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Abstract

Dchaene, 5., and Mehler J., 1992, Cross-linguistic regularities in the frequency of number words.
Cognition, 43: 1=-29,

We examine the frequency of numerals and ordinals in seven different languages
and/or cultures. Many cross-cultural and cross-linguistic patterns are identified.
The most striking is a decrease of frequency with numerical magnitude, with local
increases for reference numerals such as 10, 12, 15, 20, 50 or 100. Four explana-
tions are considered for this effect: sampling artifacts, notational regularities,
environmenial biases and psychological limitations on number representations. The
psychological explanation, which appeals to a Fechnerian encoding of numerical
magnitudes and to the existence of numerical points of reference, accounts for most
of the data. Our finding also has practical importance since it reveals the frequent
confound of two experimental variables: numerical magnitude and numeral fre-

quency.

Introduction

Cognitive psychologists often tacitly endorse the stable state hypothesis that all
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adult subjects possess, to a first approximation, a similar competence in the
domain of study (Chomsky, 1965; Mehler & Bever, 1968). The hypothesis
appears plausible in domains that seem largely innate or that are acquired through
an innately guided learning process (Fodor, 1983; Gould & Marler, 1987; Jusczyk
& Bertoncini, 1988). In humans, the paradigmatic example of the latter is speech
acquisition - though even in that case the adult stable state for phonological
awareness seems radically different in literates and illiterates (see Bertelson, 1987,
and references therein). Conversely, the stable state hypothesis seems less viable
for domains which, like chess playing, are usually acquired slowly, require formal
teaching, and can be mastered to varying degrees or, for the present matter, not

mastered at all.
Is the stable state hypothesis true in mathematics? Certainly, a considerable

diversity exists in adult mathematical performance, from illiterates up to Fields
medal winners. Not everybody is able to add two seven-digit numbers mentally,
and the strategies that would allow for such a performance are likely to vary
widely from individual to individual, for example depending on memory span or
training with the abacus (Hatano & Osawa, 1983; Stigler, 1984). Even for
additions of one-digit numbers, Siegler (1987) has drawn attention to the wide
diversity of strategies that children may use; in such cases, averaging data from
different subjects may result in a severe distortion of reality.

Given that mathematical notations and calculation procedures are the result of
cultural evolution (Ifrah, 1981; Menninger, 1969), it is not surprising that
individual variations are found at the level of abstract mathematical knowledge,
or even in the application of arithmetical procedures. Yet at a lower level, a
minimal set of principles of elementary arithmetics might be universal, possibly
regardless of culture, language or level of education. Gallistel and Gelman (1991)
postulate that all humans are endowed with a preverbal system of counting and
arithmetic reasoning that is shared with a broad range of animals. This view is
supported by the existence of pre-numerical discrimination capacities in the
newborn infant (e.g., Starkey & Cooper, 1980) as well as in rats or in pigeons
(Gallistel, 1990). Adults also show remarkably stable and reproducible effects in
some simple number-processing tasks. For example, in numerical comparison, the
distance effect — comparison times decrease with increasing distance between the
operands — is found with subjects from different linguistic communities (Dehaene,
Dupoux, & Mehler, 1990), resists extensive training, and is already present in
t-year-old children (Sekuler & Mierkiewicz, 1977; Duncan & McFarland, 1980).

The case for a stable state in elementary arithmetics would be strengthened if it
were possible to demonstrate similar uses of elementary number concepts in many
different cultures and linguistic communities. Here we report that the frequencies
of number words in spoken or written language are strikingly similar across
cultures. We use this fact to analyse number representations.

That number word frequency may provide valuable information about the
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organization of number concepts is suggested by numerous studies showing the
importance of frequency of occurrence in the structuring of mental representa-
tions. Word frequency is a primary parameter along which input and output verbal
lexicons appear to be organized (Forster & Chambers, 1973; Rubenstein, Gar-
field, & Millikan, 1970). The face recognition system is also drastically influenced
by the relative presentation rates of, for instance, Caucasian versus Asiatic faces
(e.g., Shepherd, 1981). Even at the neuronal level, cortical maps show dramatic
expansion for biologically relevant and frequently encountered parameter values,
for instance the range of frequencies relevant to echo location in the bat (Suga,
1982). Somatosensory maps have been shown to locally expand or contract in the
adult monkey depending on the relative frequency of stimulation of afferents
{Merzenich, 1987). All these examples document the influence of item frequency
in the structuring of internal representations. The converse case — constraints on
mental representations affecting, for instance, word frequencies — is rarely consid-
ered and will be addressed in this paper.

Before we describe the data, a word on vocabulary. We shall use the term
numeral for a word referring to a specific numerical quantity, and ordinal for a
word denoting rank order. Two systems of numerals are distinguished: arabic
numerals, composed of digits, and verbal numerals, which may be spoken or
written using language-specific notations (e.g., alphabetic notation for French;
Kanji for Japan), and may be decomposed into elementary number words.

Method

We compared the frequency of usage of numerals and ordinals in seven different
languages: American English, Catalan, Dutch, French, Japanese, Kannada (a
Dravidian language of South India) and Spanish. The following categories of
number words were examined: (1) number words from “zero™ to “nine™; (2)
number words from “ten’ to “nineteen”; (3) decade number words from “ten™ to
“ninety™; {4) number words for powers of ten (“ome™, “ten”, “hundred”,
“thousand”, “million™, “billion™); (5) ordinals from *first” to “ninth™; and (6)
ordinals from “‘tenth” to “nineteenth”. The categories 1, 2, 3 and 4 include the
ones, teens, tens and multiplier classes or stacks which, as neuropsychological
evidence suggests, play dissociable roles in number writing and reading (Deloche
& Seron, 1984; McCloskey, Sokol, & Goodman, 1986).

