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Discrete and continuous mechanisms of temporal
selection in rapid visual streams
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Humans can reliably detect a target picture even when tens of images are flashed every

second. Here we use magnetoencephalography to dissect the neural mechanisms underlying

the dynamics of temporal selection during a rapid serial visual presentation task. Multivariate

decoding algorithms allow us to track the overlapping brain responses induced by each image

in a rapid visual stream. The results show that temporal selection involves a sequence of

gradual followed by all-or-none stages: (i) all images first undergo the same parallel pro-

cessing pipeline; (ii) starting around 150ms, responses to multiple images surrounding the

target are continuously amplified in ventral visual areas; (iii) only the images that are sub-

sequently reported elicit late all-or-none activations in visual and parietal areas around 350

ms. Thus, multiple images can cohabit in the brain and undergo efficient parallel processing,

but temporal selection also isolates a single one for amplification and report.
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The brain is continuously bombarded by sensory inputs and
comprises efficient massively parallel architectures for
processing them. Only a subset of the available information

is selected in space and time1–4, and gated to awareness. Such
parallel followed by serial processing is exemplified in rapid serial
visual presentation (RSVP), an experimental paradigm in which
series of stimuli are briefly flashed on a screen (typically ~ 10
per second). Even at such a fast presentation rate, sentence
reading and picture recognition remain efficient5–7. Nevertheless,
under such conditions, the brain lacks the ability to fully process
each stimulus: subjective visibility is degraded and some stimuli
remain subjectively unperceived8. Stimuli also compete with each
other for access to higher resources, as evidenced for instance by
the fact that, during RSVP, the detection of a target stimulus
impedes the perception of a second target during almost half a

second (the Attentional Blink, AB)9. In the present study, we
explore how the brain selects relevant information from rapidly
changing visual inputs.

Recent neuroimaging evidence has started to shed light on how
relevant information is processed in RSVP. The identification of a
target stimulus involves a complex chain of brain processes that
can operate in parallel to another task for > 300ms10–12. Between
350 and 450 ms, relevant stimuli compete for attentional signals
arising from posterior parietal cortex10. Eventually, the selected
stimulus accesses awareness and triggers the synchronized acti-
vation of a capacity limited fronto-parietal network at ~ 450
ms10–13, where information is processed serially.

Although these results give a detailed picture of the sequence of
stages involved in the detection of a target stimulus, they leave
open the nature of the temporal selection process. Behavioral
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Fig. 1 Experimental design and behavioral evidence for gradual temporal selection. a Schematic representation of parallel and serial model of temporal
selection. From top to bottom are represented the stream of stimuli, the activity in sensory areas, the gradual selection hypothesis, and the discrete
selection hypothesis. Each colored curve represents the predicted brain response for one stimulus in the RSVP at a certain stage of processing. In both
models, stimuli are integrated in parallel at the sensory level. In the gradual selection model, attention selects multiple stimuli simultaneously. All stimuli
benefit from attentional enhancement but at varying degrees. By contrast, in the discrete selection model, attention is all-or-none and only one stimulus is
selected for further processing. b Schematic representation of the tasks. In the localizer task (upper part), one stimulus was presented and subjects had to
indicate their category. During the dual-task (lower part), stimuli were presented in a rapid visual stream. Subjects were instructed to first determine the
color of the very first stimulus (T1) and then identify the image surrounded by a green square (T2). Subjects made systematically three guesses for T2 by
order of preference (i.e., from the most probably correct response to the least probably correct). For copyright reasons, the stimuli used in the experiment
are replaced by representative images. c Distribution of subjects’ reports. Rows represent Guess 1, 2, and 3 and columns represent inter-target lags (blue,
magenta, red and orange for Lag 1, 3, 7, and 9, respectively). For each position in the RSVP, the proportion of trials was compared to the chance level. A
significant difference is indicated by an asterisk (*P< .05; **P< .01; ***P< .001). Error bars represent standard error to the mean. d Average (± standard
error) mode and variance (e) of subjects’ report distributions as a function of inter-target lag. For Guess 2 and 3 panels, trials were split according to Guess
1 position. Closed symbols: subjects reported T-1 as Guess 1; Open symbols: subjects reported T + 1 as Guess 1. Asterisks represent results of a repeated-
measures ANOVA with the inter-target lag as a within-subject factor: *P< .05; **P< .01; ***P< .001

