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6 8 Cerebral Bases of Number Processing

and Calculation

STANISLAS DEHAFENE

ABSTRACT What is the cerebral basis of the human compe-
tence for mathematics? Cognitive neuroscientists have begun
to address this issue in the small domain of elementary arith-
metic. Chronometric experiments indicate that the human
brain comprises an analogical representation of numbers, in
which numerical quantities are internally manipulated as
puints on a mental *number line.” Neuropsychological studies
of number processing indicate that this representation is dis-
tributed in the two hemispheres and point to inferior parietal
cortex as its dominant site. The intraparietal network may pro-
vide a category-specific semantic representation of numerical
quantities. Recent neuroimaging experiments confirm that this
area is specifically activated when normal subjects manipulate
numbers, regardless of the particular notations used to convey
them.

Mental arithmetic is a basic ability of the human brain.
In daily life, we encounter numbers in a wide variety of
situations: We punch phone numbers, check our change,
balance our bank accounts, take a train, check our driv-
ing speed; and, sometimes, we even plan or analyze sci-
entific experiments. Of the content words of language,
number words are among the most frequent: In English,
we utter the word “one” once in every 70 words, and the
word “two” once in every 600 words [Dehaene and
Mehler, 1992; frequencies are comparable in other lan-
guages|. Arguably, numbers are one of humanity’s most
important cultural inventions, without which science or
society as we know it would never have seen the light of
day.

In recent years, experimental studies have begun to
address an age-old puzzle—the origins of the human
mind’s competence for mathematics. Using the methods
of cognitive neuroscience, we can now ask what internal
representations are used to manipulate numbers men-
tally, when and how they develop, and what brain areas
are involved. Space precludes an exhaustive description
of cognitive neuroscience studies of numeracy (but see
Campbell, 1992; Dehaene, 1997, Dehaene and Cohen,
1995); rather, this chapter focuses on two issues—cate-
gory specificity and modularity—issues of general inter-
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est in cognitive neuroscience that have been addressed
in the specific domain of numbers.

Category specificity refers to the hypothesis that differ-
ent domains of knowledge—such as knowledge of ani-
mals, foods, actions, or objects—are subserved by
dedicated mental processes, even by specific brain cir-
cuits. | have argued that the number domain provides a
remarkable example of a biologically determined, cate-
gory-specific domain of knowledge (Dehaene, Dehaene-
Lambertz, and Cohen, 1998). Supporting evidence has
accrued from multiple converging fields of research, in-
cluding animal, infant, and adult human psychology, as
well as lesion studies and brain imaging. This empirical
evidence suggests that humans and animals possess a
specific, biologically determined ability to attend to
small numbers of objects or events in their environment,
In humans, an internal representation of numerical
quantities develops very rapidly in the first year of life;
and, later in life, this representation underlies our ability
to learn symbols for numbers and to perform simple cal-
culations. It is specifically associated with neural cir-
cuitry in the inferior parietal lobule. Brain damage to
these circuits can cause highly specific impairments in
the representation and manipulation of numbers.

Arguably, then, biological evolution has internalized
in our brains a dedicated cerebral system for number,
comparable to the specialized cerebral devices that sub-
serve color or stereo vision, auditory localization, or
visuomotor transformations. Such a “number sense” is
obviously useful to survival: It helps us make sense of a
world composed, at the scale in which we live, largely of
discrete objects forming sets whose combinations follow
the rules of arithmetic.

The hypothesis of a dedicated brain system for quan-
tity knowledge is superficially reminiscent of Gall and
Spurzheim’s phrenology. In phrenological diagrams, all
knowledge of numbers and mathematics was attributed
to a specific brain convolution. Of course, the present
claim is quite different. According to the hypothesis de-
veloped here, the internal representation of numerical
guantities, which is putatively linked to cortical tissue
within the intraparietal suleus, is not the ttm].:_.r repository
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of arithmetic knowledge in our brains. Rather, it is as-
sumed to be associated with a highly specific and limited
mode of representation and manipulation of numbers,
in the form of abstract quantities laid down on an ana-
logical number line. Chronometric and neuropsycholog-
ical studies indicate that the quantity representation is by
no means the only internal code that humans use to ma-
nipulate numbers. Multiple representations, supported
by a distributed cortical and subcortical network, under-
lie our ability to understand, produce, and mentally ma-
nipulate numbers in various formats, including arabic
numerals (e.g., 32) and number words (“thirty-two").
Even extremely simple calculations, such as producing
the result of 3 = 1, involve the coordination of multiple
brain areas within a complex cognitive architecture.