The number word frequencies were taken from standard databases (see Table
1 for references). Some number words were omitted because they did not exist in
the language (e.g., teens for Japanese), or were not available in the database
(e.g., hyphenated words like “‘soixante-dix™ in French), or because word counts
were too small to be meaningful. Total word counts were used for synonyms
{e.g., “second” and “deuxiéme” in French) or declined words (e.g., “u”, “un",
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Table 1. Summary of languages and databases analysed

Language Corpus size Source
American English 1,014,000 Francis and Kocera (1982)
Catalan 258,771 Conesa et al, {1983)
Dutch
All instances 44000000 CELEX
Mumerals only . 44,000,000 CELEX
French
Written number words 37,653,685 Imbs {1971)
Spoken number words . . 312,135 Gougenheim et al. (1956)
Arabic numerals B0, 843 Le Monde, 2nd and 3rd July 1990
Japanese
Kanji 2,000,000 NLRI (1570)
Arabic numerals 2,000,000 NLEI (1970}
Kannada 100,000 Ranganatha (1982)
Spanish 500,000 Juilland and Chang-Fodriguez {1964}

“una” in Catalan). In French, separate word counts were obtained for written and
for spoken number words. The Japanese word counts were for written Kanji
notation only. Finally the Dutch and American English databases provided
separate counts for the different grammatical uses of words. For both languages,
word counts were taken only from the “cardinal numeral” and “ordinal numeral™
categories (excluding, for example, the adverbial meaning of “first” in English).
Additionally in Dutch we also compiled total word counts, regardless of gram-
matical usage. These data, labelled “Dutch (all instances)” in the graphs, provide
an estimate of the variation that this procedure introduced with respect to
languages for which no grammatical classification was available,

We also tabulated the frequencies of occurrence of arabic numerals. These
were available only for Japanese and for French. In both cases, only full arabic
numerals, not digits, were counted. For instance “31" was counted as one
occurrence of arabic numeral 31, not as one occurrence of 3 and one occurrence
of 1. Note that for verbal notation, tables of word frequencies give only the
frequency of number words (e.g., “twenty”, “one"”), never that of full verbal
numerals such as “twenty-one”. This is an important difference between the two
systems of numerals: in verbal notation, only the component numbers words were
counted, not the whole numerals; in arabic notation, only the whole numerals
were counted, not their component digits.

In Japanese, the frequency of arabic numerals was available only for numerals
0-9 and the decades 10-90. For simplicity, these were displayed and analysed
together with number words categories (1) and (3) defined above. In French, a
frequency analysis program was designed which could evaluate the frequency of
any arabic numeral. However, given the small size of our corpus, only the
frequencies for numerals 0-20, 30, 40, 50, 60, 70, 80, 30 and 100 were judged
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reliable. Again, these were included in the categories (1), (2), (3) and (4) defined
above. ;

Results

The observed frequencies appear in Figure 1. An important cross-linguistic
similarity is found regardless of geographic distribution, language and notation.
For example, Japanese uses an extremely regular numeration system with no
“teens” words; French has irregular words for 11-19, 70, 80 and 90; and Dutch
inverts decades and units, saying “one and twenty” for 21. Despite these linguistic
differences, the absolute frequencies of numerals and ordinals are almost super-
posable. Only within-language differences have a sizeable influence: numerals are
about four times more frequent in spoken French than in written French, and, for
Japanese and French data, in arabic notation than in verbal notation (Kanji or
alphabetic).

For the numerals 1-9 and 10-90, as well as for the ordinals 1st to 9th, number
word frequency decreases with numerical magnitude. This decreasing pattern is
extremely robust and reproducible across languages. Other number word classes
show non-decreasing but still cross-linguistically similar patterns. Thus, ordinals
from 10th to 19th show a U-shaped curve, possibly reflecting a recency effect for
names of centuries in the range 15th to 19th, The frequency of powers of ten is
fairly constant, especially over the range 10-10°. The frequency of zero is much
lower than that of the other numerals. Finally, for teens words 10-19, a decrease
in frequency is observed only for American English and Dutch ( p < 0.05) and is
generally masked by two phenomena. First, the frequency of the numerals 12 and
15 is unexpectedly elevated, probably reflecting the continued usage of duodeci-
mal and/or sexagesimal counting principles in some domains like months, days,
hours or minutes (this is discussed below). Second, the frequency of the numeral
13 is low relative to 12 or 14. This might reflect the “devil's dozen" superstition,
which assigns a maleficent power to number 13, to such a degree that there is no
13th floor in most American buildings! Note the absence of a drop for 13 in
Kannada, a langnage of South India where no such superstition exists. The small
size of the Kannada corpus, however, makes it difficult to reach firm conclusions
on this minor point.

Figure 2 shows the frequency profiles over the range 1 to a billion (databases
for which too many datapoints were missing are not shown). On this log-log scale,
a straight-line decrease of frequency with magnitude is observed, at least over the
range 1-9 (all r*>0.78, p<0.01). Thus, frequency is a power function of
magnitude, with an average exponent of —1.90 for number words and —0.87 for
arabic numerals. In addition to the decreasing trend, localized sharp increases are
found which occur in all languages for the same numerals 10, 12, 15, 20, 50 and
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Numbers 0 to 9 = MNumbers 10 to 19 & Numbers 10 to 80

Crdinals 10th to 19th

American: A=T668 p=0.010

olhers: n.a.
=;.;_...'.=;__'1_;_'_~_;M'_'m=:—r~, T T S N - T R
—=— American English —a— Kannada
—i— Catalan —i&— Spanish
—=— Dutch (all instances) —e— Japanese (Kan|l number words)
=g+ Duteh {numerals only) --— Japanese (Arablc numerals)

—=— French (written number words)

---=--- French (spoken number words)

—=&—— French (Arabilc numerals)
Log,, frequencies {occurrences per million) of numerals and ordinals. Unless otherwise
stated, the frequency is for written number words. MinR = minimum correlation coefficient
of any data ser with the abscisza.

Figure 1.
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Figure 2.  Top: frequency prafiles over the range [ to a billion {log-log scale). To improve readability,
the curves have been displaced by arbitrary amounts along the Y axis. Languages for which
data points were missing have been omitted. Filled triangles: numerical points of reference.
Open rriangles: non-reference numerals, Bottom: frequency profile for random numbers
drawn fram an exponential distribution with relaxation constant 1/87 and written in English
nedation. Within-category decreases in frequency are observed, but the frequency of teens is
largely underestimated,

100. The frequency of numerals 30, 40, 60, 70, 80, 90, 10°, 10° and 10” is also
higher than expected by a linear interpolation on the 1-9 range.

Discussion

The expression of a numeral or an ordinal is generally the end product of a
complex chain of verbal production, the key elements of which are depicted in
Figure 3. In the following four sections, we analyse the non-exclusive factors that
might contribute to frequency variations. We focus mainly on the two strongest
cross-cultural effects: the sharp decrease of frequency with numerical magnitude,
and the local increases for numerals 10, 12, 15, 20, 50 and 100.

