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Computational models of association cortex
Thomas Gisiger*, Stanislas Dehaenet and Jean-Pierre Changeuxt

Recent computational models, or mathematical realizations of
neurobiological theories, are providing insights into the
organization and workings of the association cortex. Such
models concem the construction of cortical maps, the neural
basis of cognitive functions such as visual perception, reward-
motivated learning and some aspects of consciousness.
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Abbreviations

Lo long-term deprassion

LTP long-term potentiation

HCC neurpnal comelate of conscicusness
HMDA  N-methyl-C-aspartate

HO nitric: quicle

Vi primary visual corex

Introduction

The development of cognitive activities during mammalian
evolution is paralleled by a major expansion in both the size
and complexicy of the association cortices, which intercon-
nect and unite primary sensory and motor areas. In order to
understand how the organization of the association corex —
in particular, the prefrontal cortex — is related to its func-
tions, models and their mathematical formalizations have
become essential tools for the evaluation and organization of
the increasing amount of experimental dara from the newro-
sciences and cognitive psychology. Such models can be used
o test neural hypotheses and two propose new theories
[1*,2°]. In this review, we will examine computational mod-
els fearuring characteristic aspects of the association cortex
with the general aim of establishing a causal relationship
berween its neuronal organization and its functions.

The models used w investgare the association cortex are
artificial nerworks of formal neurons, which are machemarc-
ical idealizations of the real cells, connecred together by the
functional equivalent of synapses. Depending on the mod-
els, the elementary units of the networks can be simple
input—output binary units, such as the McCulloch-Pits
neurons [3], or physiologically more realistic integrate-and-
fire-neurons [2*,4], to mention just two. [t s also possible
to use as units whole groups [5] or clusters [6] of neurons
that are equivalent, for instance, to the ocular dominance
columns found in rthe wvisual corcex and which are
composed of roughly a hundred ncurons densely intercon-
nected by mostly excitatory projections. The main
constraint one should try to impose on these nerworks is

their ‘neurorealism’; in other words, one should ensure that
they reproduce biological reality to a sufficient extent, and
thus can be experimentally tested.

Another important aspect of ncural network modeling is
the introduction of elementary learning mechanisms —
these can be formally implemented by algorithms express-
ing the regulation of synaptic strength as a function of
experience. An example of such a learning procedure
formally relies on the outpue of the nerwork to back-prop-
agatc decp into the layers of the nerwork and make
corrections 1o the strength of all the connections (see [2°]).
This so-called ‘back-propagation algorithm’, introduced in
connectionist networks in which computational efficiency
often superscdes biological realism, has nevertheless
found support in observations of small arrays of hippocam-
pal cells in vitro by Fitzsimonds e al. [7].

A more locally acting learning rule, introduced by Hebb [8],
proposes that the strength of the synapse between two neu-
rons increases when presynaptic and postsynaptic activicy
coincide within a short time window. Similarly, synaptic
strength may decrease if both neurons consistently fail w
fire wogether. This mechanism therefore favors and stabi-
lizes frequently occurring activity while removing
counter-productive circuits. Two main biological imple-
mentations of this Hebbian learning have been proposed.
The first makes use of the experimental phenomena of
long-term potentiation (LTP) and long-term depression
(LTD}, which take place in NMDA-rich synapses [2*]. The
other makes use of the allosteric properties of a large body
of non-NMDA neurotransmitter receprors [9], the arche-
typal example of which is the nicotinic acerylcholine
receptor. This macromolecule has the property of existing
in at least four different states, each possessing its own char-
acteristics and each accessible via discrere conformational
transitions (sec [9] for details). As the proportion of recep-
tors in cach conformational state changes with neuronal
activity, so do the propertics of the synapse. This therefore
enables a form of plasticicy and consequently implements
some type of Hebbian learning. This molecular mechanism
is a critical component of the ‘synaptic triad’, introduced
inicially as a theoretical construction in [6], where the
synaptic strength of a synapsc between two neurons 15
enhanced by the activity of a third neuron. This original
device was shown to be able to recognize and produce time
sequences [6]. Anatomical evidence supporting the EXi5-
tence of synaptic triads involving dopaminergic terminals
has been recently reported in monkey correx [10].