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02079-x

2 NATURE COMMUNICATIONS | 8:  1955 |DOI: 10.1038/s41467-017-02079-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


studies of subjects’ response distributions during RSVP tasks
provided important insights on this issue. First, subjects’ reports
are distributed around the target position, which indicates that
subjects often misreport a stimulus either before or after the
target14–16. Second, the selection depends on the resources
devoted to the task as the shape of the report distribution is
distorted during dual–task interference14, 15. Third, when subjects
are asked to produce multiple guesses after each trial, all guesses
are distributed around the target position17, suggesting that
subjects can select multiple stimuli on each trial. The goal of the
present research is to bring brain-imaging evidence to bear on
these mechanisms. We aimed to separate two hypotheses about
the brain mechanisms that could explain these behavioral results.
First, it could be that attention selects multiple stimuli in parallel,
with a gradient of emphasis surrounding the preferred target
(“gradual selection”). The alternative hypothesis is that attention
selects a single item at a given time, but operates serially over
multiple items, enhancing the target stimulus and the sur-
rounding distractors one after the other (“discrete selection”,
Fig. 1a). Separating those two possibilities is fundamental to
understand the overall parallel/serial architecture of vision and
visual awareness.

The challenge in separating these models lies in the experi-
mental paradigm itself, where multiple stimuli are presented at a
high rate. As a result, brain responses to successive stimuli
overlap in time. Here, we address this problem by combining
magnetoencephalography with multivariate pattern analyses. In
agreement with a previous neurophysiological study in mon-
keys18, we find that brain activity, at any instant, contains over-
lapping but decodable information about several successive
images, and we use decoding to separate parallel and serial stages
of attentional selection.

Specifically, on each trial, subjects are presented with a rapid
stream (stimulus onset asynchrony: 116 ms) of thirteen successive
images that can belong to one of five categories (colors, faces,
places, body parts, or objects; Fig. 1b). Taking advantage of the
well-characterized patterns of brain activity induced by each
category, category-selective classifiers are trained to recover the
brain responses elicited by each image independently of the other
stimuli. Classifiers are trained on data from a localizer task in
which the same stimuli are presented one at a time, and are then
applied on data from a dual-task experiment in which subjects are
instructed to identify two target images (T1 and T2) embedded in
the rapid stream (Fig. 1b). By examining how brain activity is
amplified for pictures at and surrounding the targets, our goal is
to provide a detailed description of how multiple stimuli are
simultaneously processed, and how some are selected for further
report. The “gradual selection” hypothesis of attentional selection
predicts that several images around the target should be simul-
taneously selected. If this hypothesis is correct, the sensory
activity related to multiple stimuli should be simultaneously
amplified and sustained by attentional signals. By contrast, the
“discrete selection” hypothesis predicts that images are selected
one at a time, in correspondence with the subject’s report.
According to this model, only activations elicited by reported
stimuli should be amplified by attention, and their activities
should not overlap in time. To anticipate on the results, both
patterns were found but at distinct times in the processing
pipeline.

Results
Distributions of reports in rapid visual streams. Behaviorally,
subjects were asked to first determine the color of a patch (T1),
and then attempt to identify an image in a rapid visual stream
(target T2, surrounded by a green frame). They responded by