This is the second key concept of cognitive neuro-
science to which the study of numerical cognition has
strongly contributed—the modularity of the cognitive archi-
tecture for verbal and nonverbal processing. Numbers
constitute a small domain of language, with its own lexi-
con of thirty-some words, its restricted syntax, and its
easily defined semantics. Fine-grained studies of number
production, comprehension, and caleulation tasks have
provided strong evidence for a modular organization at
each of these levels.

Number processing in normal subjects

Moyer and Landauer {1967) first characterized the se-
mantic representation of numerical quantities in human
adults. They presented subjects with pairs of arabic dig-
its, such as 3:4, and asked them to indicate which num-
ber was larger (or smaller]. Response times and error
rates were strikingly affected by number size and num-
ber distance (figure 68.1). As the numbers to be com-
pared represented closer and closer quantities (e.g., 2:8
vs. 4:5), the subjects’ responses became increasingly
slower and more error-prone. And when distance was
kept constant, increasingly larger quantities again re-
sulted in increasingly slower responses and larger error
rates, Performance in comparing two numbers was de-
termined by a Weber fraction, similar to that found
when subjects have to compare physical parameters
such as object size, line length, or tone height. Yet the
number stimuli were presented in a symbolic notation,
arabic numerals, whose surface form is largely arbitrary,
conveying no information about number meaning. The
distance effect suggested that subjects were converting
the input numerals to an internal continuum, a mental
“number line,” and were performing a psychophysical
comparison on this internal representation rather than
on the surface form of the numbers.
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FIGURE 68.1 Distance effect: the amount of time it takes to
decide which of two digits is larger is inversely related to the
distance between them. Error rates show a similar wend. (Re-
drawn from Moyer and Landauer, 1967,

Subsequent work largely confirmed the hypothesis of
an internal conversion to a notation-independent ana-
logical representation of quantity. Buckley and Gillman
(1974) measured the time to compare numbers that were
conveyed either by arabic numerals or by the numeros-
ity of dot patterns. Performance was remarkably similar,
driven in both cases by numerical distance and size ef-
fects. In later work, parallel performance patterns were
found when subjects compared arabic numerals and
number words in various languages (Dehaene, 1996;
Teeng and Wang, 1983). Obviously, the mental repre-
sentation on which subjects based their comparative
judgments abstracted away from the symbolic surface
form of the numerals and encoded their quantitative
meaning only. A continuous distance effect was found
even when subjects compared two-digit numerals. The
two-digit number comparison results indicated that sub-
jects did not rely on a digit-by-digit analysis of decades
and units, but rather performed a holistic evaluation of
numerical quantity (Dehaene, Dupoux, and Mehler,
1990; Hinrichs, Yurko, and Hu, 1981).

Beyond the number comparison task, chronometric
experiments with various number processing and calcu-
lation tasks have revealed ubiquitous number size and
distance effects, indicating that the quantity representa-
tion plays a pivotal role in numerical cognition. For in-
stance, in a same-different judgment task (Dehaene and
Akhavein, 1995; Duncan and McFarland, 1980), sub-
jects were shown a pair of numbers, such as 2:5, and
asked to say whether or not the two numbers were the
same, responding as fast as they could. Conceivably,
subjects can respond on the basis of visual similarity
alone. Thus, in one version of the task, subjects were ac-
tually encouraged to rely on such a superficial visual



analysis: They were asked to respond “different” to such
pairs as “2Z:two,” in which the numbers are numerically
identical but physically different. Nonetheless, response
times were always affected by a distance effect. When
subjects responded “different,” their responses were
slower when the pair comprised two numbers that were
numerically close (e.g., 2 and 3) than when it comprised
two very different numbers (e.g., 2 and 8). Obviously,
subjects could not prevent a mental conversion from
digital symbols to the corresponding quantities.