We end this introduction by mentioning another important

aspect of modeling neural networks: the global mode of
operation of the organism within its environment. Some
models have deliberately abandoned the traditional
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input—output information-processing scheme cumently used
in cybernetics in favor of a more realistic projective style;
here, the formal organism constantly tests its environment
by the constant production of hypotheses or pre-representa-
tions which are then internally compared and evaluated by
the organism against the outside world [6,11-13].

Here, we will first describe the case of cortical mapping
and information processing in the visual system; then we
will introduce models of cognitive learning, including
reward mechanisms, self-evaluarion and strategy building.
We will end with a consideration of neurally plausible for-
mal theories of behavioral awareness or consciousness.

From cortical organization to perception

[n this section, we present two approaches to the study of
the association cortex. The aim of the first approach is to
account for the development of the neuronal architecture
of the association cortex by introducing local rules of
synaptic epigenesis and segregation. The second approach
concerns information processing in the visual system using
models whose overall structure, alchough inspired by acru-
al anatomical and physiological dara, is artificially
implemented by the modeler. The gap berween these two
approaches for studying the same system — though each
seems quite promising in its own right — illustrates their
respective limitations: models of cortical maps reproduce
certain aspects of the spanal structure of areas such as the
primary visual cortex very well, but their information pro-
cessing capacity is almost nonexistent; models of visual
perception, on the other hand, reproduce the ncuronal
architecture of cortical maps in a rather crude way.

The genesls of cortical maps

['he association cortex comprises short-distance excitatory
and inhibitory connections, as well as longer-range projec-
nons to funcrionally related areas. The models examined
in this review represent the dynamics of fully developed
networks of neurons and implement both types of connec-
nons. The growth and organizaton of chese fully
developed nerworks takes place in two phases: a growth
phase, which leads o a large excess of connections; and a
pruning phase, where redundant connections are removed.
['his process has been accounted for by a number of mech-
inisms, such as the selection of synapses ar sensitive
periods of development ([14]; see also [5,15]). In chis
framework, a role has been sugpested for cerain short-
lived diffusible substances such as nitric oxide (NO) in the
rerrograde stabilization of active synapses and the weaken-
ing, or removal, of silent ones [16]. Also, trophic factors,
such as brain-derived neurotrophic factor or nerve growth
factor, have been shown experimentally to contribute to
ictivicy-induced segregation of ncuron groups with a less-
cr initial redundancy in connections. Montague e af. [17]
have proposed a model implementing a situation in which
ixons grow, sprout branches, and make synapses that are
then either strengthened or eliminated via a retrograde
{NO-typc) messenger as a result of neowork activicy.

Simulations show thar, in this formal framework, the pro-
posed mechanism reproduces the segregation of neurons
into ocular dominance columns, or into barrel-like struc-
tures (and can even reproduce the experimental effects on
the somatosensory cortex of the plucking or taping togeth-
er of whiskers), as well as reproducing the formation of
reciprocal cortical connectivity. Input characreristics play
an important role in determining which structure emerges.
Yet, the actual contribution of NO to the penesis of cortical
maps remains to be experimentally specified.

Work has also been undertaken in order to better understand
the local sensitvity o stimulus features exhibited by the
neural columns of the primary visual cortex (V1). Models
implementing learning rules at the synaptic scale have been
proposcd to simulate the emergence of this columnar sensi-
tiviry, as the system is exposed to different types of visual
stimuli. The visual wopographic mappings obtained by simu-
lations seem to depend on the choice of the learning rules.
Among these rules, the Bienenstock—Cooper—Munro (BCM)
alporithm seems the most promising; for instance, it can
reproduce different degrees of ocular dominance and orien-
tation selectivity (see [18] for dewils), and is suppored by
experimental evidence [19].

