The Wisconsin Card Sorting Test:
Theoretical Analysis and Modeling
in @ Neuronal Network

Neuropsychologists commonly use the Wisconsin Card
Sorting Test as a test of the integrity of frontal lobe
functions. However, an account of its range of validity
and of the neuronal mechanisms involved is lacking. We
analyze the test at 3 different levels. First, the different
versions of the test are described, and the results ob-
tained with normal subjects and brain-lesioned patients
are reviewed. Second, a computational analysis is used
to reveal what algorithms may pass the test, and to
predict their respective performances. At this stage, 3
cognitive compenents are isolated that may critically
contribute to performance: the ahility to change the
current rule when negative reward occurs, the capacity
to memorize previously tested rules in order to avoid
testing them twice, and the possibility of rejecting some
rules a priori by reasoning, Third, a model neuronal
network embodying these 3 components is described.
The coding units are clusters of neurons organized in
layers, or assemblies. A sensorimotor loop enables the
network to sort the input cards according to several
criteria (color, form, ete.). A higher-level assembly of
rule-coding clusters codes for the currently tested rule,
which shifts when negative reward is received. Internal
testing of the possible rules, analogous to a reasoning
process, also occurs, by means of an endogenous auto-
evaluation loop. When lesioned, the model reproduces
the behavior of frontal lobe patients. Plausible biological
or molecular implementations are presented for several
of its components.
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Studies of the frontal cortex have benefited, in past
years, from the concened efforts of neuropsycholo-
gists (Luria, 1968; Shallice, 1982, 1988; Stuss and Ben.
son, 1988; Damasio et al, 1990) and neurobiologists
{Goldman-Rakic, 1987, 1988; Fuster, 1989) 10 an ex.
tent that justifies the elaboration of plausible models
for the neural bases of specific frontal cortex functions
(e.g., Dehaene and Changeux, 1989; Levine and
Prueitt, 1989). Recently, we proposed a simple neural
network that accounts for the contribution of frontal
cortex in delayed.response tasks (Dehaene and Chan-
geux, 1989). The present paper extends this initial
model 1o a more complex, vet classical, psychological
rask tapping frontal cortex: the Wisconsin Card Sort-
ing Test. We tackle the problem through 3 convergent
modes of analysis. First, we briefly review the exper-
imenal findings in normal subjects and brain-le-
sioned patients. Then, using a compurational analysis,
we identify cognitive components required for an ar-
tificial machine 1o pass the test. Finally, we describe
how these components can be implemented within
a plausible neuronal architecture.

Description of the Test
The Wisconsin Card Sorting Test (Grant and Berg,
1948) requires subjects to discover the principle ac-
cording to which a deck of cards must be sorted. The
standard material consists of cards bearing geometric
figures that vary in color (red, green, blue, or yellow),
shape (triangle, star, cross, or circle) and number (1,
2,3, or 4 items). Four reference cards, shown in Figure
1, are aligned in front of the subject throughout the
test. Another deck of cards serves as response cards.
The subject is instructed 1o place each response card
in front of 1 of the 4 reference cards, wherever he
thinks it should go. After each response, he is told
whether the response was “right”’ or “wrong,” but not
where the card should have gone. The goal for the
subject is to getas many “right" responses as possible.
Initially, cards must be sorted according to, say, color.
When performance is successful, the sorting rule is
changed, for example from color to shape; the subject
must notice the change and find the new correct rule.
Neuropsychologists commonly employ 2 versions
of the test that differ only in details. In Milner's (1963)
original test, 2 decks of all possible 64 cards are used
as response cards. The criterion for a change of rule
is 10 successes in a row. The subject is not told when
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the rule changes. The test ends either when the sub-
ject has reached & criteria, namely color, shape, num-
ber, color, shape, number, or when all 128 cards have
been used.

Nelson (1976) introduced a number of modifica-
tions to the test,

(1) Among the 64 cards of a complete deck, 40 are
ambigucus because 2 or more of their anributes are
shared with the same reference card. For example,
the card with two red triangles is similar to the first
reference card in both color and shape. Such cards
are ambiguous both for the experimenter, who cannot
infer which rule the subject is following, and for the
subject, who cannot determine for which rule he was
reinforced. Nelson eliminated those 40 cards and used
only the 24 cards that shared only one attribute with
each of the reference cards. Each card is used rwice,
for a total of 48 cards in the response deck.

(2) Melson’s version employs a criterion of only 6
successes in a row before the rule is changed.

{3) The subject is warned before each change of
rules.

(4} Finally, the correct rules are not defined a priori
by the experimenter, Rather, for the first trial, which-
ever sorting strategy the patient uses is considered
correct. Subsequently, whichever new strategy is em-
ploved defines the second rule. The third rule is de-
termined in the same way. The 3 rules are then re-
peated in the same order.

Performance of Normal and Lesioned Subjects
Milner (1963}, Drewe (1974), and Nelson (1976) have
examined the performance of normal subjects and of
patients with different lesion types. Their observa-
tions are summarized below,

Normal subjects versus patients. As expected, nor-
mal subjects generally obtain more success criteria
than lesioned subjects, regardless of lesion site,

Global performance level is not discriminative.
Many normal subjects fail 1o complete the test. For
example, in Nelson's (1976} study, 6.5% of normal
subjects learned only 1 rule correctly out of the 6 that
the full test comprises. Age is a good predictor of
success or fallure, so the oldest nonfrontal patients
make approximately as many errors as the frontal ones.
Hence, frontal and nonfrontal old patients cannot be
reliably separated on the basis of the number of learned
rules, or of the total number of errors.

Perseveration characterizes frontal patients. An
error is classified as perseverative if the subject con-
tinues to use a rule that was previously correct, even
after negative feedback is provided. Frontal patients
make significantly more perseverative errors than nor-
mal subjects or nonfrontal patients; they fail to shift
from one sorting rule to another.

Sites of disruptive lesions. Milner (1963) compared
pre- and postoperative performances in patients with
a dorsolateral frontal lobectomy, and found a signif-
icant postsurgery increase in perseveration. By con-

Cerebral Cortex Jan/Feb 1991,V 1 N 1 63



trast, no excessive perseverations were observed fol-
lowing temporal, bilateral hippocampal, or even
inferior fromal lobectomies. According o Drewe
(1974), medial fronral lesions may be even more dis-
ruptive than dorsolateral frontal lesions. Finally, left
frontal lesions generally yield more toral ercrors,
though not necessarily more perseverations, than right
frontal lesions (Drewe, 1974).

Drewe (1974} correctly emphasizes the “non-uni-
tary nature of the impairments shown" {p. 168). Sev-
eral factors probably contribute to the complexity of
the test. This complexity may be useful, ar even nec-
essary in order for the test to be sensitive o frontal
lesions. Yet it also impedes our comprehension of the
cognitive companents involved. In the following sec.
tion, we undertake a computational or functional
analysis of the components that are necessary in order
10 pass the test. We aim at beuer understanding the
"computational constrainis™ (Marr, 1982) that govern
performance: what are the minimal abilities required,
what rypes of performance are to be expected from a
given cognitive architecture, and whart are the pos-
sible sources of failure in the 1est?