Size and distance effects are also obvious when sub-
jects calculate {Ashcraft and Battaglia, 1978). The time
to perform an internal addition or multiplication opera-
tion varies considerably with the size of the numbers in-
volved. Problems with small numbers, such as 2 + 3 or
3 x 2, are solved much faster than problems with large
numbers such as 6 + 8 or 6 % 8. Of course, the greater
practice we have with small arithmetic facts may con-
tribute to this effect. The distance effect in calculation
verification, however, cannot he explained by practice.
When subjects are asked to verify whether an operation
is true or false (e.g., 3 x 6 = 727}, responses are increas-
ingly faster as the proposed result gets more distant
from the true result of the operation. As with number
comparison, number size and distance effects in calcu-
lation are similar whether numbers are presented as ar-
abic digits or as number words, even though small but
systematic differences seem to be found (for discussion,
see Brysbaert, Fias, and Noel, 1998; Campbell, 1994;
Noel, Fias, and Brysbaert, 1997, Vorberg and Blanken-
berger, 1993).

Hemispheric distribution of number
prrocessing abilities

While the existence of a mental representation of quan-
tity has been known since the 1970s, cognitive neuropsy-
chological studies have only recently begun to investigate
the cerebral organization of number processing in the hu-
man brain. Perhaps the simplest question we can ask is,
what is the hemispheric distribution of number process-
ing abilities? Do both hemispheres have access to the
quantity representation, and can both hemispheres calcu-
late? This question has been examined in patients with
callosal lesions. The corpus callosum is a large bundle of
fibers that connects the two cerebral hemispheres. When
it is lesioned or surgically sectioned, the cognitive abili-
ties of each hemisphere can be assessed (Sperry, 1968).
Numerical abilities were tested in a series of experiments
initially performed with surgical split-brain cases (Gazza-
niga and Hillyard, 1971; Gazzaniga and Smylie, 1984;
Seymour, Reuter-Lorenz, and Gazzaniga, 1994). These
results were recently replicated and extended in a study

right left
hemifield hemifield

left right
hemisphere hemisphere
99% visual matching 9994
100% pointing 100%
99% comparson 96%
100% reading 0%
94% mental calculation 6%

FIGURE 68.2  Split-brain patients provide evidence about the
hemispheric distribution of number-processing abilities (Co-
hen and Dehaene, 1996). When digits are presented in the
right visual hemifield of a split-brain patient, hence contacting
only the left hemisphere, the patient can perform any number
processing task with them, including visual recognition, point-
ing to the digit in a random array, larger—smaller comparison,
reading, and calculation. Thus, the left hemisphere contains vi-
sual, verbal, and quantity representations of numbers. But
when digits are presented in the left hemifield, hence contact-
ing only the right hemisphere, the patient may still recognize,
point to, or compare them, but fails to read them or calculate
with them. Although the right hemisphere has access to visual
and quantity representations, it seems to lack a verbal repre-
sentation of numbers as well as procedures for exact calcula-
tion. {Pata from patient JW; Gazzaniga and Smylie, 1984;
Seymour, Reuter-Lorenz, and Gazzaniga, 1994.)

of a patient who suffered a posterior callosal lesion in
adulthood (Cohen and Dehaene, 1996). In both sets of
experiments, digits were flashed in either the left or the
right hemifield, thus contacting only the contralateral
hemisphere, and the patients were asked to perform
number processing tasks of varying complexity with
them (figure 68.2).

An important conclusion of these experiments is that
both hemispheres can process digits and quantities.
When two digits are presented simultaneously within
the same hemifield, split-brain patients experience no
difficulty deciding whether they are the same or differ-
ent [while their disconnection renders them com-
pletely unable to compare two digits across the two
hemifields). Hence, both hemispheres can analyze digit
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shapes. Furthermore, both hemispheres can also point
to the larger digit (or to the smaller), and both can clas-
sify digits or even two-digit numbers as larger or
smaller than some reference. Hence, both hemispheres
seem to possess a quantily representation of numbers.