On a larger scale, Durbin and Mitchison [20] have pro-
posed a dimension-reducing mapping model that
implements possible mechanisms that shape the global
characteristics of cortical maps. In the case of area V1 of the
visual cortex, neuronal columns show well-defined prefer-
ences for distinct stimulus characteristics such as
retinotopic position, orientation, degree of orientation tn-
ing, ocular dominance, and so on. The organization of area
V1 therefore implies that during development a mapping
is established berween the cortex — which is functionally
equivalent to a two-dimensional sheet (i.e. because of its
columnar structure, its reponse to stimuli does not change
as a function of cortical depth) — and the parameter space
of visual stimuli — of dimension at least cqual to four,
given the stimulus characreristics above. The reduction in
the number of dimensions from the parameter space to the
cortex implies that the requirement for neighboring neu-
ron columns to code for similar stimuli cannor be met
everywhere. To study further the constraints imposed on
cortical maps, Durbin and Mitchison [20] introduced into
their model a self-organizing algorithm thar rakes into
account two effects: competitive interaction between
units, which leads (via Hebbian-type learning) to the dom-
inance of those columns with the strongest initial response
to the inpur; and strengthening of units when neighboring
clusters fire. The latter condition implements the principle
thar compurations in the cortex (such as the sharpening of
orienration tuning) involve connections berween neurons
coding for qualitatively similar parameter values.
Simularions produce cortical maps roughly similar to those
observed experimentally in area V1 [21], with smooth
patches separated by regions of sudden jumps in stimuli
response (sec [20] for details). This model was further
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tested by Goodhill er 2/, [22], who studied the effects on
the mapping of the roughly ellipsoid shape of the cortex
and of the higher density of retinal points in the fovea.

Re-entrance and the binding problem

Models that address the computational aspects of the visu-
al cortex, and more precisely the passiblé roles of particular
types of connectivity, have also been. proposed. Using a
larpe-scale simulation, Sporns er af. {23] found thac recipro-
cal connections, or ‘reentry’, can establish coherent
oscillatory activity in well-defined neuronal groups. They
later extended chis model to the processes involved at the
carly stages of the visual pathways, adding the property of
fast synaptic plasticity (i.e. with time constants of the order
of 100 ms) to reentrant connections [24]. This new feature
allows the activity of ncuron groups responding to parts of
moving objects to synchronize rapidly with near-zero
phasc lags. As a result, the network is able to segregate two
coherendy moving parts in stimuli, such as a figure moving
over a background or two figures moving relative to each
other. This model illustrates the possible role of synchrony
in coherent object formation, as studied empirically by
Singer [25%].

Tononi e al. [26] have also presented evidence that a
model implementing reentrant connectivity, fast synaptic
plasticity and a biologically realistic architecture can solve
the binding problem for stimuli consisting of simple geo-
metric shapes. Strucrurally, the model simulates nine
visual areas, which are divided between a primary/sec-
ondary region, and a higher associative region with a dense
array of reentrant connections. Functionally, it is composed
of three processing streams that converge in the higher
processing arcas. These streams, which correspond 1o
motion, color and form, allow stimuli o be decomposed
into these three features. A motor region enables the net-
work to ‘point’ by foveation to a region within its visual
field, and a reward or saliency system reinforces activiry by
long-term synaptic plasticity via Hebbian-type learning
{see the section below on Cognitive learning). Tononi ef af.
[26] show that although stmuli are decomposed according
to highly specialized streams in multiple areas, their fea-
tures are correctly bound together, as the model is able to
differentiate between several objects present in ics visual
field. Further, by asking the system to point to an object in
its visual ficld and applying positive reinforcement when-
ever it chooses the right object, the network may be taught
to recognize a given object (see [26] and references there-
in for relevant experimental data on visual processing).