A Functional Analysis of the Wisconsin Card

Sorting Test

Let pbe the number of dimensions (color, form, num-
ber, etc.) along which the cards may vary, and let g
be the number of features along each dimension {p
= 3, g = 4 for the standard test). There are thus g
reference cards defining the g possible responses, and
q® different response cards. We assume rthat 2 cog-
nitive system, C, is confronted with an infinite series
of response cards. For each card, Cselects a response
according to its curcent selection rule, receives a pos-
itive or negative reward, and decides to change its
current rule or not. Our goal is to calculate the mean
number of trials required for the system to converge
to the correct rule specified by the experimenter, as
a function of p, g, the version of the test used (Milner
or Nelson), and the architecture of ¢

The definition of the cognitive svstem € must spec-
ify the number and rype of available selection rules,
and the conditions for the rejection of the current
rule and the adoption of a new one.

Avatlable rules. Let rbe the wotal number of avail-
able rules. It is necessary that the p base rules that
define selection according to the p dimensions of the
cards (color, form, number, etc) be available; hence
r = p. The number r is not necessarily equal to p,
because the test instructions do not specify the set of
possible rules. A subject can envisage complex rules,
for example, “Choose whichever reference card is
most similar to the response card," or “Choose the
triangle if the response card is green, otherwise choose
the circle."” Obviously, it is not possible 1w listall such
rules. We shall only assume that the r — p additional
tules are Independent of the base rules and of each
other (2 rules are independent if the probabilicy that
they specify the same response 1o a given card, av-
eraged over all possible cards, is 1/g, l.e., at chance
level}. This assumption will generallv not be satisfied,
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especially for large r, but it may serve as a first-order
approximartion.

Conditions for changing the current rule. Initially,
the current rule is chosen at random. To ensure the
stability of the correct rule once it has been found, it
must be assumed that no change of current rule can
occur on positively reinforced trials. We further as-
sume thar on each trial, there is a probability, P, of
ignoring the reward. Thus, a new current rule is se-
lected only when the reward for the preceding trial
was negative and was not ignored.

Six different cognitive systems, or machines, may
be distinguished according to the manner in which
they select a new rule (Fig, 2). The first 3 are random
machines that simply draw a new rule at random from
the repertoire of available rules, without any reason-
ing. The simplest possible machine (random) draws
2 new rule with replacement of the preceding rule;
hence, there is a finite probability, 1/r, of not chang-
ing the rule at all. A second, more complex machine
(random + context) avoids drawing again the rule
that was just rejected. Finally the third machine (ran-
dom + memory) keeps an episodic memory* of pre-
viously rejected rules, and draws only among the re-
maining possible rules, thus progressively reducing
the possibilities.

The next 3 machines we consider have the faculty
of rejecting some rules not only by trial and error, but
also by reasoning. The reasoning is quite simple: on
a negatively reinforced trial, all the.rules that would
have led to the same (wrong) response are necessarily
incorrect. The fourth machine (reasoning, no mem-
ory) uses such reasening only locally in time: it avoids
choosing any such necessarily incorrect rule, but it
does not keep a memory of the rules that were re.
jected on previous trials, The fifth machine (reasoning
+ memory) keeps such an episodic memory. Hence,
rules that are rejected, either by trial and error or by
reasoning, are definitely labeled as incorrect and are
never tried again.

Finally, the sixth machine (optimal) guarantees
the shortest learning time. In addition to reasoning
on negative trials and memorizing rejected rules, it
also reasons on positive trials. In such trials, all the
rules that would not have led 1o the same response
are rejected as incorrect and memorized as such: they
will not be tried on later negative trials. Schematic
diagrams of the operation of the & machines appear
in Figure 2.

Theoretical Results
Given the above specifications, we mathematically de-
rived the mean number of trials before a given ma-
chine converges to the correct rule, for both Milner's
and Nelson's versions of the tests (an outline of the
calculations is provided in Appendix A). We then
calculated the mean test duration, i.e., the mean num-
ber of trials before 6 criteria are reached. If this mean
test duration is lower than 128 trials in Milner's ver-
sion, or 48 trials in Nelson's version, the machine can
be said to pass the test successfully.

Sensitivity of the test. Figure 3 gives plots of mean
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test duration as a function of machine tvpe and the
number of rules available in the repertoire, when the
reward is never ignored (P = 0). Note first that when
the repertoire contains only the 3 base rules, the per-
formances of the 6 machines are quite similar, and
even the most simple random machine passes the test
(though Nelson's version appears more selective).
Thus, we expect the test to be only weakly sensitive
to interindividual differences in memory or reasoning
abilities. This Is important for clinical purposes, be-
cause it allows the testing of subjects with a relatively
low level of education (Nelson, 1976). However, as
far as neuropsychological research is concerned, it
means that the test will not permit the discrimination
of subtle lesion types that would affect only one cog-

nitive component, for example, the reasoning process
or the episodic memory for previously rejected rules.

Influence of repertoire size. As shown in Figure 3,
performance in the test is highly dependent on the
total number of available rules (parameter #). The
formal analysis thus suggests that an important source
of Intersubject variability is the range of rules that a
given subject will consider. The reliability of the test
might be improved by explicitly instructing the sub-
jects that only 3 sorting rules—color, form, and num-
ber—are possible.

Cognitive architecture and the combinatorial ex-
plosion, Most machines cannot handle a large number
of rules and still pass the test; the random search for
the correct rule rapidly becomes oo slow if the search
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Test. The farlonval fioe gives the upper limit for success in she Lest,

space is large. However, not all machines are equally
sensitive to this effect. In particular, the rmo machines
that possess both episodic memory and reasoning
abilities are able 10 reduce seriously the combinato-
rial explosion. For them, mean test duration increases
only logarithmically, not linearly, with the number of
rules.

Importance of correct reward processing. How does
performance evolve when the probability of ignoring
reward is not 0F The effect of this variable is shown
in Figure 4. Ignoring reward on some trials yields a
dramatic increase in the mean test duration. The in-
crease s similar in nature for all 6 machines. The data
in Figure 4 correspond to machines mastering only
the 3 base rules. Of course, the increase would be
even more important for machines using a large num-
ber of rules.

