which a
glutamatergic synapse from another prefrontal
neuron is already present, thus putting them in an
ideal position to modulate the efficacy of cortico-
cortical excitatory connections between prefrontal
neurons as required by the model.



Applications to frontal cortex tasks

Simulations of this variation-selection scheme have
successfully accounted for the main features of
several tasks that depend on prefrontal coriex
integrity in humans, such as the Wisconsin card
sorting test (Dehaene and Changeux, 1991), the
Tower of London test (Dehaene and Changeux,
1997) and the Stroop test (Dehaene et al., 1998).
We consider these in mrn.

A simple example: the Wisconsin Card Sorting test

A classical test of prefrontal cortex in humans,
which directly involves reward processing, is the
Wisconsin card sorting test. In this task, subjects
are required to infer a rule according to which they
have to sort cards; feedback from the experimenter
takes the form of a simple positive or negative
reward (comrect or incorrect). A simple neural
network simulation that passes this test has been
proposed (Dehaene and Changeux, 1991; see also
Levine and Prueitt, 1989). The global architecture
of our network (Fig. 2) comprises two distinct
levels of organization : a low level (level 1) that

reward
rule-coding
clusters
colbor
error
form A cluster
memory
ation
\tentmn
—
i gﬂ
input % i output

Fig. 2. Architecture of a neural network passing the Wisconsin
card sorting test of prefrontal function (see text for details:
adapted from Dehaene and Changeux, 1991},
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governs the orientation of the organism toward an
object with a defined feature and would correspond
to a visuo-motor loop including visual areas and the
premotor cortex, and a high level (level 2) that
controls the behavioral task according to a memory
rule and would be homologous to the prefrontal
cortex or closely related areas.

A key feature of the model is that level 2
contains a particular category of cluster of neurons,
referred to as rule-coding clusters, each of which
code for a single dimension (position, colour,
shape. . ) of the environment. Their connectivity is
hierarchically organized in such a way that a rule-
coding cluster globally regulates the efficacy of
bundles of connections involved in the processing
of particular features of the environment. For
instance, the rule-coding cluster coding for *sorting
by color’ selectively gates all connections asso-
ciated with the processing of color information.

During the acquisition step, the layer of rule
coding neurons is assumed to play the role of a
generator of diversity; according to the above-
described mechanism, the rule-coding clusters
activate spontaneously, but because of lateral
inhibition, only one cluster is active at a time. As
long as negative reward is received, indicating that
the correct rule has not been found, the activity of
rule-coding clusier keeps changing at random with
time in such a way that the organism is able to
successively test different sorting rules upon its
environment. In other words, a search by trial and
error takes place, until a positive reward is received;
then, the particular cluster active at this precise
moment is selected. While this model is admittedly
very simple - the range of available rules being
quite limited and hardwired — it is able to pass the
test, to successfully reproduce the behavior of
normal subjects, and to fail in a manner similar to
prefrontal patients if the frontal or reward units of
the model are lesioned or removed.,

In the course of the modelling of the Wisconsin
card sorting task, we found it useful to introduce an
auto-evaluation loop which, as described above,
can shori-circuit the reward input from the exterior.
It allows for an internal evaluation of covert motor
intentions without actualizing them as behaviors
but by testing them by comparison with memorized
former experiences. This element of architecture,
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Fig. 3. Architecture of a neural network passing the Tower of London test of prefrontal function. The left column shows a hierarchy
of neural networks (the “ascending evaluation svstem’ ) that compute an estimate of distance between the cumrent state and the goal
state. This system culminates in the delivery of reward and motivation signal. based on an internal evaluation of whether the distance
to the goal has been recently increasing or decreasing. Those signals are used by a second hierarchy of newral nevworks (the
‘descending planning system’) that generates a tentative plan for solving the problem. with increasingly more refined details of the
motor program being specified at lower levels (adapted from Dehaene and Changeux. 1997).

analogous in spirit to the ‘adaptive critic” of Barton
and Sutton's reinforcement learning models (Sutton
and Barto, 1998), gives access to enhanced rates of
learning via an elementary process of internal or
covert mental simulation. Sill, the ‘mental experi-
ments’ authorized by this auto-evaluation loop are
rather simple; for a more complex behavioral
paradigm where the above neural architectural
principles can be applied, we now turn to another
classical test of prefrontal function, the Tower of
London.