The conclusions drawn from split-brain studies are
sometimes questioned, either because some pathways
for interhemispheric communication may remain func-
tional, or because the patients may have had an abnor-
mal cerebral organization o begin with. In the present
case, however, both arguments can be refuted. First, it is
true that the surgical-split cases (Gazzaniga and Smylie,
1984; Seymour, Reuter-Lorenz, and Gazzaniga, 1994)
had an intact anterior commissure, and that the patient
reported by Cohen and Dehaene (1996) had an infarct
affecting only the posterior part of the corpus callosum.
But the fact that the patients were at chance level when
asked to compare arabic digits acress the two hemifields
offers clear evidence that the remaining pathways were
not sufficient for the transmission of numerical informa-
tion. Hence, their excellent performance when both
stimuli were within the left hemifield cannot be attrib-
uted to transfer to the left hemisphere. The sharp disso-
ciation between excellent within-hemifield performance
and chance-level across-hemifield performance, indicat-
ing disrupted interhemispheric transmission, supports
the hypothesis that both hemispheres can compare
numbers. Second, while the patients studied by Gazzan-
iga and colleagues suffered from life-long neurological
impairments, the patient studied by Cohen and De-
haene was neurologically normal prior to suffering a cal-
losal lesion. Yet the number comparison results were
identical in both cases. Hence, the ability of both hemi-
spheres for number comparison does not seem to be an
artifact of abnormal initial brain reorganization.

In only one callosal patient (to date) have the re-
sponse times been recorded during the number compar-
ison task and the distance effect analyzed (Cohen and
Dehaene, 1996). A normal distance effect was observed
in both hemispheres, with no significant difference in ef-
fect size between the two hemispheres. This suggests
that the quantity representations of the left and right
hemispheres may have similar characteristics. However,
more evidence is needed before this point can be firmly
accepted.

There are, however, at least two striking differences
between the numerical abilities of the left and the right
hemispheres. First, digits presented to the left hemi-
sphere can be named normally by the patients, but dig-
its presented to the right hemisphere cannot. This is in
keeping with the well-known lateralization of speech
production abilities to the left hemisphere. Second, split-
brain patients can calculate only with digits presented to

990 HIGHER COGNITIVE FUNCTIONS

their left hemisphere. When digits are presented to their
right hemisphere, the patients fail with operations as
simple as adding 2, multiplying by 3, subtracting from
10, or dividing by 2. This is the case even when they
merely have to point to the correct result among several
possible results, or to indicate nonverbally whether a
proposed result is correct or not. The only calculation
ability that seems to be available to an isolated right
hemisphere, at least occasionally, is approximation. A
patient might not be able to decide whether 2 + 2 makes
4 or 5, but might still easily notice that 2 + 2 cannot
make 9 (Cohen and Dehaene, 1996; Dehaene and Co-
hen, 1991).

Modular dissociations in brain-lesioned patients

Detailed single-case studies of patients with various cere-
bral lesions have indicated that the fractionation of cal-
culation skills in neuropsychological cases is much
greater than that seen in split-brain cases alone. The
number processing skills of a normally educated adult
include the ability to

read, write, produce, or comprehend numerals in
both arabic (e.g,, 12) and verbal (“twelve”) formats, thus
implying both lexical (single-word) and syntactic {multi-
ple-word) processes;

convert numbers in these various formats to internal
quantities, and vice-versa;

compute single-digit addition, subtraction, multiplica-
tion, and division operations;

coordinate several such elementary operations to
solve a complex, multidigit arithmetic problem.

Most if not all of these abilities have been found to disso-
ciate in brain-lesioned patients, often in a highly specific
manner, indicating that there must be partially specific
cerebral circuits associated with each of them.

As a detailed example, let us consider the case of pa-
tient HY (McCloskey, Sokol, and Goodman, 1986).
When attempting to read an arabic numeral aloud, HY
often erred, for instance, reading 5 as “seven” and 29 as
“forty-nine.” A careful analysis indicated that reading er-
rors stemmed from a highly restricted impairment, af-
fecting only one particular cognitive component of the
processing chain that converts written arabic numerals
into spoken words. First, HY could still decide which of
two arabic numerals was the largest. She could also
match an arabic digit to a written number word, verify
written calculations, or select a number of poker chips
corresponding to a given arabic numerals. Thus, identi-
fication of digits and access to quantity information were
preserved. This narrowed down the reading deficit to an
impairment at the level of producing spoken words. In-



deed, McCloskey and his colleagues showed that, in a
variety of tasks, HY was much more impaired when he
had to produce the numerical answers aloud than when
he had to write them down as arabic digits. For instance,
when asked the number of eggs in a dozen, HY wrote 12
but said “sixteen.”