Sources of failure in the test. Figures 3 and 4 show
that there are essentially 2 sources of failure in the
test. A subject may fail either because he/she is eval-
uating too many rules, or because he/she neglects
the reward signal. The existence of these 2 sources
can readily explain the paradoxical result that many
normal subjects fail to reach the required number of
criteria in the test. Normal subjects probably fail for
the first reason, while frontal patients probably fail
for the second one. Note that both types of failures,
although confounded by total test duration or total
number of errors, can be distinguished by a trial-by-
trial examination of performance. Subjects that imag-
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ine overly complex rules will appear 1o perform or-
thogonally to the 3 base rules, and in particular will
make errors inconsistent altogether with the color,
form, and number criteria (out-of-class errors). Sub-
jects that tend o ignore the reward will make more
NUmMercus perseverative errors, continuing to use a
rule after it has been shown to be incorrect. Consis-
tent with this analysis, Nelson (1978} argued that the
percentage of perseverative errors discriminates fron.
tal patients from others better than the rotal number
of errors or the number of criterla reached does.

According to this account, the main effect of frontal
lesions would be to disrupt the appropriate integra-
tion of reward signals into a purposive behavior. In
addition, however, one need not assume that the ma-
chine type describing a given patient remains invari-
ant following a lesion. Lesions may alter not only the
parameters of any given machine (i.e., the number of
rules and the probability of ignoring reward), but also
the machine type itself, by disrupting reasoning abil-
ities, for example. Such qualitative alterations of pro-
cessing may not be identifiable using the Wisconsin
Card Sorting Test alone (see Sensitivity of the test,
above), but they may worsen the deficit observed. This
point will be further discussed below.

Conclusions of the Functional Analysis

The funcrional analysis has isolated at least 3 cogni-
tive components involved in the Wisconsin Card Sort-
ing Test: the ability to change the current rule rapidly
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when a negative reward occurs, the ability 10 mem.
orize previously tested rules and to avoid testing them
twice, and the ability to reject some rules a priori by
reasoning on the possible outcomes of using one rule
or the other. It has often been proposed that the fron-
tal cortex is involved in these 3 functions, so it is
perhaps not surprising that the Wisconsin Card Sort-
ing Test is so sensitive to frontal damage. On the other
hand, our analysis suggests that only ability 1—cor-
rect processing of negative rewards—{s critically as-
sessed by the rtest. Assessing episodic memory and
reasoning abilities requires more sensitive tests.
The value of such a formal analysis is to provide
boundary conditions for the implementation of the
above.defined processes or machines. However, many
such implementations are compatible with the com-
putational description, Ar this stage, the acrual psy-
chological mechanisms by which rule selection and
reasoning take place are left unspecified, and ar the
neural level, the precise neuronal circuitry of each
cognitive component remains to be identified. The
next step, then, is to discover, or at least hvpothesize,
the particular implementation used in the human
brain. In the following section, we introduce a model
neuronal nerwork resting on biologically plausible
principles and able to pass the Wisconsin Card Sorting
Test. The purpose of this modeling is not o atempt
a better quantitative fit to psychological data on the
test, since the presently available data are at best qual-

itative and are adequately captured by the above for-
mal analysis, Rather, we aim at introducing experi-
mentally testable hypotheses about the nevronal and
molecular mechanisms for tule selection, episodic
memory, and reasoning.

A Neuronal Architecture that Passes the Wisconsin
Card Sorting Test

We shall first describe the anatomical architecture of
the network, then its dynamics and its normal func-
tioning. Finally, we shall examine the behavioral con-
sequences of lesioning pars of the model.

Neuronal Clusters and Synaptic Bundles

The units of our model neuronal network are neu-
ronal clusters linked by bundles of excitatory and/or
inhibitory synapses, as described in Dehaene et al.
{1987). The clusters are viewed as modeling the wide-
spread columnar organization of cerebral cortex (Ed-
elman, 1978, 1987, 1989; Mountcastle, 1978; Gold-
man-Rakic and Schwartz, 1982; Goldman-Rakic, 1984),
Each cluster is composed of hundreds of neurons
densely interconnected by excitatory synapses. The
detailed connectivity of neuronal clusters is not ex-
plicitly formalized (but see below). Rather, each clus-
ter is modeled as a unit with sigmoid response curve
and a strong auto-exeitatory connection, Unlike sin.
gle neurons, individual neuronal clusters may pos-
sess, depending on their threshold and their auto-
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excitation strength, rwo stable states of acrivity: low-
level firing and high-level firing. Once activated, they
may thus keep, through self-excitation, a sustained
level of firing long after the input has ceased.
Clusters with similar coding properties (e.g., those
coding for the color of stimuli) are grouped in neu-
ronal assemblies. By this term we mean an ensemble
of neuronal clusters that inhibit each other. The level
of inhibition ensures that only one cluster will be
active within each assembly at any given moment.
The model assumes that individual pieces of in-
formation relevant ro behavior are coded by individ-
ual neuronal clusters (“grandmother” coding). In-
deed, neurophysiclogical experiments have invariably
found thar a given neuron in prefronal cortex re-
peatedly codes the same parameter value, such as a
given location (Funahashi et al., 1989, 1990), with a
high specificity. Our cluster representation also im-
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plies that several hundred neurons encode similar,
though perhaps not strictly identical, information in
parallel. Thus the representation may resist degra-
darion. Nevertheless, “grandmother cluster” encod-
ing was adopted in the model only for the sake of
simplicity. Functioning depends mazinly on different
parameters, such as location or color, being coded in
separate neuronal populations, but individual param-
eter values (e.g., a particular location) might have
been coded by distributed activity patterns without
much affecting the simulation,

Architecrure and Functioning of the Model

The organization and connectivity of neuronal assem-
blies in the model is shown in Figure 5. We shall
describe the assemblies in the order in which they
are activated in the course of a rest trial (Fig. 6).

At the input, response cards are coded according
to their fearures along the dimensions of color, form,
and number, by specific fearure-coding clusters. This
coding scheme is inspired by the known anatomical
segregation of dimensions in the visual system (Un-
gerleider and Mishkin, 1982; Livingstone and Hubel,
1988; Zeki and Shipp, 1988). Inpur activations are
transmitted topographically to memory clusters, which
maimain 2 sustained level of activity even when the
input that activated them is suppressed. Cells with
such prolonged firing have been observed in dorso-
lateral prefrontal cortex (e.g., Fuster, 1973, 1989; Niki,
1974) and are assumed to maintain in short-term
memory a representation of the external world (Niki,
1974; Goldman-Rakic, 1987). In the model, all clus-
ters corresponding to an input dimension (e.g., color)
compete and inhibit each other, ensuring that only 1
feature is memorized for each dimension. Thus, new
memories erase the preceding ones.

Memory clusters project ropographically to a layer
of units coding for the current “intention™ of re-
sponse. The term intention is used here in the re-
siricted operational sense of a prolonged activation
predicting subsequent motor outputs. “Intention
cells" have been recorded elecurophysiologically in
prefrontal, premotor, and motor cortex (e.g., Niki,
1974; Niki and Watanabe, 1976; Georgopoulos et al.,
1989). These cells fire long before a movement occurs
and respond differentially for different movements.
Some show a progressive increase in firing rate (re-
sponse anticipation; e.g., Kojima and Goldman-Rakic,
1982), and their activity predicts the occasional errors
that the animal makes (e.g., Fuster, 1973).