A more complex example: the Tower of London
test

The Tower of London test (Shallice, 1982) is
derived from the classical Tower of Hanoi test; it
consists of moving three coloured beads, mounted
on vertical rods of unequal length, from an initial
position to a pre-specified goal. Patients with
prefrontal cortex lesions experience difficulties in

achieving a coherent solution. Solving the problem
calls for mentally planning, by trial and emor, a
series of moves that successively brings all of the
beads to their desired location; we recently devel-
oped a network model that implements this
planning process {Dehaene and Changeux, 1997)
isee Fig. 3). The key elements of the Wisconsin
model were used. First, the model spontaneously
generates tentative solutions to the problem at hand
in a top-down, projective manner; second, such
‘generation of diversity’ occurs at multiple hierar-
chical levels: third, auto-evaluation is used to
evaluate whether each tentative move brings the
problem closer to a solution or not, and the
unfolding plan is amended or accepted through
selection by an internal reward system.

The model is divided into two main components:
a descending planning system and an ascending
evaluation system; in the descending planning
system, the current plan unfolds internally at each
of three hierarchical levels: plans, operations and



gestures. Activation of plan units causes a series of
activations at the lower operation level, with a
fringe of variability; each activation of an operation
unit in turn causes the sequential activation of two
units at the lower gesture level, one for pointing to
a bead and another to point to its new location.
Hence, the descending planning system generates a
variable, ‘embedded’ hierarchical sequence of
internal moves. In essence, this system can be
considered as a hierarchical version of the ‘gen-
erator of diversity’ used in the Wisconsin card
sorting simulation.

The sequence of moves, however, is not entirely
random, but is limited by consiraints provided by
the ascending evaluation system, a hierarchical
system of areas that culminates, as in the Wisconsin
card sorting model, in an auto-evaluated anticipa-
tion of reward. Based on the given of an initial state
and a goal state, this sysiem computes which beads
are movable, which subgoals (misplaced beads)
remain to be solved, and which subgoals can be
directly fulfilled. When a bead can be placed
directly at its final location, the corresponding
operation is activated and executed immediately,
without calling for plan unit activation. Only if no
such move is available are plan units needed to
activate the operation units and thus to generate a
tentative move.

As in the Wisconsin card sorting model, a key
element of the network is the internal reward
system; in the Tower of London test, no external
feedback is received at all about the correciness of
tentative moves. In our model, reward units are now
exclusively activated by an internal auto-evaluation
loop: the total activation of remaining goal units is
used to compute an internal estimate of distance to
the goal: when this total activation decreases, it
means that the last move brought the problem
closer to a solution. Hence, in our network, the
temporal derivative of total remaining goal unit
activity is used to activate reward umits. In the
current simulation, we found it important to
introduce separate units for positive or negative
rewards (respectively activated by decreasing and
by increasing total goal unit activation) and for
motivation (activated whenever at least one remain-
ing goal unit is active). All three units map onto
plan units, but with slightly different connectivity
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patterns. While the motivation unit indiscriminately
activates all plan units, thus ‘tumning on the
generator of diversity’, the positive and negative
reward units are preferentially connected respec-
tively to plan units that either validate the previous
move and store it in working memory, or reject it
and return to a previous memorized state. The net
result is that tentative moves, generated semi-
randomly by the descending planning system, are
either maintained or rejected depending on whether
the ascending evaluation system judges that the
distance to the goal has decreased or increased.

When presented with Tower of London prob-
lems, the model generates solutions in a manner
remarkably similar to normal subjects; in partic-
ular, it shows a gradient of difficulty similar to
humans. Simple problems that call only for one,
two or three direct moves are solved without trial-
and-error. For more difficult problems, the nerwork
generates a complex internal sequence of trial-and-
error that often rapidly converges to a valid solution
{in less than 1000 update cycles or approximately
20 attempted moves, perhaps equivalent to about 30
seconds of reflection in humans). Measurement of
the network’s error rates and solution times indicate
a close maich to data from normal human subjects.
When plan or reward units are deteriorated in the
simulation, however, the resolution of complex
problems becomes selectively  impaired, as
observed in actual experiments with prefrontal
patients; the lesioned networks generate random
trajectories that wander aimlessly in problem space.
Their planning deficit can be atiributed to an
inability to guide the selection of motor operations
by an internal evaluation of their relevance to
reaching the goal, a characterization which also
applies to human frontal patients.