Binocularity and perception

Other models address rivalry in binocular vision, a problem
closer to perception than to vision [27]. When presented
with a different stimulus at each eye, a subject can only see
one of them at a time (rivalry) and, after a while, the owo
images stare to alternate in the subject’s perception (per-
ceptual alternation). This phenomenon may depend on
the competition between monocular neurons in the primary

cortex. However, a model proposed by Lumer [28*] illys-
trates another view according to which rivalry arises by
competition between the interpretations of stimuli in cor-
tical arcas higher than V1. Another key element of the
dynamics of this network is the relatve timing of the neu-
ronal activities that arc ‘solving’ each interpretation; chis
timing alters the outcome of the competition. It also
enables the system to differentiate between conflicting
stimuli and congruent ones (see [28°] for deails). As noted
by Lumer, even though the model can exhibit some sort of
alternance for particular inicial conditions, it is not consis-
tent (nor does it reproduce the observed frequency) and so
should not be perceived as actually reproducing the phe-
nomenon of perceptual alvernation. Dayan [29] showed, in
a similar model, that the inwoduction of an oscillatory
mechanism implementing a form of fatigue allows che
reproduction of alternance between percepts.

Finally, and higher still in terms of cerebral functions, a
madel related to the perception of stimuli and processing
of information in the thalamocortical system has been pro-
posed by Lumer e a/. [30,31]. It implements, for both the
primary and secondary visual pathways, the connections
between the comex (represented by the supragranular,
infragranular and IV layers), the reticular nucleus and the
thalamus. Each area is modeled using neuro-realistic data
for connections and ionic channels, and integrate-and-fire
neurons. T he resulting nerwork reacts to sumult in a non-
lincar fashion. For stimulus input intensites below a
certain threshold (defined by the parameters of the
model), the system only exhibits low-intensity, back-
ground activity. As the intensity of the input rises beyond
the threshold, however, the dynamics of the system expe-
rience what the authors call a *phase transition': the activity
of the system changes suddenly to a swable oscillatory
mode with a frequency of abour 2060 Hz and a large
amplitude (compared to background activicty).

Cognitive learning

In this section, we present formal efforts to build neuro-
realistic architectures that are able to perform tasks
devised to target specific cognitive functions. These mod-
els make specific predictions about the relevant neural
processes that can, in principle, be compared with dara
from electrophysiological recordings and brain imaging
studies in normal and lesioned subjects.

In the following section, we assume that living organisms
adopt the projective style (12,13,32,33] mentioned in the
introduction. Spontancous activicy and reward proccsscs
are critical ingredients in such exploratory-motivated
behavior as reaching goals and learning new rasks. This
aspect is traditionally absent from formal models of ncural
network dynamics. A significant step forward in this area of
research was the initial formalization of rcinforcement
learning by Sutton and Barto (see [34**] and reforences
therein). In their model, the network is not explicitly
taught what to do, but instead reccives a signal from the
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exterior (such as an ourside observer) thar evaluares its per-
formance. If this reward signal is negative, then the
network must generate new solutions to the problem at
hand until the reward becomes positive. The reward signal
therefore cither stabilizes the correct behavior or destabi-
lizes the incorrect ones. However, the authors did not
propose any biological implementations for this model.

Reward-motivated learning

Delayed-response tasks were inidally designed to test the
acquisition of cognitive patterns that selectively engage the
prefrontal cortex in higher vertebraces, including humans.

Dchacne and Changeux [12] have proposed a plausible
ncural architecture capable of performing such tasks (see
also the subsequent work of Recke er al [35]). The
delayed-response test proceeds in three steps. First, the
subject is shown a cue object, followed by a waiting period
of variable length. Second, two objects are then presented
simultaneously to the subject, who chooses one. Finally,
reward (either positive or negative) is provided, which
serves to evaluate the performance through release of neu-
romodulator substances, such as dopamine, serotonin or
acerylcholine. The rule defining the correct choice may
vary during the tesc.