A careful analysis of HY’s number production errors
revealed strong regularities. The vast majority of errors
were substitutions of one number word for another,
keeping the grammatical structure of the number intact.
Not all substitutions were equally permissible. When the
number fell between 1 and 9, so did HY s erroneous re-
sponse. The categories of teens (10 to 19) and decades
(20 to 90) was also respected. In the final analysis, the
deficit could be explained by a highly selective impair-
ment in selecting the appropriate number word in the
output lexicon. When reading “15,” for instance, the pa-
tient prepared to read aloud the fifth element of the
teens category (eleven, twelve, thirteen, fourteen, fiffeen),
but he mistakenly selected, say, the eighth element eigh-
teen instead. Only minor details of the word substitutions
remained unexplained by this hypothesis (Campbell
and Clark, 1988; Sokol, Goodman-Schulman, and Mc-
Closkey, 1989).

A wide variety of similar highly specific deficits of
number processing have now been reported (Cipolotti
and Butterworth, 1995; Cipolotti, Warrington, and But-
terworth, 1995; Dehaene and Cohen, 1995; McCloskey,
1992). Most importantly, at virtually all levels of pro-
cessing, dissociations have been observed between
numbers and the rest of language, suggesting an amaz-
ing degree of modularity in the human brain. For in-
stance, at the visual identification level, pure alexic
patients who fail to read words often show a largely pre-
served ability to read and process digits (Cohen and De-
haene, 1995; Déjerine, 1891, 1892). Conversely, a case
of impaired number reading with preserved word read-
ing is on record (Cipolotti, Warrington, and Butter-
worth, 1995). In the writing domain, severe agraphia
and alexia may be accompanied by a fully preserved
ability to write and read arabic numbers (Anderson,
Damasio, and Damasio, 1990). Finally, within the
speech production system, patients who suffer from ran-
dom phoneme substitutions, resulting in the production
of an incomprehensible jargon, may produce jargon-
free number words (Cohen, Verstichel, and Dehaene,
1998; Geschwind, 1965).

Selective impairments of the quantity representation

The aforementioned deficits concerned the processing of
numerical symbols. But do some cases qualify as selec-
tive impairments of the semantic quantity representation

of numbers? Laurent Cohen and I have proposed that
patients with inferior parietal lesions and Gerstmann-
type acalculia suffer from a category-specific impairment
of the semantic representation and manipulation of nu-
merical quantities (Dehaene and Cohen, 1995, 1997).
From the beginning of this century, it has been known
that parietal lesions, usually in the dominant hemi-
sphere, can cause calculation deficits. Gerstmann (1940)
reported the frequent co-occurrence of agraphia, acalcu-
lia, finger agnosia, and left-right confusion in parietal
cases, a tetrad of deficits referred to as Gerstmann's syn-
drome (although the elements of the syndrome are now
know to be dissociable; see Benton, 1992). The lesions
that cause acalculia of the Gerstmann type are typically
centered on the portion of the intraparietal sulcus that
sits immediately behind the angular gyrus (Brodmann’s
area 39; see figure 68.3). In many cases, the deficit can be
extremely incapacitating. Patients may fail to compute
operations as simpleas 2 4+ 2, 3 - 1, or 3 % 9. Several char-
acteristics indicate that the deficit arises at a rather ab-
stract level of processing. First, patients may remain fully
able to comprehend and to produce numbers in all for-
mats. Second, they show the same calculation difficulties
whether the problem is presented to them visually or au-
ditorily, and whether they have to respond verbally or in
writing, or even merely have to decide whether a pro-
posed operation is true or false. Thus, the calculation def-
icit is not due to an inability to identify the numbers or to
produce the operation result.

Cohen and 1, however, also believe that the patients’
impairment is not best described as a specific deficit of
calculation only (“anarithmetia” or “acalculia proper”).
On the one hand, some calculation processes may re-
main preserved. Patient MAR, for instance (Dehaene
and Cohen, 1997), remained able to retrieve simple mul-
tiplication results, such as 2 x 3 =6 or 3 x 9 =27, which
he knew by rote. He was very specifically impaired with
calculations that were not stored in rote memory and re-
quired an internal quantity manipulation, even if it was
as simple as 3 - 1 (he stated that this equaled 7). On the
other hand, tasks that require a quantitative understand-
ing of numbers, but are not typically associated with
calculation per se, can be impaired in Gerstmann's syn-
drome patients. Patient MAR could not decide which
number fell between 2 and 4 (number bisection task),
even though he knew what letter fell between B and D,
or what month fell between February and April. MAR
also exhibited a discrete difficulty in number compari-
son, occasionally stating, for instance, that 5 was larger
than 6.