In section 1, sampling artifacts are considered. Strictly speaking, frequency
tables only provide information about the occurrence of numerals and ordinals in
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Figure 3. Four components contributing to the production of a given numeral,

speech and texts. At this level, biased sampling or notational conventions may
contribute to the observed frequency patterns.

In section 2, we examine the possible role of notational regularities. Written or
spoken number production engages specialized mental verbal input—output mod-
ules (McCloskey et al., 1986). The numerical representations that are accessed at
this level, that we call numerogens, are notation-specific lexical tokens which
serve as “‘mental tags” for numerals and ordinals. Possibly, there may exist
regularities in number notation which imply that some numerogens, and conse-
quently some numerals or ordinals, are activated more often than others when a
number needs to be produced.

In section 3, we consider the effect of environmental factors. Possibly some
numerical quantities (numerosities) occur more often than others in our natural
environment, therefore biasing numeral production right from the beginning.

Finally, in section 4, psychological limitations are considered. Perhaps our
environment itself is not biased, but our number representation scheme is limited
to grasping only small or “round™ quantities. Psychological constraints on number
concepts (abstract mental representations of number which are accessed regardless
of input or output number notation) would then account for the observed
frequency patterns.

The very existence of genuine number concepts is currently debated. Some
authors argue that all mental numerical processing is performed on notation-
specific codes (i.e., at the level of numerogens) and may vary qualitatively



Frequency of number words 9

depending on which particular notation is used for input or output (e.g.,
Campbell & Clark, 1988; Gonzalez & Kolers, 1982, 1987). Others postulate.that
numerical processing involves a single amodal abstract semantic representation,
and that notation-specific modules are used only for input—output operations
(e.g., McCloskey et al,, 1986; Sokol, Goodman-Schulman, & McCloskey, 1989).
It will therefore be important.to determine if the observation of notation-
independent frequency regularities necessarily implies the existence of abstract

number concepts.

1. Sampling artifacts

Might frequency variations arise solely from sampling problems or from conven-
tions of number writing? It is common practice, for instance, to print small
numbers in full words and large numbers in arabic notation. Hence, large number
words would appear less often in word frequency databases. However, if this
artifact had any sizeable influence, large arabic numerals should be more frequent
than small ones; in fact both arabic numerals and written verbal number words
follow decreasing frequency curves. Furthermore, the frequency decrease is found
even for spoken verbal numerals, whereas to the best of our knowledge no
conventions limit the usage of numerals in spoken French.

If they do not account for the bulk of the data, sampling problems certainly
contribute to some of the frequency variations, particularly for numerals “zero”
and “‘one”. For instance, the frequency of zero in arabic notation is much lower in
French than in Japanese, where it even exceeds the frequency of “1". However,
the notation for zero was introduced in Japan about a hundred years ago. In
contrast to other number words, the word “zero” is written in Katakana, not in
Kanji. Conventions apparently limit the use of this Katakana notation. For
instance in writing the date “1905", all digits appear in Kanji, except the zero
which generally appears in arabic notation. This and similar conventions may well
have resulted in an artificially inflated frequency for the arabic notation of zero in
Japanese jt:rurnais.]

Likewise, sampling problems certainly account for the high varability in the
frequency of the number word “one”. The Japanese Kanji for one, “ichi”, is used
only in a numerical context. In all other languages that we studied. the word for
“one™ is ambiguous and can also serve as an indefinite article (Catalan, Dutch,

'In principle, only full words, not individual digits, are counted in the Japanese database that we
used. Hence, 0 should not have been counted in “1905". However, the automated analysis of
Japanese texts faces a problem of segmentation: in journals, the Kanji symbols are aligned without
indication of word boundaries. Segmentation algorithms exist that circumvent this problem, but we do
not know how they handle words with the non-Kanji symbol “0", Most likely, this symbol was
counted each time that it was encountered, whether in a word or not.
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French, Spanish), a definite article (Kannada), a personal pronoun (Catalan,
English, French, Spanish), etc. The influence of this ambiguity factor is clearly
perceptible in Figure 1: lanpuages with an ambiguous word for “one” (Catalan,
French, Kannada, Spanish) show a 10- to 100-fold elevation in the frequency of
this word, relative to languages with no such ambiguity (Japanese) or for which
the ambiguity was lifted by a separation of grammatical uses in the database
{American English, Dutch). In Dutch, where a direct comparison is available,
usage of “een” in a numerical sense accounts for only 2% of the word counts for
this word (this may actually represent an underestimation). The Dutch data also
make it clear that this artifact affects only the number word “one”. Almost all
instances of number words other than “one™ are classified as genuine numerical
uses of these words.

The ambiguity artifact contributes much to the non-linearity of the frequency
curves over the interval 1-9 in Figure 1. However, it does not explain the
frequency decrease observed for number words 2-9, 10-90, and for ordinals. In
Japanese, which is not contaminated by the “one” artifact, a linearly decreasing
curve is still observed over the interval 1-9 on the log-linear plot of Figure 1. This
implies that frequency decreases exponentially with numerical magnitude (F(n) =
1860 % 107%1%* r*=0.97, p <0.001). Alternatively, the Japanese data may also
be fitted with a straight line on a log-log plot, implying that frequency decreases
as a power function with exponent —1.25 (#* = 0.96, p < 0.001). Both mathemati-
cal representations of the data confirm the existence of a sharp frequency
decrease, for which explanations other than sampling artifacts must be sought.

2. Mathematical regularities in number notation

The production of well-formed numerals obeys strict grammatical rules {Hurford,
1975) which may, as a side-effect, require the more frequent use of some
particular number words or symbols, Benford's (1938) observations seem to
support this possibility. Benford examined all kinds of numerical tables, for
instance those giving the surface of American lakes, the street addresses of famous
scientists, or the square roots of various integers. He found that, regardless of
their origin, arabic numerals were about six times more likely to start with digit 1
than with digit 9 (Figure 4). About 31% of numerals started with digit 1, 19%
with digit 2, 129 with digit 3, etc. The probability of finding digit n in the first
position decreased smoothly with », according to the mathematical law P(n) =
log,o(n + 1) —log,,(n). At first sight, this law bears considerable similarity to our
findings. Could it be that both phenomena are different surface manifestations of
a common underlying regularity?