The artificial organism [12] compnses owo levels (sce
Figure 1a). Level 1 is a visuo-motor loop comprising rep-
resentations of wisual areas and the premotor cortex.
Level 2 contains memory and rule-coding units imple-
menting functions of the prefrontal cortex or related areas.
Rule-coding clusters play a key role in the dynamics,
selecting the feature (e.g. color, position, shape) of the cue
maintained ‘on-line’ by the memory unit during the delay
period and then using the feature to choose an object
Because of lateral inhibition, only one rule-coding unit can
be active at a time. The network receives an evaluation of
its performance in relatdon to the outside world via a
reward signal thar causes changes in synapuc efficacy via
allosteric Hebbian learning, Nepative reward aces to lower
the activity of the dominant rule-coding cluster and to raise
that of the others, making the organism ready for a new
behavioral rule.

Level 1 of the network can perform the rask correctly if
only one rule is used in the test. However, when this con-
straing is relaxed, the organism persists with the old rule,
even though it receives negative reward at cach trial. This
behavior is rypical of patients wich frontal lesions. Wich the
addition of level 2, however, the network passes the test
and displays performances similar to normal subjects. The
rule-coding layer plays the role of a gencrator of diversity,
permitting the organism to switch rules when needed (sec
Figure 2 for a possible implementation). The nerwork
does not learn rules case-by-case. Instead, the rule-coding
neurons signal the expectancy entertained by the organism
ar a given time (see [12] for further details), and define the
content of its short-term memory during the delay period.

Figure 1
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Roles of reward (or saliency) signals. (a) In the delayed-response task,
reward acts on rule-codings clusters, which filter the feature of the cue
object that will be kept on-line during the waiting period. Reproduced
from [43]. (b) Reward lakes the form of a signal released in a certain
amount and at a given time. The internal representation of the reward
signal is coded in ‘n’ cortical areas of contrbution weighted by
‘synaptic efficacities’ @g,@.....0,. Both reward and expectation signals
converge to an equivalent of the ventral tegmental area, as leaming
madifies the o to minimize the discrepancies between the two. The
output of this area adequately reproduces dopamine release during
leaming and performance of the tasks. Modified from [37].

Electrophysiological recordings in the monkey have
revealed short-term memory cells whose behavior resem-
bles those of the memory units (see [10]). Neurons
analogous to the postulated rule-coding cells have also
becn described (e.g. by Asaad e &/, [36°]).

The Dehacne—Changeux model illustrates the principle of
cognitive learning by production and selection of pre-rep-
resenrations — rules in this case ([13]; sce also [35])
Metworks with this type of architecture can also pass other
tests targeting prefrontal functions, such as the Wisconsin
card sorting test [11]. Here, objects are cards representing
simple shapes that the subject must classify according to
criteria of color, number or type of forms represented on
the cards, which vary during the test.
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Possible implementation of a neuronal generator of diversity.

{a) Clusters, consisting of strongly interconnected excitatory neurons,
inhibit each other wa long-range inhibitory imernewons, Reward enlers
the system by diffusion, modulating the activity of all neurons.

(b} Possible molecular implementation of synaptic strength modulation
by allgstenic transition of a receplor molecule. When a positive reward
and a postsynaptic activation signal reach the receptor simultaneousty,
the conformational equilibrium switches from a desensitized state to an
activatable state, thus increasing the synaptic efficacy of the clusters. At
vanance with this, negative reward destabilizes the system and aflows
the generator of diversity to test, at random, new aliernative clusters of
activity until a positve reward is received. Modified from [11].

Besides motivating an organism to perform simple tasks,
reward mechanisms also scem o play a role in situations
where immediate goals are absent. This observarion is sup-
ported by experniments where for instance a monkey has to
wait for a cue before touching a lever in order to receive a
reward (see [37] for a review). Before and during training,
recordings show that most of the dopamine neurons in the
ventral tegmental area fire after reward delivery. However,
when the task is learnt, dopamine neuron responses shift
from the time of the reward presentation to that of the cue.
Dopamine ncuron acrivity, therefore, codes for the dis-
crepancy berween the ume of presentanion and amount of
reward expected, and their acrual realizations.