The latter deficit suggests that MAR’s understanding
of the number line was impaired. Indeed, Cohen and I
have suggested that inferior parietal cortex holds the
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FIGURE 68.3 Owerlapping lesions of five patients with Gerst-
mann's syndrome. All patients showed severe deficits in the
comprehension and mental manipulation of numbers. The le-

internal analogical representation of numerical quanti-
ties. Damage to this region causes calculation deficits
only if the requested calculations call for internal ma-
nipulation of quantities, and not if the task merely in-
volves the retrieval of rote arithmetic facts from verbal
memory. Typically, then, subtraction and number bi-
section are severely impaired, while simple multiplica-
tion may be relatively preserved. The fact that interval
bisection is affected only in the number domain, but
not in the domain of the alphabet, months, or days of
week, gives direct evidence that the deficit can be cate-
gory-specific and not just task-specific.

A simple model of number processing circuits

Based on the variety of number-processing deficits that
can be observed in patients, Laurent Cohen and 1 have
proposed a tentative model of the cerebral circuits impli-
cated in calculation and number processing: the friple-
code model (see figure 68.4; Dehaene, 1992; Dehaene and
Cohen, 1995). Initially developed as a purely cognitive
model of the different types of representations involved
in various number-processing tasks, this model also aims
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sions overlap deep in the inferior lobule, in the vicinity of the
intraparietal sulcus. {Redrawn from Dehaene and Cohen,
1997; Takayama et al., 1994.)

to explain chronometric data from normal subjects (De-
haene, 1992), A later version (Dehaene and Cohen,
1995) made specific proposals as to the putative cerebral
substrates of these representations.

Functionally, the model rests on three fundamental
hypotheses:

1. Numerical information can be manipulated men-
tally in three formats: an analogical representation of
quantities, in which numbers are represented as distribu-
tions of activation on the number line; a verbal format,
in which numbers are represented as strings of words
{e.g., thirty-seven); and a visual Arabic number form
representation, in which numbers are represented as a
string of digits (e.g., 37).

2. Transcoding procedures allow information to be
translated directly from one code to the other. For in-
stance, the model supposes that one can mentally con-
vert an arabic digit to the corresponding number word
(from 3 to three| nonsemantically, without passing
through the semantic representation of the quantity
three. This hypothesis distinguishes the triple-code
model from other modular models of number process-
ing (e.g., McCloskey, Macaruso, and Whetstone, 1992)
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FIGURE 68.4 Functional architecture of the triple-code model
of number processing. The three cardinal representations of
numbers are represented by octagons. Direct input and output
pathways to and from these representations are represented by

and is more in line with multiple-route models of word
processing. Recently, this aspect of the model has re-
ceived strong support from the observation of patients
who cannot convert directly from arabic to verbal nu-
merals (e.g., cannot read arabic digits aloud), but can
still convert back-and-forth between these representa-
tions and the corresponding quantities (Cipolotti and
Butterworth, 1995; Cohen and Dehaene, 1995).

3. Each number-processing task is assumed to rest on
a fixed set of input and output codes. For instance, num-
ber comparison is postulated to rely on numbers coded
as quantities on the number line. Likewise, the model
postulates that multiplication tables are memorized as
verbal associations between numbers represented as a
string of words; that subtraction, an operation that is not
memorized by rote verbal learning, calls heavily on the
quantity representation; and that multidigit operations
are often performed mentally using the wvisual arabic
code and a spatially laid-out representation of the

aligned digits.

Neuropsychological observations have enabled us to
flesh out the model and to associate tentative anatomical
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thick arrows, while thin arrows represent the six possible
transcoding pathways that link them. Specific processes puta-
tively attached to a given level of represeniation are denoted
by balloons. (Redrawn from Dehaene, 1992,

circuits to each function. Cohen and I speculate that the
inferior occipitotemporal sectors of both hemispheres
are involved in the visual identification processes that
give rise to the arabic number form; that the left peri-
sylvian areas are implicated in the verbal representa-
tions of numbers (as with any other string of words);
and, most crucially, that the inferior parietal areas of
both hemispheres are involved in the analogical quan-
lity representation.