In order to evaluate this possibility, a better understanding of the origins of
Benford’s law is required. Are small things more numerous than large things in
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‘ D Cbserved

I ﬁ Banford's Law: log (p+1) - leg p

The distribution of first digits in arabic numerals taken from various numerical tables

Figure 4.
(adapted from Benford, 1938}

nature, as Benford (1938) originally suggested (p. 571)7 Or does the law describe
a more general mathematical regularity (see Raimi, 1969, and the mathematical
theorems therein)? In support of the second proposal, we have found empirically
that random numbers drawn from almost any smooth distribution with large
standard deviation follow a decreasing law of first digits similar to Benford's law,
If the random numbers are drawn from a monotonous decreasing distribution,
this result is hardly surprising: if 1 is more frequent than 2, 10 more frequent than
20, etc., then 1 will appear more often than 2 in the first position of the random
numbers. More importantly, the law continues to hold for non-monotonous
distributions, such as a Gaussian. In this situation, qualitative arguments show
that only the right-hand part of the distribution, which is necessarily decreasing,
really counts. We refer the reader to Appendix A, where the mathematical origins
of Benford's law are laid out in greater detail. Unfortunately, our intuitive grasp
of the law is hardly increased by these mathematical arguments! At any rate, the
fact that the law is verified with random numbers rules out an environmental
explanation. The law appears to hold whenever numbers of any origin are written
down in arabic notation. It is therefore a notational regularity, not an en-
vironmental one,

Benford's law applies only to first digits, however, not to whole arabic
numerals or to number words. Extending the law to account for our observations
is not a straightforward task. First, consider the case of spoken or written number
words. A modified version of Benford's law does hold when we tabulate word
frequencies for random numbers written in English notation, instead of first digits
in arabic notation, We discovered this empirically using a computer program that
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draws a random number (e.g., 131), translates it into English notation (“one
hundred thirty one”), and counts how frequently each number word like “one”,
“hundred” or “thirty™ is found. The results are shown at the bottom of Figure 2,
for direct comparison with the actual English data. Frequency decreases are found
within each category of numerals (ones, teens and tens words). Frequency
discontinuities are also found for 20 and 100. However, three resalts are in
contradiction with the data: (1) the discontinuities for 12 and 15 are not
predicted; (2) a discontinuity is predicted in the wrong direction for 10 (i.e., in
random numbers, “ten” is actually less frequent than “nine”); and (3) the
predicted frequency of teens words is much too low relative to the frequency of
omes words; the real data actually show a continuous decrease of frequency from 1
to 19, if one excepts number words 10, 12 and 15.

Like the original Benford law, these phenomena are largely independent of the
precise distribution chosen for the random numbers. In order to suppress the
three contradictions above, a very specific distribution is needed for the numbers,
namely a sharply decreasing one (e.g., a power function with exponent —2) and
with peaks for numbers 10, 12, 15 and 50. Of course, we are then back to square
one, having to explain why the numbers to be produced obey such a specific
distribution,

Similarly, our data on the frequency of arabic numerals cannot be explained by
Benford’s law without making strong additional assumptions. We measured the
frequency of full arabic numerals (e.g., 17, *127), not that of individual digits
(e.g., 1 in *12"). Hence, no notational bias is involved at all in the arabic data
(except for zero in Japanese; see the above discussion). The arabic data directly
measure the frequency with which a given numerosity is produced. And the fact is
that this frequency is decreasing, with increases for 10, 12, 15, and the class of
numerals 20, 30, 40...100. Generally speaking, the high similarity of the
frequency curves for arabic numerals and for verbal number words in all
languages suggests that the effects are not notation-specific, hence do not arise at
the level of input—output modules. :

To summarize this long argument, notational regularities akin to Benford's law
do not begin to explain our data on arabic numerals. They can partly predict the
data on verbal numerals, but only at the expense of ad hoc additional assump-
tions. Therefore notational regularities have a limited explanatory power. Never-
theless, they certainly contribute to some of the differences that can be observed
between arabic and verbal notation. For instance the frequency decrease is
sharper in verbal notation than in arabic notation (Figure 2). Probably in verbal
notation the decrease is accentuated by Benford's law. Another difference is that
the frequency of the number word “hundred™ is high relative to that of ‘‘ninety™,
but in arabic notation “100" is less frequent than “%0" (Figure 2). A likely
explanation is that the word “hundred™ belongs to the class of multiplier words in
verbal notation (Hurford, 1975; Power & Longuet-Higgins, 1978). Therefore it is
counted almost each time a number greater than 9% is produced (e.g., in “six
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hundred twenty™). “*100"" does not play such a role in the arabic notation system,
hence its lower frequency.

3. Environmental factors

If small numbers are produced more often than large ones, as clearly attested by
the frequency counts of arabic numerals, it might be because we encounter small
numerosities more often than large’ ones in our natural environment. For in-
stance, the distribution of the number of children in modern families is naturally
biased towards small numerosities. Environmental factors may therefore predict a
monotonous decrease of numeral frequency with magnitude. It might further be
argued that the numerosities 10, 12, 15, 20, 50 or 100 are also more frequent than
their neighbours in our man-made environment. For instance, eggs are sold by the
dozen, and nails by the hundred. We often encounter such round numerosities,
and this may explain the elevated frequency with which we use the words that
describe them.

Not all number productions are meant to describe a physical environment,
though. Would the frequency regularities still obtain under experimentally con-
trolled conditions in which environmental constraints would play little or no role?
Baird, Lewis, and Romer (1970) asked subjects to estimate numerically the ratio
of two visually presented lengths, areas or distances. They found that some
numerals were more frequently produced than others (e.g., 5, 10, 12, 15, 20,
100), even though the physical stimuli that were presented did not privilege those
round ratios. Even more compelling is a study by Baird and Noma (1975; Noma
& Baird, 1973), who had subjects freely produce, within a given interval, integers
that “they thought other people would produce under the same conditions”. The
subjects’ responses departed widely from randomness, as some numbers were
much more likely to be produced than others. We reproduce in Figure 5 the
frequencies obtained for the interval [1...100]. The data are astonishingly
similar to those we have compiled, with a slow decrease of frequency from 1 to
19, and peaks for particular numbers such as the multiples of 10 or the numbers 5,
15, 25 and 75.