Montague and colleagues [38,39] have modeled these
findings using the temporal difference algorithm proposed
a decade earlier by Sutton and Barwo (see [34*°] and refer-
ences therein). Roughly, rchis algorithm gives
representations of the stimulus and of che ume of reward

presentation. The difference berween this prediction and
the subsequent reality is then computed as an error signal,
which must be minimized using synaptic plasticity (see
Figure 1b). Following this learning process, the firing of
the module representing the ventral tegmental area rakes
place after the cue, not when the reward is received.
However, modeling of this process is constrained by the
lack of reliable information about how the brain stores
temporal information, even though such storage does take
place. Yer the model of Montague and colleagues still leads
to testable predictions [37]. I the task is now modified w
include multiple cues, the dopamine release should be
strongest  right after the earliest consistent cue.
Furthermore, the model predicts that if one cue is unex-
pectedly removed from the task, dopamine release should
be minimal at the time of the absent cue, not after the
reward. Sun and Shulez [40°] also extended this model to a
sparial delayed response rask.

Auto-evaluation and hierarchical problem solving
Another element of neuronal architecture was introduced
by Dehaene and Changeux [11] in their model of the
Wisconsin card-sorting task. It consists of an auto-cvalua-
tion loop, which takes effect when the organism receives
negative reward. This loop short-circuits the sensory—
moror loop and allows the network to test internally gen-
erated ‘intentions” by comparing them with memories of
previous awempts (see [11] for details). Dehacne and
Changeux [41,42] made wse of this internal regulatory
loop in two other models; in che ficst, the formal organism
acquires elementary numerical abilities [41]; in the sec-
ond, it solves the Tower of London testc [42,43). Onec of
the key elements of the first network [41] is a numerosi-
ty-detector device, which is able to estimate the number
of objects (here, one dimensional ‘blobs’ of various sizes)
which form on a simulated retina. The model is able w0
compare two numerosities, as well as to develop by itself
the concepts of ‘larger’ compared to ‘smaller’, and of
‘more’ compared 0 ‘less’. Experimental evidence has
recently confirmed thar chis ability develops spontaneous-
ly in animals [44].

In the case of the Tower of London task [42,43], the nct-
work has to move beads on rods according to well-defined
rules from an initial position to a pre-specified goal [45].
Solving the problem requires planning, becausc several
intermediate moves are sometimes necessary to reach the
goal. This strategy building is known o involve the pre-
frontal cortex. The network which solves the rask [42.43]
consists of two main components: a descending planning
system, and an ascending evaluation system. In the
descending planning system, plans unfold in a hierarchy of
three levels: a motor level, which commands moves of the
beads; an operation level, which implements single moves
(by pointing to a bead and then pointing to the position
where it must go); and finally a plan level, which generates
whole series of moves. This series of moves is not random,
as it is internally tested, using an auro-cvaluation loop, by
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the ascending evaluation system to ensure thar it brings
the system closer to its goal. The performances of the
resulting network reproduce those of normal subjects, and
specific lesions of the architecture of the organism produce
patterns of errors typical of patents with frontal lesions
isee [42,43] for details).

The problem of consciousness

The previous sections deale with the interactions between
the association correx and sensory or motor areas. These
mteractions naturally lead o such issues as perception,
awareness, decision-making and consciousness. Already sev-
eral of the cognitive leaming tasks mentioned in the previous
section are often referred to as requining consciousness, or
‘conscious thinking'. However, the scientific investigation of
consciousness is stll in ics infancy, and it is much oo early o
predict which approach will be the most successful. Here, we
will restrict ourselves to describing a few artemprs to formal-
Iy implement limited aspects of consciousness.