Note that the redundant representation of the visual
and quantity codes in the left and right hemispheres can
explain why, in callosal patients, number comparison
remains feasible by both hemispheres (Cohen and De-
haene, 1996; Seymour, Reuter-Lorenz, and Gazzaniga,
1994). This bilaterality assumption does seem to raise a
problem for interpreting acalculia cases, however. If
there is a bilateral quantity representation, why does a
unilateral inferior parietal lesion suffice to impair quan-
tity manipulation in Gerstmann syndrome patients? Le-
sion data clearly indicate that, although the right
hemisphere contains a representation of quantity {and
although the right inferior parietal cortex is strongly acti-
vated during calculation), only a left-lateralized lesion, in
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FIGURE 6.5 A schematic diagram of the anatomical sub-
strates of the triple-code model of number processing, (Re-
drawn from Dehaene and Cohen, 1995,

subjects with normal hemispheric dominance, causes
acalculia of the Gerstmann type.

In spite of the superficial paradox, the triple-code
model can explain this result. According to the model,
only the left hemisphere has access to the verbal code
and to the calculation abilities that depend on it. In the
case of a unilateral left inferior parietal lesion, the
model therefore predicts that the right-hemispheric pa-
rietal quantity representation, although intact, will be
functionally disconnected from the left-hemispheric
language system (see figure 68.5). Hence, such patients
may remain largely able to compare number and per-
form other manipulations of pure quantities (this was
the case with patient MAR, who was largely above
chance in number comparison]. Yet, according to the
model, they are not able to use this quantity knowledge
to guide arithmetic fact retrieval and number produc-
tion, hence their striking deficit in simple arithmetic.
The same argument also explains why the right hemi-
sphere of callosal patients cannot read numbers aloud
nor calculate with them. Only further research will tell
whether this account of the special role of lefi parietal
lesions in acalculia cases is valid. It should also help us
grasp a better understanding of the respective roles of
the left and right inferior parietal areas in number

processing.
Brain imaging of calculation

Functional brain-imaging techniques now provide new
tests of the organization of cognitive processes, including
calculation processes. In itself, information about cere-
bral localization is not particularly interesting to cogni-
tive scientists. Once a specific brain area has been
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localized, however, it becomes possible to ask some
fruitful questions: What are the parameters that make it
more or less active? What tasks is it responsive to? And
what aspects of the stimulus, task, or response do not af-
fect its state of activity? With dynamic methods such as
electro- or magnetoencephalography, it is also possible
to record how quickly and for how long a region acti-
vates. In all these respects, the triple-code model makes
specific predictions. Most critically, it predicts that the
left and right inferior parietal areas should be active dur-
ing various quantitative number-processing tasks, and
that their activation should depend purely on quantita-
tive parameters such as number size and numerical dis-
tance, but not on input or output modality nor on the
notation used for numbers.

Roland and Friberg (1985] were the first to monitor
blood flow changes during calculation as opposed to
rest. When subjects repeatedly subtracted 3 from a given
mumber, activation increased bilaterally in inferior pari-
etal and prefrontal cortex. These locations have been
confirmed using fMRI (Burbaud et al., 1995; Rueckert et
al., 1996). Because the serial subtraction task imposes a
heavy load on working memory, it was not clear
whether any of these activations were specifically re-
lated to number processing. However, experiments us-
ing simpler tasks have confirmed that the inferior
parietal area seems to play a specific role involved in
number processing. In a positron emission tomography
study of multiplication and comparison of digit pairs,
with little or no working memory component, my col-
leagues and I again found bilateral parietal activation
confined to the intraparietal region (Dehaene et al,
1996). This confirmed results obtained with a coarser
resolution EEG method (Inouye et al., 1993} as well as



with single-unit recordings in neurological patients (Ab-
dullaev and Melnichuk, 1996),

While these studies indicate that the left and right in-
ferior parietal areas are active and presumably play an
important role in calculation tasks, they do not establish
the exact nature of their contribution. The triple-code
model, however, makes the specific prediction that the
inferior parietal cortex activation reflects the operation
of an abstract quantity system independent of input and
output modalities. Recently, my colleagues and [ have
begun to test this prediction.