In these experiments, no direct environmental or notational artifact is in-
volved, However, it might still be argued that Baird and Noma’s (1975) adult
subjects had a long history of interactions with their environment, and that
therefore the ultimate cause of frequency patterns is environmental rather than
psychological. One possible example of such a long-term influénce of nature on
nurture is the widespread use of base ten in numerical notation and calculation,
which may be attributed in part to the accidental fact that we have 10 fingers.
Could frequency patterns be traced back to a similar remote environmental

source?
The distribution of number-prefixed words can be used to demonstrate that, in
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Figure 5.  The frequency of numerals in free production ( from Noma & Baird, 1975). Subjects had to
produce “‘numbers that they thought other people would produce under the same condi-

nons™,

fact, the presence of environmental biases is neither necessary nor sufficient to
account for linguistic biases. Several words have a prefix which specifies numerosi-
ty (e.g., binoculars, triangle). Just like the word “two™ is more frequent that
“three”, words starting with prefix bi-, di- or duo- are more numerous than words
starting with prefix tri- in English or French dictionaries (their frequency is
generally too low to be meaningful). This pattern could be attributed again to
environmental bias, but there are domains in which such an explanation can be
rejected. For instance, Table 2 lists the prefixed words for temporal duration or
repetition (e.g., bimonthly) in English and in French. Of course environmental
events are not more likely to repeat every two months than every seven months.

Table 2.  Prefixed words for temporal intervals in English and in French

2 3 4 5

biannual, -ly triennial, -ly quadrennial, -ly quinguennial, ly
bicentenary triennium gquadrennium quinguennium
bicentennial trimester quadricentennial

biennial, -Iy trimonthly quartan

biennium triweekly quatercentenary

bimillenary

bimonthly

biweekly

biyearly

diestrus, -ous, -ual

bicentenaire tricentennaire quadriennal quinguennal
biennal triennal quadrimestre quinguennat
bihebdomadaire trimestre, -iel quatre-temps

bimensuel trisannuel

bimestre, -iel

bimillénaire

bisannuel
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Nevertheless, there are again more words for small temporal intervals than for
large ones,

This example shows that a lexical bias for small numerosities can emerge in the
absence of any environmental bias. Conversely, cases can be found where clear
environmental biases fail to be incorporated into the lexicon. There are obwiously
more vehicles with four wheels than with two wheels, but we have a number-
prefixed word only for the latter (bicycle), not for the former (quadricycle?).
Numerical regularities in the environment seem to be incorporated in language
only if they concern a small enough numercsity. For instance, we have number-
prefixed words for plants with three leaves (e.g., trifoliate, trifolium; tréfle in
French), but not for many other plants or flowers with a fixed but large number of
leaves or petals. Words like “octopus”, which explicitly refer to a relatively large
numerosity, are rare. As a final example, Scolopendra morsitans, an arthropod
with 21 body segments and 42 legs, is commonly called a “‘mille-pattes™ {1000
legs) in French and a centipede (100 feet) in English! Clearly, we pay attention to
numerical regularities of nature only inasmuch as they fit with our cognitive
apparatus, which seems biased towards small or round numerosities.

In summary, it seems to us that the environmental explanation, while difficult
to refute, only postpones the problem without solving it. Strictly speaking, small
numerosities are not more frequent than large ones in the environment. Objec-
tively, in any given situation, there is a very large number of things to be
perceived and counted. Why do we parcel the world into small sets, rather than
perceiving a single group of large numerosity? Why do we perceive a rabbit and
not a set of body parts {Quine, 1960)7 The impression that the world is essentially
composed of small numerosities is an illusion imposed by our perceptual and/or
cognitive apparatus, and therefore calls for a psychological explanation.

4. Psychological factors

According to a psychological explanation, the frequency variations that we have
observed reveal the structure and the limitations of our cognitive number-
processing system. Three psychological constraints which may relate to the
frequency data are considered in turn: (1) the fact that we count; (2) the
limitations on our apprehension of numerosity; and (3) our faculty for approxi-
mation.

4.1 Counting

Counting is our fundamental method for assessing numerosity. The very fact that
we count may have drastic consequences on the structure of our mental number
representation systems. If one counts aloud, then the word “one” is used for every
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count, “two" is used only for sets of more than two objects, “three" for sets of
more than three objects, etc. Therefore, counting offers a ready explanation for
why the word “‘one"” is used more often than “‘two”, “three™, etec. :

This explanation of the frequency decrease works well for situations in which
the whole sequence of counting tags is verbalized. This is often the case for
ordinals: it is rare to talk of the sixth instance of something without mentioning
before the fifth, fourth, etc. However, as far as numerals are concerned, counting
aloud is rare in adult behaviour, We often verbalize only the final tag, which gives
the cardinal of the counted set. Yet'even in that case, the decreasing frequency of
numerals may arise from a subtle consequence of counting, Simply because we
label things by counting from one up, small numbers are used more often than
large ones for labelling things. Consider the example of street numbers. In one
street the numbers may go from 1 to 32, in another from 1 to 561, and in yet
another from 1 to 813. Overall there are much more houses bearing number 1 or 2
than bearing number 32 or 561. Generally speaking, because we cdunt, we
preferentially use numerical intervals whose lower bound is 1 {e.g., hours {1-12),
minutes (1-60), hotel rooms, chapters in books . . .}. Hence the inflated frequency
of small numerals (see also Flehinger, cited in Raimi, 1969).

Despite its seducing simplicity, this explanation has some problems too. First,
still no account is provided for the local increases in frequency within the
generally decreasing frequency profile (but see below). Second, the frequency
decreases predicted by counting alone are too small. Only a linear decrease is
predicted if one assumes that we are equally likely, over some interval, to count
from 1 up to any number n. This is a small decrease in comparison to the power
function observed in the data, with an exponent of —{.87 for arabic numerals,
—1.25 for Japanese Kanji, or about —2 for other languages (possibly contami-
nated by a “one” artifact). Surprisingly, in order to obtain an n® frequency
decrease, one must suppose that the upper bounds n for the counting process
themselves obey an n®~' power law.” When the exponent a is —1, this hypothesis

*In counting, the following numerals are produced:

1 if only one object is counted

12 if two objects are counted

123 if three objects are counted, etc.