The model makes several novel behavioral,
neuropsychological and physiological predictions
for experiments; most important in the present
context is the role of internal reward systems in
guiding the reasoning process. Diffuse catechola-
minergic projection systems are predicted to be
active and to play an important role in problem
solving. Lesions of dopaminergic neurones may be
simulated in the model by removing the reward
units, while alterations of dopamine action on its
receptors and/or related signal transduction mecha-



nisms may be mimicked by altering the parameters
determining the impact of reward units on plan
units. In both cases, a severe planning deficit
similar to that caused by plan unit lesions is
observed, in good agreement with the deficits of
Parkinsonian patients in the Tower of London test
(Morris et al., 1988; Owen et al_, 1992, 19935).

A general scheme for effortful tasks: the
workspace model

We have recently extended these ideas and pro-
posed a generalized model for the interaction
between prefrontal cortex, reward systems, and the
execution of effortful tasks (Dehaene et al., 1998).
This model, which we call the workspace model,
can be viewed as a generalization of the above
models. It distinguishes two main computational
spaces within the human brain (see Fig. 4) a
unique global workspace composed of distributed
and heavily interconnected neuwrons with long-
range axons, and a set of specialized and modular

Evaluative
Systems
(VALUE

ET LU T T iy

L]
OIS

| Workspace ¢
DR LYK

R

------ systams
(FUTURE

\ > ,
Vit ,:! Global 15%_
» I

perceptual, motor, memory, evaluative and atten-
tional processors. We hypothesize that routine tasks
that can be executed automatically, and without
paying attention, are handled by specialized cir-
cuitry in the modular processors. Workspace
neurons, however, are necessary for non-automa-
tized effortful tasks for which the specialized
processors do not suffice. They selectively mobilize
or suppress, through descending connections, the
contribution of specific processor neurons 50 as Lo
implement, on the fly, operations that are not
possible in the default configuration of processors.
Hence, the processors and workspace levels corre-
spond roughly to the two hierarchical levels of
neural processing that were introduced in the
Wisconsin model, as described above,

In order to perform the required interconnection
of multiple modular processors distributed through-
out the brain, workspace neurons must be
characterized by their ability to receive from and
send back to homologous neurons in other cortical
areas horizontal projections through long-range

Fig. 4. Schematic representation of the five main types of neural processors connected to the global workspace (adapted from Dehaene

et al.. 19498).



excitatory axons (which may impinge on either
excitatory or inhibitory neurons). Our view is that
this population of neurons does not belong to a
distinct set of ‘cardinal’ brain areas, but rather, is
distributed among brain areas in variable propor-
tions. It is known that long-range cortico-cortical
tangential connections, including callosal connec-
tions, mostly originate from the pyramidal cells of
layers 2 and 3, which give or receive the so-called
‘association’ efferents and afferents. We therefore
propose that the extent to which a given brain area
contributes to the global workspace would be
simply related to the fraction of its pyramidal
neurons contributing to layers 2 and 3, which is
particularly elevated in von Economo's type 2
(dorsolateral prefrontal) and type 3 (inferior parie-
tal) cortical structures.

We also postulate that workspace neurons are the
specific targets of reward and vigilance signals that
both modulate workspace activity; we use the same
basic mechanism as above. In the course of task
performance, workspace neurons become sponia-
neously co-activated, forming discrete though
variable spatio-temporal patterns; those patterns are
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subject to modulation by a vigilance signal and to
selection by a reward signal. The vigilance signal,
analogous to the motivation unit of the Tower of
London model, is postulated to have a gating effect
on workspace unit activity. Thus, higher vigilance
tends to activate workspace units, thus leading to
greater spontaneous activation (see equations in
(Dehaene et al., 1998)). The reward signal is
identical to that used in the above simulations and
serves a selection function: among the sponta-
neously activated workspace patterns, those that are
associated with negative rewards are selectively
eliminated. Note that the two systems are coupled,
since the reward system is postulated 1o activate the
vigilance system.