The mode] includes 4 intention clusters, each cod-
ing for the choice of a parnticular reference card in
Figure 1. The activation of any such cluster signals
an intention of choosing the corresponding reference
card. Again, competition ensures that only 1 intention
cluster is activated at a given moment. The intention
is acrualized only when activation is propagated to
the acrual output clusters, Propagation is gated by the
activity of a “go" unit. Hence, a response is given only
when an external go signal is received. The go cluster
might also be activated by endogenous decision pro-
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cesses, bur we do not use this possibilire in the fol-
lowing simulations,

The critical function of the nerwork—two son the
cards according to 1 owt of 3 possible criteria—is
performed by the rule-coding clusters. Each rule-cod-
ing cluster codes for a particular sorting rule (color,
form, number, etc.) and gates the corresponding sub-
set of memory-to-intention connections {Fig. 3).
Memorized information abour color, for Instance, in-
fluences the response of the nerwaork only if the con-
nections for color are potentiated by the color rule-
coding cluster. Hence, the pauern of aciivity over
rule-coding clusters determines whart sorting rule will
be used. In most of the following simulations, only
the 3 base rules of color, farm, and number are coded
in the nerwork. However, additional rule-coding clus.
ters are sometimes included. These clusters then
modulate a randomly chosen subset of the memory-
-jntention connections.

The existence of rule-coding neurons is an original
prediction of the model. These neurons would keep
a sustained activity across several experimental trials
in which the animal uses the same rule of behavior,
even if the stimuli and the action taken on each par-
ticular trial vary. They would change their iring only
when the animal changes its rule of behavior. Since
in most experiments of neuronal recordings the an.
imal is trained to perform a single wask, it is perhaps
not surprising that such neurons have not yet been
unambiguously identified in prefrontal cortex. How-
ever, Thorpe eral. (1983}, recording in arbitofrontal
cortex, found several classes of units, among which
1 might be classified as a rule-coding neuron. This
neuron fired on each trial of a go-no go task when
the response contingency (the rule) was blue = go,
green = no go. It remained silent when the contin-
gency was reversed (blue = no go, green = go). This
isolated finding remains to be replicated and extend.
ed o more complex situations, by recording during
the rraining phase or while the animal is switching
berween tasks.

For our nerwork, finding the correct rule consists
of selecting 1 of the possible states of activity of rule-
coding clusters. This selection is achieved by the re-
ward signal. Each time a wrong response is chosen,
the network receives a negative reward, le., an “er-
ror” cluster s activated. The biological inspiration for
the error cluster is the existence of error-coding cells
in prefrontal cortex, which fire selectively after the
animal makes an error or fails to receive juice (e.g.,
Niki and Watanabe, 1979),

Activation of the error cluster transforms the rule-
coding netwark into a “generator of diversity.” Under
normal principles of operation, reception of a nega-
tive reward destabilizes the currently active rule-cod-
ing cluster; the rule-coding clusters then enter into
a competition until 1 of them wins and becomes active
again. Hence, the reception of negative reward gen-
erally yields the choice of a new current rule, Figure
6 shows this process cccurring during a negatively
reinforced trial: when the reward is received, the col.
or rule is replaced by the form rule, We now describe,
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in some detail, the operating principles of this gen-
erator of diversity.

The Generator of Diversity and

Episodic Memory

We assume thar the error cluster modulates the con-
nections of rule-coding clusters in such a way that
negative reward leads to a short-term depression of
currently active excitatory connections among rule-
coding clusters. The exact equations simulating this
process are given in Appendix B. The depression
mechanism ensures that the auto-excitatory connec-
tions of the currently active rule-coding clusters weak-
en. If connection strength drops below a certain
threshold, then auto-excitation is no longer sufficient
to maintain a sustained level of activity, and the clus-
ter becomes inactive. The other rule-coding clusters
are thus disinhibited, Noise in the simulation ensures
thar one cluster will eventually reactivate and inhibit
all the others. Functionally, the net result is a gen-
erator of diversity: the current rule changes at random
when sufficient negative reward is received,

Depressed connections spontaneously recover their
normal strength. The speed of recovery is a crucial
parameter that governs the memory span of the gen-
erator. If recovery is very fast, then the rule-coding
cluster that was just eliminated immediately re-enters
in competition with the other clusters. Hence, there
is a finite probabiliry of not changing rules ac all. This
provides an implementation of the random machine
analyzed formally in our functional analysis above. In
contrast, if recovery is slower, then the competition
takes place only berween the remaining rule-coding
clusters, leaving aside the 1 just eliminated. This cor-
responds to our random + context machine. Finally,
if recovery is very slow and extends over several con-
secutive trials, the nerwork exhibits an episodic mem-
ory and behaves as the random + memory machine
described above. Eliminated rules do not enter the
competition again; the generator of diversity keeps
rrack of previously rejected rules and does not activate
them any longer.

Functionally, we observe that a nerwork with slow
recovery serially tries the 3 rules of color, form, and
number until the correct rule is found. In contrast, a
network with fast recovery may try sequences such as
color, color, form, color before eventually sentling
into the correct number rule, Figure 7 provides a
quantitative comparison of networks with three dif-
ferent values for recavery rate (¢ = 0.95, fast recovery
= random machine; ¢ = 0.97, intermediate recovery
= random 4 context machine; & = (.99, slow recovery
= random + memory machine). In agreement with
our functional analysis of the test (above), perfor-
mance increases with memory span, Compared to the
other rvo machines, the random + memory machine
learns faster, is more likely to find the correct rule in
a single trial, hardly ever perseveres in an incorrect
rule, and avoids retesting a rule once it was shown to
be incorrect. Our nerwork thus offers an elementary
implementation of episodic memory for the previous
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Figure B. Comparison of the activity of rule-coding clusters i nevworks wish or
without the swig-gvatuation loop. Top, The simple wransition fram 1he form rule w the
reamiber nule: following negative reward in @ nepwork without auic-evaluation, Middle,
Subsequent evems in 3 network with avo-evaluarion. Because on this particular wial
the rurmier rule led to the same incorrety choice a5 the form rule, she reward cluser
temaing activated by the imemion-o-eor connections, until the numier rule eventually
gets replaced by the corent color nule. Sorom, What happens when additianal rules
are added to the repenoite of the network: the seguesial 1rial of rules continues until
8 satisfactory rule is found—here the calar nule,

choices of the nerwork and their associated reward
values.