% major step forward in chis investgaoon would be the
identification of what Crick and Koch eall “the neuronal
correlate of consciousness” (NCC) [46°]. This correlate 15
defined as a newvral architecture or an assembly of neurons
¢n which information is represented (if it 15 represented) in
‘he conscious space

In order to make the problem more cracrable, Crick and
hoch [46°] hypothesize that the many aspects of con-
swciousness, such as pain, emotion, thought, vision and
self-awareness, all employ similar mechanisms. Therefore,
one can choose the more readily experimentally accessible
problem of visual consciousness in the hope of peneraliz-
ing its solution to the other types of consciousness. The
authors suggest that visual consciousness in humans serves
o produce the best interpretation of a given stimulus or
scene, and to make it available to the parts of the brain thae
contemplate and plan voluntary motor actions. When visu-
ally aware of an object, the brain construces an explicir,
multilevel, symbolic interprecation in terms of representa-
vnons of the object’s features. Each of these feature
representations is coded by a localized, homogenous group
of neurons, and might itself be distributed over different
parts of the visual system. Both attention and some form of
shor-term memory seem likely to be involved in chis firse
step. Studying these mechanisms might help to locate the
NCC, which should, according to Crick and Koch [46°],
receive visual informacion and ctransmir it, without recod-
ing it, to parts of the brain that plan voluntary action.
[nvestgations of the connections beoween the highest lev-
ls of the visual hierarchy and the premoror and prefrontal
cortices are therefore indicated. Crick and Koch [46*] have
tenratively suggested that the NCC could be confined to
layers 5 and 6 of the correx.

Dynamic core model
Tononi and Edelman [47** 48] have followed a more theo-
retical and speculative approach in their investigations of

consciousness. They propose that the ncural correlate of
substrate of consciousness is an everchanging ensemble of
neurons, called the ‘dynamic core’, which is defined (buc
not formalized) as a subset of neurons that interace mare
strongly (by over an order of magnitude) with each other
than with other neurons. Weurons that can be part of chis
subset are the corticothalamic neurons ([49°°]; see also [50)
for a review of carly work on the role of thalamocortical
loops in consciousncss) as well as others from neighboring
regions. They envision that the recruiting of neurons into
the dynamic core takes place through the phase transition
mentioned earlier (see section From corrical organization
to perception). As presented above, Lumer e af. [30,31)
observed in their simulation of the thalamocortical system
the existence of roughly two types of stable activity : a low-
intensity background acrivity, and a large-amplitude
oscillatory mode of activity, Neurons are able to shift from
one dynamic to the other by what the authors call a *phase
transition’. Tononi and Edelman propose that this same
mechanism separates those neurons which participate to
consciousness from the others: neurons in the dynamic
core would be in the large amplitude, oscillatory mode,
while the others would be in a low activity mode, This
dynamic core would then originate in the dynamics of
brain activity and, more precisely, in the varying strength
of connections between neurons,

On the basis of this abstact construction, Tononi and
Edelman [47**48] have atcempred o address two key
properties of consciousness: integration and differentiation.
[ntegration defines the property of a conscious experience
to be unified and therefore not separable int independent
components (the authors give the example of the bistabili-
ty of ambiguous figures and of perceprual rivalry).
Differentiation represents the enormous number of states
available to consciousness over a short period of nme.

Integration, by definition, would be a property of the
dynamic core because it is bound together by the interac-
tions between its constituents. lc cherefore cannot be
divided into smaller independent clusters that would cach
account for a conscious state. In order to test this feature of
their theory, Tononi & af [51] introduced the ‘cluscer
index’, a marhemartical quantity that measures the extent
o which a neural process is unified, as opposed o being
just a collection of independent processes. Though suc-
cessfully applied to simulated networks, further
assumprtions and mathematical developments are required
before this index can be reliably used to test for the pres-
ence of functional clusters in biological networks. Indecd,
the synchronization of cortical and thalamocortical arcas
that is observed in brain imaging studies — which the
authors claim to be indircer evidence for their model
[48,51] — can be accounted for by other mechanisms.