We have applied these principles to another well-
known test of frontal function, the Stroop test
(Dehaene et al., 1998) (see Fig. 5). This test
comprises both an easy task (naming a color word)
and a difficult task (naming the color of the ink in
which a word is printed, when the word itself is the
name of an incompatible color; e.g. saying ‘blue’
when seeing the word “green’ printed in blue ink).
Like other previous simulations {Cohen et al.,
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Fig. 5. Architecture of a neural network simulating effortful processing during the Stroop task (adapted from Dehaene et al.. 1998),
Three processors are simulated: perception of ink color. identification of written words. and spoken word production. All processors
are connected bi-directionally to a large number of workspace neurons. themselves under the control of reward and vigilance signals.
The appropriate state of workspace neuron activity. which is discovered by reward-dependent leaming. allows the system to selectively
amplify ink color information, which is then passed on to the word production system for naming.
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1990; Kimberg and Farah, 1993), our model
postulates that word naming is more automatized
than color naming and is therefore the default
processing strategy when words are presented. We
therefore set up the processor connectivity with two
input systems {one for color perception, the other
for word recognition), one output system (for word
production), and stronger connectivity between
word perception and word production than between
color perception and word production. All three
processors were semi-randomly connected bidirec-
tionally with a large set of workspace units.

The computer simulation showed that this model
easily passed the easy word naming task, without
needing to activate any workspace units. When the
model was switched to the more difficult Stroop
task, workspace activation initially increased dur-
ing a search phase in which acquisition of the task
was accompanied by an intense and highly variable
activation of workspace units, This search phase
ended when a workspace activation pattern was
found which led to successful performance of the
task. This pattern was characterized by a specific
connectivity with processor units: the active work-
space units tended to amplify the color perception
and word production processor units, while de-
activating the word perception units. The search
phase was followed by an effortful execution phase,
during which the workspace remained in a stable
state of high activity; progressively, vigilance
decreased as the task became routinized and
transferred, through synaptic modifications, to the
processor units and their interconnections. Follow-
ing routinization, workspace activation was no
longer needed for correct performance; but the
workspace units reactivated sharply each time the
network made an error.

The five observed stages — effortless execution of
routine tasks; initial search during non-routine
tasks; effortful execution with concomitant distant
amplification or deactivation; progressive routini-
zation; and error activation — are generic properties
of the workspace model. They are therefore
expected to characterize the activation of work-
space meurons in various tasks other than the
Stroop. Brain-imaging experiments indicate that
dorsolateral prefrontal cortex (dIPFC) and anterior
cingulate (AC) possess these properties. Both are

active in effortful cognitive tasks, including the
Stroop test, with a graded level of activation as a
function of task difficulty (Pardo et al, 1990;
Cohen et al., 1997; Paus et al, 1998). With
automatization, activation decreases in dIPFC and
AC, but it immediately recovers if a novel, non-
routine situation occurs (Raichle et al,, 1994). AC
activates in tight synchrony with subjects’ errors
{Dehaene et al., 1994; Niki and Watanabe, 1979;
Carter et al., 1998). In the Wisconsin card sorting
test, dIPFC activates when subjects have to search
for a mew sorting rule (Konishi et al., 1998).
Finally, concomitant to dIPFC and AC activation, a
selective attentional amplification is seen in rele-
vant posterior areas during focused-attention tasks
{Corbetta et al., 1991; Posner and Dehaene, 1994,

Summary and key predictions

Neural network models are only useful if they lead
to empirical predictions, It is therefore natural that
we end this chapter with a summary of the most
important predicions made by our modeling
approach. Although our proposed models do not
incorporate highly detailed information about the
known cortical connectivity, they are ‘neurc-real-
istic’ in that they respect the main principles of
brain architecture, and are therefore empirically
testable. Here, we outline only three key predic-
Lons.

1. Anticipations of rewards are computed inter-
nally  and play an important role in
decision-making during cognitive tasks.  This pre-
diction can be tested both by brain imaging
methods and by the lesion method. Regions known
to be involved in reward processing, such as the
orbitofrontal and dopaminergic areas, should be
activated at precise times during the decision
making process, whenever an internal evaluation is
called for (for instance when errors or impasses are
reached, or when attempting to predict the outcome
of a given plan), Furthermore, patients with lesions
affecting those systems should exhibit impaired
decision making (see e.g. Eslinger and Damasio,
1985; Damasio, 1994).