If all such counting sequences are considered equiprobable up to some number &, then the frequency
of numeral n (0<n=N)is

Fin)=(N=-n+1}/K, witheonstant K= 1NN +1) i1

Therefore frequency should decrease lnearly with n. More generally if p{[1 . . . {]) is the probability of
counting from 1 up to /, then the frequency of numeral n becomes

Finy= % 3 pil1...i}) forn>0 @

=
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amounts to saying that we count from 1 to 3 four times more often than we count
from 1 to 6. Hence, even when biases induced by the counting procedure are
taken care of, there still remains an unexplained preference for using small
numerical intervals rather than large ones. The fact that we count certainly
contributes to the observed frequency variations, but it offers only an incomplete

explanation for them.

4.2 Limitations on the apprehension of numerosities

Several experiments have revealed limitations in our prasping of numerical
concepts, which may well induce a preference for manipulating small numerosities
rather than large ones. First, the process of quantification is easier with small
numerosities than with large ones. For sets of less than three or four objects, a
fast and accurate guantifying procedure called subitizing seems to operate.
Conversely, with increasing numerosity, the counting procedure becomes slow
and people resort to an inaccurate estimation procedure (Mandler & Shebo,
1982),

Evidence for the privileged status of small gquantities in mental processing is
not limited to the quantification of physical numerosities, but extends to experi-
ments of comprehension or production of numerals (see Krueger, 1989, for
review). For equal numerical distances, two small numbers are judged less similar
than two large ones (Shepard, Kilpatrick, & Cunningham, 1975). Small numbers
are also processed faster than large numbers in a larger-smaller number com-
parison task (Buckley & Gillman, 1974; Dehaene, 1989), These and other
experiments (e.g., Rule, 1969) indicate that the comprehension of small numerals
is faster and/or more refined than the comprehension of larger numerals.
Numeral production is similarly biased. When asked to produce random numbers,
subjects actually produce more small numbers than large ones (Banks & Hill,
1974). Contrary to the case of subitizing, no sharp limit between small and large
numbers is found in these experiments. Rather, the effects are monotonous and
continuous over the range of numbers tested.

Taken as a whole, these experiments suggest that Fechner’s law holds for the
central representation of numerical quantities (Krueger, 1989): small numbers

where the constant K iz given by
d
=2 iup(i...i) (3}

dm]

Equation (2) is easily transformed into the equivalent form

p(IL...n])= K{F(n}— F(n +1)] {4)

which shows that the values of p([1. .. n]) can be calculated from the measured frequencies F{r), For
Fln) equal to n°, we obtain that p([1. .. a]) should be approximately proportional 1o an”",
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receive an expanded and more accurate mental representation relative to large
numbers, This may explain the biased frequency distribution of numerals. Assum-
ing that the frequency of production of numerals is directly related to the
importance of the associated mental number representation or number concept, a
decrease in frequency with magnitude is predicted. The local increases in fre-
quency, which are not immediately explained by Fechnerian encoding, are

considered below,

4.3 Approximation and reference numbers

The studies cited above have shown that the precision with which we can quantify
a set decreases rapidly for large numerosities (see also Buckley & Gillman, 1974).
By necessity, then, we often use numerals only to denote approximation. In some
cases, however, we do want to convey a sense of exact numerosity, for instance
because we have attained a precise knowledge of it by counting. This poses a
problem for verbal communication: when is the listener to decide that a given
numeral is meant literally, or that it gives only an approximation?

Natural languages offer several solutions to resolve this ambiguity. Thus, words
like “exactly” or “about” may be used for disambiguation. In addition, some
numerals are conventionally used only for precise denotation of numerosity,
whereas others may be used to convey a sense of approximation. Thus the
sentence “there are x students in the room™ may mean .that the number of
students is exactly x or approximately x, depending on whether x is 19 or 20,
Similarly, in French or in German it is natural to speak of “fifteen days” to mean
“two weeks”, even though the rigorous number of days is 14. Rosch (1975)
showed that sentences such as “9 is approximately 10" are preferred over the
reversed sentences (10 is approximately 9). She concluded that numbers like 10
or 20 function as cognitive reference points in the numerical domain. Following
her terminology, we shall term “reference numerals” the numerals that can be
used for approximation. Reference numerals may span a whole region of numeri-
cal space, in much the same way that the words “possible” or “likely™ refer to
whole ranges of probability (Jaffe-Katz, Budescu, & Wallsten, 1989).

Let us denote by “numerical span” the range of numerosities that a given
numeral may approximate. For example, the span of “nineteen” is 1, since this
word denotes the exact quantity 19; the span of “twenty” is about 10, because this
word may be used to approximate quantities in the range 15-25. Reference
numerals, which have large numerical spans, may be used in many more contexts
than numerals that can only be used for precise denomination. Therefore the
frequency of reference numerals should be elevated. This explains the local
increases in frequency for 10, 12, 15, 20, 50 or 100.

We may only speculate on why the same reference numerals appear in all
languages and cultures. These numbers are either multiples of powers of the base
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(base 10) or integer divisors of 60. Base 6 and base 60 were introduced by the
Babylonians, and they are still privileged today in some domains (hours, minutes,
seconds, angular degrees, eggs, etc.). Given a base system like 6, 10 or 60, the
reference numerals 10, 12, 15, 20, 50 and 100 may be easier to write, memorize,
or calculate with, The choice of a particular base itself is probably governed by
converging constraints, some mathematical (a good base should have many
divisors), some psychological (memory limitations require the choice of a small
base number) and some anecdotal (we have 10 fingers) (see, for example, Ifrah,

1981).

4.4 A model of the mental “number line”

The above arguments suggest that two supposedly universal properties of mental
semantic number representations are responsible for the observed frequency

patterns:

(1) The internal representation of numbers is compressive and akin to Fechner’s
law, that is, it is more detailed for small numbers than for large ones.

{2) Some numerals, called reference numerals, are used not only to refer to
precise numerosities, but also to approximate wide ranges of numerosities.
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Number line and numerical spans reconstructed from the American English frequency dam
(similar representations were obtained for the other data sers). The lower line is an expanded
portion of the wpper full number line. Segment lengths are proportional to numeral
frequency and represent each number's span. Numerical spans are larger for reference
mumeraly such as 10, 12, 15 or 20. See Appendix B for mathemarical details,

Figure 6.
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If this view is correct, then the frequency of numerals can be used as an indicator
of the mental organization of number concepts. Accordingly, we have designed a
method that, given numeral frequency data, is able to reconstruct a one-
dimensional sketch of the putative mental number space or “number line” (see
Appendix B for mathematical details). The method reconstructs both the psycho-
physical function that maps numerosities onto the number line, and the numerical
spans of each numeral, that is, the portion of the number line that each numeral
may adequately refer to.