In the framework of Tononi and Edelman’s medel, the
question of the differentiation of consciousness is directly
related o an estmarion of the number of states available o
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Figure 3
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Schematic representation of the global workspace model. The global
workspace is composed of distibuted and heawly interconnacted
neurons with long-range axons, It connects to a set of specialized and
modular perceplual, motor, memory, evaluative and attenticnal
processors. Figure reproduced from [53*]

the dynamic core. The authors attempt to answer this diffi-
cult question by introducing a quantitative measure of
neural complexity thar reflects the number of possible states
of a system ansing from interacuons between its con-
stituents [52]. Evaluation of neural complexicy for simulared
neural networks of diverse connectivity has shown thar the
value of neural complexity is low for networks of indepen-
dent or strongly coupled neurons, but that the value is
higher when neurons are grouped in strongly connected
clusters thar interace, in a patchy manner, by projecrions and
reentrant circuits. This latter connectivity is typical of the
brain and also of corticothalamic circuits. Therefore, the pro-
posed dynamic core should have access to a large number of
possible states and be very differentated.

Finally, according to this theory, consciousness can be seen
as the temporal evolution of the dynamic core along a tra-
jectory in the space of possible conscious states, which
shifts from state o state as information is integrated in the
thalamocortical system.

So far, Tononi and Edelman have approached the dynam-
ic core problem using physical arguments (such as phase
transition ) and staristical arguments (such as neuronal com-
plexity and cluster index). An objective test of the
explanative power of this theory {(which the authors do not
address) will be its ability o reproduce and account for
cognitive aspects of brain activity The dynamic core

hypothesis also does not describe the extent to which pro-
cessing can unfold unconsciously.

Global workspace model

In parallel with the modeling of Tononi, Edelman and col-
leagues [47°°,48], Dechaene, Kerszberg and Changeux
[53**] have more concretely tackled the issue of conscious-
ness by a neuronal implementation of the global
workspace that was proposed, on psychological grounds, by
Baars [54] and others (see Figure 3). To simplify, they dis-
tinguish two main computational spaces in the brain. First,
there is a processing network, which consists of a ser of
functionally specialized, parallel processors that arc capa-
ble of a large amount of encapsulated non-conscious
processing. The processors range from primary sensory
processors (e.g. V1) or unimodal processors that combine
mulriple inputs within a sensory modality, up to hetero-
modal processors (e.g. ‘mirror’ neurons; see [55]) char
extract highly processed and categorical informartion. Each
processor mobilizes wopologically distinet cortical domains
with local or medium range connections.

The second computational space is the global workspace,
consisting of a distributed ser of cortical neurons wich long-
range horizontal excitatory projecrions. They receive and
send back connections to homologous neurons in cortical
arcas enriched in this particular population of neurons.
Pyramidal neurons of layers 2 and 3 are known 1o extend
long-range cortico-cortical axons (including callosal axons,
which cross the mid-line). [t 15 thus proposed that the
extent to which a given arca contributes to the global
workspace would be simply related o the fraction of pyra-
midal neurons comprising layers 2 and 3 (this fraction is
particularly elevated in dorsolateral and inferoparieral cor-
tices). In addition, these cortical neurons are reciprocally
connected with layer 5 neurons, thus establishing self-sus-
tained vertcal circuits with thalamic nuclei.

The global workspace neurons are postulated to be the
seat of a ‘brain-scale’ activity that can be assumed to rep-
resent of to index the content of consciousness. This
activity is realized by the spontancous and coherent firing
of a set of ncurons from the workspace, together with
active top-down amplification (or extinction) of active
processor neurons belonging to one of five large classes:
perception, motor programming, long-term memory, eval-
uation, and arcention circuits. Only one such active
representation can occupy the workspace ar a given time
(i.e. reproducing the property of intcgration of conscious-
ness), where it can either remain and resist changes or be
spontaneously replaced by another. Access to evaluative
circuits can mobilize an auto-cvaluation loop that enables
new representations to be generated and tested (i.c. differ-
cntiation). Finally, perceptual areas enable the outside
world to influence workspace representations, while motor
circuits give the brain the ability o act or 1o communicats
these represenrarions in gestures and words. Attention cir-
cuits also allow the workspace to amplify or attenuatc