2. Reward inputs have a fast modulatory influence
on prefrontal cortex activity, To be efficient in



selecting an appropriate behavioral program,
rewards should quickly affect prefrontal firing. This
modulatory effect should have a fast onset {on a
time scale of a few tens of milliseconds) and a
duration that may vary from very short (a few
hundreds of milliseconds or less) to long (seconds
or minutes) depending on the time needed to
discover an alternative program. This prediction,
which should be tested by electrophysiological
methods, also implies that a specific pattern of
connectivity exists between reward systems and
prefrontal neurons. As noted above, the observation
that dopaminergic synapses to prefrontal pyramidal
cells are often targeted to dendritic spines that
already receive glutamatergic synapses from other
neighboring neurons, thus forming synaptic triads
{Williams and Goldman-Rakic, 1993), may provide
the appropriate connectivity for this fast mod-
ulatory function,

3. Dorsolateral prefrontal cortex and anterior
cingulate enter into an active search mode when a
novel task is introduced or when errors are
detected.  Support for this hypothesis has recently
been obtained with the observation of activation of
these structures during error processing (Miki and
Watanabe, 1979; Dehaene et al_, 1994 Carter et al.,
1998) and, most strikingly, during the search phase
of the Wisconsin card sorting test (Konishi er al.,
1998).

Summary

Meuronal network models have been proposed for
the organization of evaluation and decision pro-
cesses in prefrontal circuitry and their putative
neuronal and molecular bases. The models all
include an implementation and simulation of an
elementary reward mechanism. Their central
hypothesis is that tentative rules of behavior, which
are coded by clusters of active neurons in prefrontal
cortex, are selected or rejected based on an
evaluation by this reward signal. which may be
conveyed, for instance, by the mesencephalic
dopaminergic neurons with which the prefrontal
cortex is densely interconnected. At the molecular
level, the reward signal is postulated to be a
neurotransmitter such as dopamine, which exerts a
global modulatory action on prefrontal synaptic
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efficacies, either via volume transmission or via
targeted synaptic triads. Megative reinforcement
has the effect of destabilizing the currently active
rule-coding clusters; subsequently, spontaneous
activity varies again from one cluster to another,
giving the organism the chance to discover and
learn a new rule. Thus, reward signals function as
effective selection signals that either maintain or
suppress currently active prefrontal representations
as a function of their current adequacy.

Simulations of this variation-selection have suc-
cessfully accounted for the main features of several
major tasks that depend on prefrontal cortex
integrity, such as the delayed-response test, the
Wisconsin card sorting test, the Tower of London
test and the Stroop test. For the more complex
tasks, we have found it necessary to supplement the
external reward input with a second mechanism
that supplies an internal reward; it consists of an
auto-evaluation loop which short-circuits  the
reward input from the exterior. This allows for an
internal evaluation of covert motor intentions
without actualizing them as behaviors, by simply
testing them covertly by comparison with memo-
rized former experiences. This element of
architecture gives access to enhanced rates of
learning via an elementary process of internal or
covert mental simulation.

We have recently applied these ideas to a new
model, developed with M. Kerszberg, which
hypothesizes that prefrontal cortex and its reward-
related comnections contribute  crucially  to
conscious effortful tasks. This model distinguishes
two main computational spaces within the human
brain : a unique global workspace composed of
distributed and heavily interconnected neurons with
long-range axons, and a set of specialized and
modular perceptual, motor, memory, evaluative and
attentional processors. We postulate that workspace
neurons are mobilized in effortful tasks for which
the specialized processors do not suffice; they
selectively mobilize or suppress, through descend-
ing connections, the confribution of specific
processor neurons. In the course of task perform-
ance, workspace neurons become spontaneously
co-activated, forming discrete though variable spa-
tio-temporal patterns subject to modulation by
vigilance signals and to selection by reward signals.
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A computer simulation of the Stroop task shows
workspace activation to increase during acquisition
of a novel task, effortful execution, and after errors.
This model makes predictions concerning the
spatic-temporal activation patterns during brain
imaging of cognitive tasks, particularly concerning
the conditions of activation of dersolateral pre-
frontal cortex and anterior cingulate, their relation
to reward mechanisms, and their specific reaction
during error processing.
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