The mental number line reconstructed by this method (Figure 6) shows a
Fechnerian compression of internal distances. Furthermore, reference numerals
are found to cover larger portions of the number line than other non-reference
numerals. Even the quantitative results conform to our intuitions. The numeral
“ten" covers the line from about 9 to 11. “Fifteen™ spans from 14 to 16. Decade
names from “‘twenty” to “ninety” each cover about their own decade, with little
overlap. Only “fifty” spans a slightly larger interval. Finally *hundred” covers an
even larger numerical region from about 70 to 130. It will be interesting to see if
this mental representation for numbers can be confirmed using on-line experimen-

tal methods.

Conclusion

We have observed recurring cross-linguistic regularities in the frequency of
number words. The most striking pattern is a regular decrease of frequency with
numerical magnitude, with reproducible local increases for 10, 12, 15, 20 and 100.
The extreme reproducibility of this law makes it comparable to other classical
statistical findings such as Zipf's law (Zipf, 1936). We discussed four possible
sources for variations in numeral frequency: sampling artifacts within our verbal
environment, mathematical regularities inherent to number notation, environ-
mental biases, and psychological constraints on mental number representations.
The first three sources were found to contribute significantly to several details of
the frequency profiles, but they could not satisfactorily explain, by themselves,
the frequency decrease and the local increases. The most plausible origin for these
two effects lies in the psychological organization of number concepts, structured
according to Fechner's law and with local numerical points of reference.
Though we focused mainly on numbers, cross-linguistic frequency regularities
are likely to exist in other domains as well. Figure 7 gives the frequency of the
four colour words “‘red”, “blue”, “green™ and “yellow™ in French (spoken or
written) and in American English. Regularities are apparently found in this
domain too. For example, “red” is always about three times more frequent than
“yellow”. Furthermore, as with numbers, the frequency of colour words is well
predicted by the span that each word may cover: the larger the wavelength
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Figure 7.  Freéguency analysis for the four most frequent colour words in French and American
English. In the upper half, segment lengths are proportional to word frequency in three
different databases. The lower half shows the regions of the wavelength spectrum that adulis
name as blue, green, vellow or red more than 70% of the time {adapted from Bornstein,
1981). Again, @ monotonous relation is found between the frequency of a word and the
span that the word may cover,

interval that a colour word may describe, the higher the frequency of that word
(Figure 7). Thus, the words “red™ and “blue” are comparable to the reference
numerals “ten” or “fifteen”: both are relatively frequent, and both can apply to a
wide region of the underlying wavelength or number continuum, Conversely, the
words “green” and “yellow' are comparable to non-reference numerals such as
“fourteen’’: both are relatively infrequent and apply only to a narrow range of
their respective continuum. Variations in colour word frequencies therefore seem
to reflect the mental processes at work in colour perception. This observation
strengthens our hypothesis that variations in number word frequencies partially
reveal the architecture of mental representations for numbers.

Consequences for experimentation

That all languages tested possess the same numerical reference points, and show
similar decreasing frequency curves, suggests the existence of a universal stable-
state core of numerical representations. Thus, testing of groups of subjects and
cross-cultural comparisons of data are justified a posteriori, However, our re-
search points to a problem that may be encountered in investigations of arithmetic
competence. Since number word frequency and numerical magnitude are highly
correlated, it will often be impossible to distinguish the effects of these two
variables. The word frequency effect has been thoroughly studied in psycho-
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linguistics, and is known to affect processing in many tasks, including word
naming (e.g., Forster & Chambers, 1973) and lexical decision (e.g., Rubenstein et
al., 1970). It is likely to have contaminated several experiments on numerical
processing,

In evaluating past experiments for contamination, it is useful to distinguish
effects of relative magnitude versus effects of absolute magnitude. For instance,
numerical comparison experiments have disclosed a distance effect: the larger the
numerical distance between two numbers, the faster they are compared (e.g.,
Moyer & Landauver, 1967). Such effects of relative numerical magnitude are
unlikely to be contaminated by frequency artifacts, since it is doubtful that the
ratio or difference of two word frequencies would be computed on-line and affect
subjects’ judgements.

By contrast, calculation experiments in cognitive arithmetics have revealed an
effect of problem size: the larger the two operands of an addition or a multiplica-
tion, the slower subjects retrieve the answer (e.g., Groen & Parkman, 1972;
Geary, Widaman, & Little, 1986). Because this is an effect of absolute numerical
magnitude, it might as well be attributed to word frequency. Indeed Ashecraft
(1987) has suggested that the problem size effect arises from the frequency with
which arithmetical problems are presented in text books and at school.

Numerical stimuli have also been used, mainly in the neuropsychological
literature, to study the processes of transduction from one numerical notation to
the other. Number word frequency has not been taken "into account in this
domain of research. Yet processing disruptions would seem likely to affect less
frequent numerals before the more frequent ones. Two different transduction
pathways might even exist for dealing with frequent versus infrequent numerals.
Frequent numerals would rely extensively on lexically stored information, where-
as infrequent ones would require step-by-step genmeric transduction algorithms
such as those proposed by McCloskey et al. (1986) or Deloche and Seron (1987).
These possibilities remain unexplored. Finally, some researchers have examined
the influence of notation on the speed and ease of number processing (e.g.,
Gonzalez & Kolers, 1982, 1987; Holender & Peereman, 1987; Takahashi &
Green, 1983; Vaid & Corina, 1989). In our data, number word frequency varies
with a factor of 4 between arabic notation and verbal notation, even if the relative
frequency variations are similar in both notations. Therefore, in this situation,

controlling for artifacts of frequency is an absolute must.

Appendix A: Why Benford's law holds for random numbers

Why do first digits of random numbers drawn from most distributions follow a
decreasing distribution similar to Benford's law? In this appendix, we propose a
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series of qualitative mathematical arguments. First, consider random numbers
drawn from a flat distribution over an interval [1, #]. If » is a number like 9, 99,
999, etc., then the random numbers are egually likely to start with each of the
nine digits. For all other values of n, smaller digits will appear more often as first
digits. This is most clearly seen if you imagine drawing in the interval [1, 24] for
example: digits 1 and 2 'will-be much more likely than the others.