Reasoning and the Auto-Evaluation Circuit

Up to this point, we have described the implemen-
tation of two cognitive components: the generator of
diversity, responsible for wrying new rules, and the
episodic memaory, responsible for ensuring that rules
are not tried again once they have proven to be in-
correct. We now propose an implementation of the
third component, the reasoning process, by which
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rules may be eliminated a priori by evaluating in ad.
vance their possible outcomes. In the model, this role
is subsumed by the auto-evaluation loop. As shown
in Figure 5, this loop shorr-circuits the external entry
of reward and permits an endogenous activation of
the error cluster. The nerwork then funcrions as a
critic of its own cholces, and corrects itself until a
plausible rule is found, one that is compatible with
the previously stored knowledge of positively or neg-
atively rewarded situations.

In detil, the auto-evaluaton loop consists of di-
rect intention-to-error connections whose efficacies
change rapidly according to a classical Hebbian rule
(equations in Appendix B). When no reward is given,
these connections relax toward 0 and, hence do not
significantly affect the simulation. However, when
negative reward is received and the error cluster is
activated, the connection linking the currently active
intention cluster to the error cluster is strengthened.
Hence this intention is labeled “incorrect.” As de-
scribed previously, the error signal also triggers the
choice of a new current rule. During the intertrial
period, this new rule, applied to the memorized fea-
wres of the previous input card, yields a new pattern
of activation over Intention units. This pattern codes
for the action that would have been undertaken had
the new current rule been active on the previous trial.
If it is in fact the same pautern as before, this means
that, placed in the same sitation, the new rule would
have led to the same incorrect choice as the previous
rule; hence, the new rule must also be incorrecr. The
auto-evaluation loop then keeps the error cluster ac-
tive through the potenrtiated intention-to-error con-
nection, thereby preventing the new rule from sta-
bilizing. The sequential internal evaluation of rules
will continue until a plausible rule is found, that is,
a rule whose consequences, positive or negative, can-
not be known in advance on the basis of the previous
trial.

Figure 8 compares the evolution of activity in rule-
coding units when nerworks with or withour auto-
evaluation are simulated. In all cases, negative reward
initially triggers a change of the current rule. How-
ever, only nerworks with auto-evaluation are able to
predict that the new current rule also yields an In-
correct cheice, The auto-evaluation loop then main-
tains the activation of the error cluster, triggering as
many rule changes as needed for a plausible rule 10
be found. The resulting sequential evaluation of rules
constitutes an implementation of an elementary rea-
s0ning process.

Figure 7 provides a comparison of performance for
networks with and without the auto-evaluation loop.
As noted in the initial analysis, the Wisconsin Card
Sorting Test is only weakly sensitive to differences in
cognitive architecture, To render the improvements
due to the auto-evaluation loop more visible, we de-
signed a variant of the test that berter separates rea-
soning from nonreasoning machines. This variant uses
only the 36 cards for which 2 rules yield the choice
of the same reference cards, and the third rule yields
a different choice. For example, a card with 2 red



triangles is similar o the first reference card in both
color and form, but is identical in number o the
second reference card (Fig. 1), With such cards, a
machine that reasons can find the correct rule in only
1 trial: as soon as negative reward is received, all but
one sorting rule can be eliminated. In conreast, 2 non-
reasoning machine should reach abour 50% success
following the first negative trial.

The comparisons of nerwork types that appear in
Figure 7 were performed with this new version of the
test, The crucial measure to evaluate reasoning abil-
ities is the percentage of success following a single
negative trial (single-trial learning). Clearly, the net.
work with auto-evaluation and memory scores beter
than the corresponding random 4+ memory nerwork
(98.4% vs. 39.8%). Similarly the neraork with auro-
evaluation but no memory scores better than the as-
sociated random + context nerwork (72.3% vs, 20.2%).,

Lesioning the Network

The most crucial evaluation of the model concerns
its ability ro reproduce the behavior of brain-lesioned
patients following ablation of some of its compao-
nents. We consider 3 types of lesions 1o our nervork,

Lesioning the reward network. We stimulare a dis-
ruption in the error-processing ciccult, in an other-
wise intact random + memeory nerwork, by 2 weak-
ening of the input to the error cluster (+3 instead of
+8 on incorrect trials). The net result is an increase
in perseverations, similar to what is observed in fron-
tal patients (Fig. 7). The current rule is often not
changed following a single negative reward. Rather,
it takes several negative rewards in a row before the
rule is destabilized. In essence, the generator of di-
versity still works, but with abnormal inertia. As a
consequence, single-trial learning totally disappears,
and it now takes much longer for the nerwork 1o reach
criterion.

Lesioning rule-coding clusters. A more radical le-
sion consists of totally eliminating the rule-coding
clusters. We then assume that the memory-to-inten-
tion connections have a fixed short-term component
5,= 0.5, and that their eficacy varies in the long term
according to a Hebbian rule whose sign is modulated
by the sign of the reward (see Appendix B for tech-
nieal details). Slow learning by correlation of input
and output is then the only means of adaptation to
the task. The main behavioral consequence is lack of
systematicity (Fodor and Pylyshyn, 1988), The le-
sioned nerwork can no longer treat all instances of a
variable like color in the same regular way. Rather,
the responses to each of the 4 possible colors have
to be learned separately at different times, Hence,
learning is slowed down by about a factor of 10 (Fig.
7). Performance in the course of learning appears
chaatic. The nerwork sorts in a quasirandom manner
by color, form, or number.

Lesioning the auto-evaluation logp. The above le-
sions have a dramatic effect on behavior, with in-
creased perseverations and slowed learning. In con-
trast, our model predicts that some focal lesions may
have almost undetectable effects on performance. Such

is the case with a lesion to the auto-evaluation loop
only. The only consequence of such a lesion is the
lass of the reasoning abilitv. In Figure 7, this corre-
sponds 1o going from network £ wo nerwork . Clearly,
neither learning speed nor perseverations are much
affected by such a lesion. As discussed earlier, the
only variable that is importantly affected is single-trial
learning, and this should be detectable only with our
modified version of the Wisconsin Test. Of course,
more complex tests such as the Tower of London
(Shallice, 1982) would be more apt at detecting the
difficulties in planification and self-monitoring of be-
havior that are expected following disruption of the
aurg-evaluation loop?

Finer-Scale Implementations

Despite its biological inspiration, the above model is
rather abstract. It is theeefore of importance to show
that its mechanisms are not purely ad hoc, but may
be implemented quite naturally in biological hard-
ware. In this section, finer-scale implementations are
considered for 3 crucial components of the network:
the bistable neuronal clusters, the generator of di-
versity, and the reward-dependent synaptic depres-
sion rule for rule-coding clusters.

Bistable Neuronal Clusters

In the above model, neuronal clusters were modeled
as a single threshold unit with strong auto-excitatory
connection. A more realistic simulation of a single
cluster composed of 49 individual neurons was per-
formed. Each neuron was modeled as a McCulloch
and Pius (1943) unit with sigmeoidal response char.
acteristic. Neurons could be either excitatory {about
75%) or inhibitory (about 25%), but not both. Each
neuron was randomly connected to 10 others with
strength 1.5, and a random threshold between 2 and
4. About half of the neurons sometimes also received
an external excitatory input of strength 3. Noise level
was £1.5.