In one study, we used high-density recordings of
event-related potentials (ERPs| during a number com-
parison task to study the cerebral basis of the distance ef-
fect. An additive-factor design was used in which three
factors were varied: number notation (arabic or verbal),
numerical distance (close or far pairs), and response
hand (right or left). The results revealed that inferior pa-
rietal activity was modulated by the numerical distance
separating the numbers to be compared, but not by the
notation used to present them {Dehaene et al.,, 1996).
Notation did have a significant effect on the N1 wave,
around 150 milliseconds after the visual presentation of
the stimuli, indicating bilateral processing for arabic dig-
its, but unilateral left-hemispheric processing for visual
number words {in agreement with the triple-code
model]. By about 200 ms, however, ERPs were domi-
nated by a parietal distance effect with a significant later-
alization to the right, and without further influence of
notation. Dipole models indicated that the scalp-
recorded distance effect could be modeled by two bilat-
eral dipoles located deep within the inferior parietal lob-
ule, with the right-hemispheric dipole showing stronger
activation than the left. The response hand effect, which
emerged as early as 250 ms after the stimulus, provided
an upper bound on the duration of the numerical com-
parison process.

A similar ERP study of number multiplication (Kiefer
and Dehaene, 1997} showed that inferior parietal activ-
ity lasts longer during multiplication of two large digits
than during multiplication of two small digits—again, re-
gardless of the modality of presentation of the oper-
ands (auditory or visual). The main difference with the
previous study of number comparison was that the ERP
effects, though always bilateral, were stronger over the
left inferior parietal area during multiplication, but
stronger over the right parietal area during number
COMpPAarison.

Recently, my colleagues and I replicated this modula-
tion by task demands using fMRI {Chochon et al.,
1999). We alternated 36-second blocks during which ei-
ther single letters or single digits were flashed in the cen-
ter of a screen. During the letter blocks, the subjects

mentally named the letters. This served as a control for
the various arithmetic tasks used during the digit blocks.
On different runs, subjects were asked to name the dig-
its, to compare them with 5, to multiply them by 3, or to
subtract them from 11. In all subjects, fMRI identified a
bilateral network that was very clearly pinpointed to the
banks of the middle segment of the intraparietal sulcus
(figure 68.6), in a location in excellent agreement with
the result of lesion studies in Gerstmann's syndrome (fig-
ure 68.3). Importantly, however, the size and lateraliza-
tion of this parietal activation was modulated by task
demands. Relative to letter reading, digit comparison
vielded greater activity in the right inferior parietal area,
multiplication greater activity in the left parietal area,
and subtraction a bilateral increase. In agreement with
the hypothesis of a nonsemantic direct naming route,
however, digit naming in itself did not significantly acti-
vate the parietal areas, although a small activation of the
right intraparietal cortex was occasionally seen in some
subjects.

Number: A biological determined category
of knowledge?

In summary, number processing constitutes a remark-
able example of the power of the cognitive neuroscience
approach, in which a combination of methodologies
borrowed from cognitive psychology, neuropsychology,
and brain imaging is brought to bear on a single prob-
lem. Based on the converging evidence just reviewed,
the following working hypotheses can be formulated:

1. The human brain contains an analogical represen-
tation of numerical quantities, which can be likened to a
mental “number line.” This representation is indepen-
dent of, and common to, the multiple input and output
notation systems we use to communicate numbers, such
as words or arabic digits. It is subject to distance and
magnitude effects.

2. Both the left and the right hemisphere have access
to the mental representation of numerical quantity.

3. Lesions of the intraparietal cortex in the dominant
hemisphere yield a specific impairment in the mental
manipulation of quantities, particularly evident in sub-
traction and number bisection tasks.

4. The left and right intraparietal cortices are active
when normal subjects perform simple calculation tasks.
The strength, duration, and lateralization of their activa-
tion depends on the nature and difficulty of the opera-
tion involved, which in turn is related to the size and
numerical distance of the numbers involved. It does not,
however, depend on the modality or notation in which
the numbers are presented.
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