MNow consider numbers drawn from a decreasing distribution. This is similar to
drawing from several intervals [1, n,]), where n, can take on several different
values. The effects of drawing from a single interval are thus averaged, and a
smoothly decreasing digit frequency curve is found. Flehinger (cited by Raimi,
1969) further proved that this frequency profile is exactly Benford's law when the
initial distribution obeys some additional requirements. These additional assump-
tions were criticized by Raimi (1969), who argued that they amounted to a
hypothesis about the probability of numerosities in the real world. However, our
analysis shows that even if Flehinger’s assumptions are relaxed, a close approxi-
mation to Benford’s law still obtains.

Another way of understanding what happens with flat or decreasing dis-
tributions of random numbers is shown in Figure 8. This figure gives, for three
different distributions, the progressive calculation steps that lead from the full
distribution over the range of integers to the distribution of first digits only. The
top left graph of each panel gives the shape of the distribution on a standard
linear scale, superimposed on a saw-toothed curve giving the value of first digits
from 1 to 9. The graph below shows the same distribution plotted on a piecewise
linear scale. The scale is linear on each log,, interval (e.g., [1...9], [10...99],
[100...999]) and gives equal space to each such interval; therefore, the saw-
toothed curve for first digits now appears periodic. Because the scale is not linear
any more, the distribution must be weighted by the appropriate scale factor on
each log,, interval, so that its integral over any interval still gives the probability
of drawing a random number in this interval. Finally the graph to the right gives
the resulting distribution of first digits. It is obtained simply by adding the curves
within each of the log,, intervals of the previous graph, merging them onto a
single interval [1. .. 9] (technically, the integrals of the curves are added, not the
curves themselves).

Let us consider the concrete case of the exponentially decreasing distribution
plotted in the middle section of Figure 8. On the top left graph, it is seen that the
distribution smoothly decreases towards zero. The graph below shows the be-
haviour of the distribution over the intervals [1...9] (1-digit numbers),
{10...99] (2-digit numbers) and [100. ..999] (3-digit numbers). Of course the
distribution is still decreasing within each of these intervals. The striped area
under the curve also makes it clear that 1-digit numbers are much less frequent in
the distribution than are 2- or 3-digit numbers. To obtain the distribution of first
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digits shown on the right, the values corresponding to all numbers starting with
digit 1 must be added together, regardless of whether the numbers are 1, 2,'0r 3
digits long; and similarly for all numbers starting with digits 2, 3, 4, ete. This
essentially consists in superimposing the log,, intervals for 1-, 2- and 3-digit
numbers. Since over each such interval the distribution is decreasing and convex
upward, the average is again & decreasing convex upward curve which bears
considerable similarity to the actual Benford law (compare with Figure 4).

The case of a flat distribution is-shown at the top of Figure 8. The distribution
is flat over all but the last log,, interval that it spans. In this last interval the
distribution suddenly drops from a constant to zero, resulting in a step-like {but
still decreasing) distribution of first digits.

Finally, what happens for a non-decreasing distribution of random numbers?
The bottom section of Figure 8 shows the case of a smooth, bell-shaped dis-
tribution. The distribution is increasing over the first log,, interval [1...9],
reaches its maximum within the interval [10. . .99], and decreases only over the
last interval [100...999]. However, as shown on the bottom left graph, the
contribution of the latter interval to the final distribution of first digits is very
important, because there are more 3-digit numbers in the distribution than there
are 1- or 2-digit numbers. Also, even though the initial distribution is sharply
rising and slowly falling, this is actually reversed on the bottom left graph, because
of the compression inherent in the piecewise linear scale (numbers from 100 to 999
occupy the same space as numbers from 1 to 9). As a result, only the decreasing,
right-hand side of the distribution really contributes to the final distribution of first
digits. The curve obtained is indeed almost identical to that resulting from a
strictly decreasing distribution.

Obviously, however, not all non-decreasing distributions of random numbers
follow Benford’s law. For instance, numbers drawn from a narrow Gaussian
distribution centred on 58 are obviously much more likely to start with a Sora 6
than with, say, digit 1. Another obvious counter-example is a monotonically
increasing distribution over [1...99). Given the above examples and counter-
examples, we conjecture that the following conditions are sufficient for a Benfor-
dian law to hold with random numbers:

{1) The distribution of numbers spans over several log,, intervals, that is, it
includes numbers with differing numbers of digits.
{2) It is smooth enough, that is, it does not have sharp increases and decreases

within a single log,, interval.

Note that numerical tables of the kind that Benford used in compiling his data are
likely to satisfy these two conditions. We think that this explains the apparent

universality of Benford's law.
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Appendix B: Reconstructing the putative mental space of numbers from
frequency data

Let us define the numerical span s, of a numeral n as the width of the interval I(n)
of numerosities that it can adeguately represent or approximate. This appendix
describes a mathematical méthad for reconstructing approximate numerical spans
from numeral frequency data. Let @ be the psychophysical function specifying the
internal encoding of numerosities on the mental “pumber line”. By hypothesis,
we expect the observed frequency F(r) of numeral n to be proportional to the
width of the internal interval ®[J(n)] on the number line. Since the psycho-
physical function @ is defined up to a linear transformation, one may write:

F(n)= ®(n +5,/2) = ®(n—3,12) (5)

For a non-reference numeral n, the span s, is 1 by definition, and thus F{n)=
@'(n). In Figure 2, we observe that on a log-log scale the frequency of
non-reference numerals is linearly related to their numerical magnitude. Hence,
by linear regression, parameters ¢ and b can be estimated such that, for
non-reference numerals, Log F{n)= —-alogn+ b. By integrating and letting
@©(1) =0, one gets '

b

O(n) = <= (1-n'™) (6)

The parameters @ and b are obtained only from non-reference numerals, but in
first approximation we may generalize the equation to reference numerals as well.
We may then solve equation (5) numerically by Newton's method to get an
estimate of the span s for reference numerals. Figure 6 shows the psychophysical
function ¢ and the spans s, obtained when applying this scheme to the American
English data. Parameter a was estimated at 1,92, Thus, function ¢(n) behaved
approximately as 1 —1/n.
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