Figure 9 shows the individual histograms of the
49 neurons before, during, and afrer external stimu-
lation of the cluster. Different rypes of units were
observed. Some responded only during stimulation,
or did not respond at all. Most units, however, kept
a sustained level of activation for a long time follow-
ing the external stimulation. Finally some units re-
sponded only after the stimulation, but not during it
It is thus possible to reproduce in this elementary
model the full variety of unit rypes that are found in
single-cell recordings in frontal cortex during de-
layed-response tasks (e.g., Funahashi et al, 1989,
1990).

In the simulation, the intrinsic fring characteris-
tics of the units were identical (except for their
threshold). The type of activity exhibited during and
after stimulation depended only on the recurrent con-
nection patterns established atr random between neu-
rons. Such reverberant circuits offer a plausible ex-
planation for the sustained firing of prefrontal
“memory cells." However, we cannot exclude the al-
ternative possibility that some specific cell property

Cerebral Cortex Jan,/Feb 1991, %1 N1 73



7 20
il

EEEARvii
driprvia
rrawr v
ddnriy

Edridad

Figure 9. Fine-scale simulanon nf_ 3 cluster of 49 neurors. Histograms show 1he acisdty of each simufated nevron before, during |shaded aves), and afier evemal stimulation
ol J}nlduslﬁ. Most neurons are activaied by the stimulation and remain acive for 2 dong period thersafier, Some newons show na acthvatian a1 2l (rop row, 4th fom Refi),
actevation anty during stimulation |3edf rowe, 3rg from feft), or anly aher stmulation stopped (bevrom row Boh from lef),

is also Involved that would distinguish cells with long-
lasting firing from simple reactive cells. [solated cells
with bistable firing characreristics have been studied,
for instance, in the spinal cord (Eken et al., 1989).

Generator of Diversity
Several clusters were assembled 1o model the gen-
erator of diversity at the level of individual neurons
and synapses (Fig. 104). Again, the neurons, modeled
as McCulloch and Pires {1943) units, were either ex-
citatory or inhibitory, but not both. Excitatory neurons
were organized in clusters with strong intracluster
excitation and weak intercluster synapses (see M.
Kerzsberg, 5. Dehaene, and J. Changeux, unpub-
lished observations, for a biclogically plausible ac-
count of the epigenesis of such clusters). Excitatory
neurons also contacted inhibitory interneurons, which
in turn distributed inhibition randomly to many ex-
citatory neurons (for simplicity, there were no syn-
apses berween inhibitory neurons, though this did
not significantly affect the behavior of the simulation).
Finally, synaptic eficacy was assumed to vary accord-
ing to the rules defined in the previous section: the
efficacy decreased for active synapses when negative
reward was received, and later recovered slowly.
We expected that in the absence of negative re-
ward, the network would settle into a stable state with
one cluster active and the others silent, However, this
simple property was not obtained immediately. Rath-
er, the nerwork was unstable, ascillating berween hy-
peractive and silent states. Oscillations arose because

74 Wisconsin Card Sorting Test » Dehaene and Changeux

of the temporal lag berween excitation and inhibition
in the network, As is visible in Figure 104, it takes
only one synapse for excitatory neurons to excite each
other, but two synapses are necessary for excitatory
neurons to inhibit each other via any inhibitory in-
terneuron. As a result, the nerwork showed synchro-
nized bursts of "epileptic" activity, followed by silent
periods of variable length. Subsequent experimen-
tation with the nerwork showed that to obtain stabil-
iry, the disynaptic inhibitory pathway had 1o be at least
as fast as the monosynaptic excitatory pathway. In-
deed, electrophysiological recordings of cortical neu-
rons reveal that inhibitory cells may have smaller
membrane time constants than excitatory ones (Me-
Cormick et al., 1985). Our simulation points to the
importance of this differential speed for nerwork sta.
bility. Similar bursts of activity following blockade of
fast inhibition have been observed independently in
a simulation of the hippocampus (Traub et al., 1988).

With appropriate connection strengths and trans-
mission speeds, the nerwork initally stabilized into
a state with one neuronal cluster active and the others
silent. We then observed that negative reward of suf-
ficlent duration triggered transitions of activity from
one cluster to the other, As in the larger-scale simu-
lation, the randomness of the sequence of transitions
was determined by the time for a depressed synapse
to recover its initial efficacy. If recovery was fast, the
sequences were random, If recovery was slow, the
sequences tended not to repeat the same activations
in close succession. Hence, the properties that were
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crucial to the generator of diversity, with or without
episodic memory, were confirmed in this more ele-
memtary simulation.

Reward-Dependent Synaptic Depression Rule

We may then move one step further and consider
which molecular implementations may account for
the key property of the above nerwork, namely, the
fast depression of active synapses when negative re-
ward is received, followed by medium 1o slow recov-
ery of normal synaptic strength. Our hypothesis is that
fast synaptic depression may result from the desen-
sitization of receptor molecules, mediated by their
allosteric wransitions in the postsynaptic membrane,
The receptors for neurctransmitters indeed are allo-
steric proteins (Changeux, 1981, 1990) that may carry
multiple ropographically distinct binding sites and
exist under several conformational states. For exam-
ple, the nicotinic acerylcholine receptor is known to
exist under at least 4 interconvertible states: resting
(R), active (A), rapidly desensitized (), and slowly
desensitized (D), where the ion channel is open only

in state A. The rransitions towards states Jand D rake
place in time scales from 10 msec to several minutes,
and accordingly may regulate synaptic eficacy. Tran-
sitions towards the desensitized states fand D yield
a depression of synaptic strength, whereas the tran-
sitlons towards the resting state R potentiate synaptic
strength. The signals that may regulate transitions be-
tween allosteric states are of several kinds: electrical
potential, local concentration of calcium, second
messengers, covalent modificadons, or neuromodu-
latory substances from outside the postsynaptic cell
(for review see Changeux, 1990). These signals may
originate from a second, neighboring synapse on the
same postsynaptic cell, opening the possibiliry of reg-
ulation of the efficacy of a given synapse by the activiry
of another synapse (heterosynaptic regulation; see
Heidmann and Changeux, 1982; Changeux and Heid-
mann, 1987; Dehaene et al., 1987; Finkel and Edel-
man, 1987).

For our generator of diversity, we may assume that
the desensitization reaction is enhanced by the co-
occurrence of two signals converging on the same
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postsynaptic receptor molecule (Fig. 105). The first
one, endogenous to the postsynaptic cell, signals the
recent activation of the synapse. This role may be
assumed, for instance, by the high local intracellular
concentration of calcium or a high extracellular con-
centration of neurotransmiuer or of a coexisting mes-
senger (Hokfelt et al., 1986). The second signal, dif-
fused 1o all synapses throughout the relevant nerwork,
indicates a recent negative reward. Such gating of
synaptic modificarions by reward may be achieved, for
instance, by diffuse neuromedulatory projections of
catecholamine neurons from the mesencephalon o
the prefrontal cortex (Bloom, 1988; Fuxe et al., 1989;
Fuxe and Agnati, 1990). The simultaneous reception
of these 2 converging signals would trigger a confor-
mational change of receptor molecules into a state
where the ion channel is closed (and the synapse is
thus depressed). Recovery by the reverse reaction
would occur on the 0.1-1 sec time scale. Such values
have been observed in the case of the cerebellum
parallel fiber-Purkinje cell synapse by o (1989).

Itshould be stressed again that several alternatives
exist 1o our proposed molecular mechanism, For in-
stance, NMDA receptors also permit the integration
of convergent molecular signals in a manner consis-
tent with our assumptions (Gustafsson and Wigstrdm,
1988; Zador et al., 1990).

Discussion

We have provided a theoretical analysis of the Wis-
consin Card Sorting Test, defined a hieracchy of ma-
chines able to pass the test, and compared their rel-
ative efficiency. A plausible neuronal implementation
for the machines has been described, the hierarchical
architecture of which is compatible with the organi-
zation and specialization of cortical areas, Onthe finer
scale of Individual neuronal circuits, the unirs of our
neuronal model are neuronal clusters plausibly ho-
mologous to cortical columns, and their function de-
rives directly from the collective behavior of their
component neurons. At the molecular level, a plau-
sible implementation for the synaptic modification
rules used in the model is presented in terms of al-
losteric transitions of posisynaptic receptor mole-
cules,

Another nerwork model for the Wisconsin Card
Sorting Test has been proposed by Levine and Prueint
(1989). The architecture of their nerwork has simi-
larity with ours and incorporates an interesting dis-
tinction berween a level of habits and another level
of biases that may modulate these habits. However,
we have introduced 2 novel components, episodic
memory and reasoning abilitles. Lacking these, Le-
vine and Prueitt’s model performs no bewer than our
simplest machines (“random" or “randem + con-
text™).

An impornant issue is the extent to which the pres-
ent model may handle more complex tasks. A nerwork
with an architecture close to the present one was
previously shown to account for behavioral and elec-
trophysiological data in delayed -response tasks (De-
haene and Changeux, 1989). The episodic memory
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and the reasoning component introduced in the pres-
ent model are likely to be crucial in several other
complex tasks tapping frontal cortex functions, such
as the Tower of London Test (Shallice, 1982). This
work thus represents an additional step towards the
neuronal implementation of the frontal supervisory
system that suppons planning and rask monitoring
abiliries (Shallice, 1988),

The architecture of our nerwork, in its present for-
mulation, imposes severe limitations on what can be
learned: only the 3 base rules of sorting by color, form,
or number are learnable. While this may be somewhat
extreme, the nerwork, like the brain, does not behave
as a tabula rasa on which any possible environmental
regularity can be imprinted. Learning by selection, as
implemented here or in other models (Barto et al.,
1983; Edelman, 1987, 1989) implies that storage of
exiernal regularities can only take place through sta-
bilization or elimination of predefined forms called
prerepresentations (see Changeux et al., 1984;
Changeux and Dehaene, 1989). The performance is
thus limited by the initial repertoire of learnable rules.
Learning power is, however, traded against systemat-
iciry: in our model, the correct rule may be found in
very few wrials and immediately generalizes in a sys.
tematic fashion to subsequent trials, a feature that is
lacking in classical associationist neural nets (Fodor
and Pylyshyn, 1988).

Cohen et al. (1990) have proposed a PDP model
of the Stroop effect that combines a fixed, constrained
processing architecture and the powerful learning
abilities of the back-propagation algorithm. Their net-
work includes modulatory “rask demand™ units thart
bear similarity to our rule-coding clusters. Thus, like
our color cluster, one unit labeled “color naming"”
can sysiematically attenuate or amplify transmission
in the color processing pathway (see also the “mod-
ifiers™ and "conjunctive connections” of Feldman and
Ballard, 1982). But, unlike our model, the nerworks
controlled by such units are initially unstructured and
are trained instructively by back-propagation to map
colors or color names to verbal responses. Thus, the
color-to-name mapping is captured by an uncon-
strained leamning algorithm, whereas the systemartic
task requirements are hard-wired in the connections
of the “rask-demand” units,

Cohen eral.’s (1990) model applies when subjects
are raught the task beforehand. In contrast, our model
deals with situations in which the subject must dis-
cover what task is asked for. The original mechanism
that we introduced for this purpose is the auto-eval-
uation loop. It enables the nerwork to select rules, in
the absence of new inputs, by reasoning on the pos-
sible outcomes of each rule and comparing them with
stored knowledge of previously rewarded situations.
Critics often argue that learning will be unmanage-
ably slow if rules are simply picked at random from
a large set until one proves to be correct. The auto-
evaluation loop accelerates learning by selection by
permitting the elimination of implausible rules by
mere reasoning, without waiting for an external cor-
rection signal. It thus provides a tentative solution 1o



the combinatorial explosion expected from a simple.
minded scheme of learning by selection. On the other
hand, auto-evaluation is studied here in a very re-
siricted context where the repertoire of accessible
rules is limited from the start by prewiring. Future
waork will have 1o examine its adequacy in more open
learning situations.

Thart learning may proceed purely by “mental ex-
periment” is, of course, not new from a cognitive
perspective, but our neurally plausible implementa.
tion of this ability opens the possibility of probing its
neuronal bases electrophysiclogically in awake ani.
mals. The Wisconsin Card Sorting Test may be dificult
to adapt to nonhuman species. However, our model
generalizes easily to simpler experimental paradigms
such as serial visual search (Treisman and Gelade,
1980) or memory scanning (Sternberg, 1966) that also
imply covert sequencing of mental objects in the ab-
sence of overt behavioral cues. If animals could be
rrained with analogs of these tasks, mental processing
would then become direcily accessible to neurobio-
logical experimentations.

Appendix A: Outline of the Mathematical Calculations

Milner's Version )

A first step in the calculations of convergence tmes
for each machine is the determination of 8{#), which
is the convergence time conditioned by the fact that
the current rule is incorrect, and that s rules remain
o be wried. When 8(n) is known, convergence time
is simply given by the following equations:

L= (1 = 1/08(r),
for the time to reach the fSrst criterion;
T, =8(,

for the time 10 reach subsequent criteria. (The dif-
ference berween Tyand T, is due to the probability
of finding the correet rule by chance on the very first
trial.) Then the total time 10 complete & criteria is
given by

T,=60+ T,+ 57,

(this is the variable plouned in Figs. 3 and 4).

8(n) itself obeys the following equartion, obtained
by considering the events that may occur on a given
trial:

1 1 5+ PO(n) + (1= P) X PN
‘11 = Bln — D}B{®(n, 0],

where P is the probability of ignoring reward, P, is
the probability that the current rule, even though it
is incorrect, will accidentally yield a correct response
and thus will not be eliminated (£, = 1/4); £.(9) is
the probability that # rules will be eliminated from
the pool of possible rules for the current trial, given
that the current rule was rejected; B(n = ) Is the
probability of finding the correct rule when drawing
at random from the »# — {remaining rules [P(n — §)

8(n) =

= 1/(n — §)); and ®(n, 7} is the number of rules re-
maining plausible for the next wial [$(n, /) = n = §
for machines with episodic memory; n, otherwise],

The functions £,(#) and #{s, /) vary depending on
the cognitive architecture of the machine under study.
Let us treat, for example, the case of the random +
context machine. Because this machine uses context,
but not reasoning, only the current rule can be re-
jected on a negative trial. Hence P{(1) =1, P({) = 0
for £ # 1. Because the machine has no episodic mem-
ory, the rules that have been rejected on a previous
trial reenter the pool of possible rules on the next
rial, hence ®{n, i) = n With these values, the fun-
damental equation becomes

o(n) = P éﬁ{ﬂ}

) R o

+ (1 - l) (1 e )'Ef(::).
q n—=1

From this we derive

g(r=1)

M =G-a-p

and the corresponding value for 7,
Similaranalytical resulis were obtained in all cases,

except for machines with both reasoning and mem-

ory. In the latter cases the fundamental equation was

solved numerically by recurrence.

Nelson's Version
The analytical treatment of Nelson's version is more
complex. Since the base rules are not independent
of each other any more, it is necessary to distinguish
whether the current rule is a base rule. Without en-
tering into details, one must calculate 8,(n,, n,) and
8.(n,, n;), namely, the convergence times condi-
tioned by the fact that the current rule is incorrect, it
is a base rule (&) or an additional rule (&), and =,
base rules and n, additional rules remain to be tried.
8,(n,, n;) and 8,(n,, n,) obey coupled recurrence
equations similar to the above equations. We were
able to solve these equations exactly for nonreasoning
machines, and numerically for the others. Of course,
the equations are much simpler, and exact expres-
sions can be obtained when r = p (that is, if the
repertoire is limited to the p base rules).

Appendix B: Formalization of the Model
The dynamics obeyed by each neuronal cluster is as
follows:

s(t+1)= F[E W, (Ds() — T, + N],
F)

where 5,(7) is the activity of cluster 7 at time ¢+, W,(©)
is the efficacy of the synaptic bundle from cluster j1o
cluster 4, T, is a threshold, N is a2 noise term with
uniform distribution over [—#, n), and Fis the sigmoid
function

Fla) =1/(1 + e==).

The diagonal terms W, represent positive intracluster

Cerebral Cortex Jan/Feb 1991, V1 N1 77



auto-excitatory connections. The off-diagonal terms
W, (i # j} represent either negative lateral inhibition
within a given neuronal assembly, or positive trans-
mission of activation berween assemblies.

In general, the efficacies W, () may vary with time.
This variation is decomposed into a product of short-
and long-term components:

W8} = S(0L,(0).

Short-Term Component

The shori-term component §,{¢) varies berween 0 and
1. It represents heterosynaptic influences on the j -
i connections. We make the hyporhesis that a given
synapse of neuron A on neuron B can be influenced
by the activirty of a second neighboring synapse upon
neuron B, originating from the modulator neuron C;
the uipler A,B,C is called a synaptic triad {(Dehaene
etal., 1987). Synaptic triads are included in the model
by assuming that for some couples (i, /), there is a
modulator cluster m such that

S0+ 1) = as,() +1 - a, 1:!'3_(:‘} > 0.5,

af, (1), if 5.08) < 0.5.
Qualitatively, this equarion implies thar synaptic ef-
ficacy increases roward a maximum when the modu-
lator is active, and decreases toward 0 when the mod-
ulator is inactive. The current model includes 2 sets
of triads: memory-to-intention connections are mod-
ulated by the relevant rule-coding cluster, and inten-
tion-to-ouput connections are modulated by the go
cluster. For other connections, §, is independent of
¢ (5, = 1). The auto-excitatory connections of rule-
coding clusters obey a slightly different rule for short-
term modifications. As described in the text, a nega.
tive reward can destabilize active rule cluster by the
following mechanism:

Se+ 1) = [e5,(0 + 1= 9] [1 = Q)]
+ & 5.(00Q(8,

where Q(s) = [s(Ns(D].

In the above equation, 5,(£) is the activation of the
error cluster. Qualitatively, 5,(¢) rapidly drops toward
0 when both the error cluster and the presynaptic
cluster fare active, and relaxes toward 1 otherwise.

Finally the following equation applies for the in-
tention-to-error connections of the auto-evaluadon
loop:

5.0+ 1)
_ |50 +1 -4, ifs(n) > 0.5 and (1) > 0.5,
85,01, otherwise.
Long-Term Component

For some excitatory connections W,(/), namely the
memory-to-intention connections, the long-term
component L,(f) may also vary with learning accord-
ing to the following Hebbian rule:

Le+ 1) = L(H — 2 s(05,()s(D)
2.0 = 1}

78 Wisconsin Card Soning Test - Dehaene and Changeux

An additional constraint is that the £,(f) must remain
bounded by 0 and an absolute maximum £.

Numerical Parameters

In the simulation, the following numerical values were
used: e =04, 8=04,=097, n=0.7,and 0.95 <
o < 0.99 depending on the machine simulated. The
initial connection strengths and thresholds were also
as follows:

Sy = O

Ly, = +6;

L, = =2, for lateral inhibition,
= +3, for input-to-memory and memory-to-

intention connections,

= +2 for intention to output connections,
= 45, for intention to error connections,
= 44, for the input to the error cluster;

T, =3, for memory and intention clusters,
= 4 for output clusters,
= 2, for rule-coding clusters,
= 5.5, for the error cluster.

Notes

1. This form of memory may be termed “episadic™ (Tulving,
1972) since it registers the history of the machine's attempts
at solving a problem, and thus forms part of its autohio-
graphical record. Shallice (1988) argues that “the autobio-
graphical record of the erganism's previous environments,
activities, plans, and intentions has the primary function of
acting as raw material for the [frontal] Supervisory System
when it is directing some non-routine activity™ (page 371).
QOur model implements Shallice’s notion in'a restricted sit-
varion: the episodic memory of previously rejected rules
nz}r:im down the choice of possible rules remaining to be
tried,

2. In a much more complex context such a lesion might
result in the sociopathic behavior reported by Damasio et
al. (1990}, .
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