making three successive guesses about the target (see Fig. 1b and
Method). Decreasing the temporal delay between T1 and T2
limited the attention devoted to T2 and thus allowed us to
investigate how selection processes depend on attentional
resources. Report accuracy–defined as trials where one of the
guesses corresponded to T2–strongly decreased with the inter-
target Lag (Repeated-measures analysis of variance (ANOVA), N
= 15, F(3,42) = 7.58, P<0.001), revealing an attentional blink
(Supplementary Fig. 1). The full distribution of reports (Fig. 1c)
revealed that subjects most often correctly reported the target
stimulus (position ‘T’) as Guess 1 at all lags (Repeated-measures
ANOVA, N = 15, F(3,42) = 1281, P<0.001, Fig. 1d) but also
erroneously reported a nearby distractor on a significant number
of trials (Fig. 1c). For instance, at lag 9, the stimulus at position
‘T-1’ was reported more often than chance (One-sample t-test, N
= 15, t(14) = 2.6, P =0.01). In fact, the selection processes appeared
less precise under attentional constraints, as indicated by an
increased variance in Guess 1 at short inter-target lags (Fig. 1e,
Repeated-measures ANOVA, N = 15, F(3,42) = 27.89, P<0.001).
Regarding Guess 2, the distribution was centered on stimuli close
to and preceding the target at long but not at short lags (Lag 9:
Mo = 7, SD = 2.49; Lag 7: Mo = 5, SD = 2.06; Lag3: Mo = 5, SD =
3.42; Lag 1: Mo = 5, SD = 3.45; Repeated-measures ANOVA, N =
15, effect of inter-target lag: F(3,42) = 1.66, P =0.19). At lag 3, the
frequency of report was similar for all positions–over the group,
only the target position was marginally above chance (One-
sample t-test, N = 15, t(14) = 1.77, P =0.049). Similarly, at lag 1,
only the stimulus following the target had a frequency of report
above chance (One-sample t-test, N = 15, t(14) = 2.75; P =0.008).
The variance of Guess 2 increased with decreasing lag although
this effect was not significant (Fig. 1e, Repeated-measures
ANOVA, N = 15, F(3,42) = 3.63, P =0.13). Finally, the distribu-
tion of Guess 3 was not as clear cut as for Guess 1 and 2. The only
notable pattern was that stimuli at positions T−2 for lags 3, 7, and
9, and at position T + 2 for lag 1 had a frequency of report slightly
above chance level (One-sample t-test, N = 15, all P< .05). These
results support the idea that more than one stimulus can be
selected at each trial17, and that resource depletion degrades the
efficacy of selection processes and makes distractors more likely
to interfere.

Although the distribution of reports was on average centered
on the target position, it could be that the locus of attention
varied from trial to trial and that the successive guesses are
centered on this locus. Alternatively, the guesses might reflect
samples from a single distribution systematically centered on the
target location on each trial. To separate these hypotheses, we
examined whether the position of Guess 1 systematically
influenced subsequent guesses. When participants erroneously
reported the stimulus T + 1 as their Guess 1, the stimulus most
often reported as Guess 2 was the target stimulus (Fig. 1d and
Supplementary Fig. 2, Repeated-measures ANOVA, N = 15,
F(3,36) = 9.8, P<0.001). A similar but not significant effect was
observed when subjects reported the stimulus T-1 as Guess 1
(Repeated-measures ANOVA, N = 15, F(2,28) = 1.71, P =0.2).
This suggests that there was no influence of Guess 1 on Guess
2 (Fig. 1d and Supplementary Fig. 2). As for Guess 3, all stimuli
had similar report frequencies, whether subjects reported
stimulus T − 1 or T + 1 as Guess 1, except for the stimulus at
target position in lag 9 condition when subjects reported stimulus
T − 1 as their first guess (Supplementary Fig. 2, One-sample t-test,
N = 15, t(14) = 2.44; P =0.01). Those results, together with earlier
ones17, are compatible with the hypothesis that guesses 1 and 2
behave as independent samples from the same distribution. As
noted in the introduction, however, they are consistent both with
the hypothesis that attentional selection operated gradually and in
parallel over multiple stimuli surrounding the target position, and
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with the opposite hypothesis that the reported items were
recovered serially in a discrete manner.

Decoding category-selective brain responses. MEG recordings
during the localizer task revealed activity originating in the visual
cortex and in the ventral part of the visual stream ~ 100–150 ms
after stimulus onset (Supplementary Fig. 3). This activity pro-
pagated to the posterior parietal cortex mainly in the right
hemisphere. By 450 ms, late activations were found in the orbi-
tofrontal cortex. The systematic comparison of each category
against the others revealed category-specific patterns of activity
evolving in time, as depicted in Fig. 2a. For instance, at ~ 150 ms,
face stimuli induced strong bilateral activations in the fusiform

and occipital cortices while body part stimuli activated the left
occipital and inferotemporal cortex.

Multivariate pattern analyses provided further insights on the
dynamics of category-specific brain responses. Fig. 2b shows that
all classifiers trained between 90 and 530 ms performed above
chance level (signed rank tests, N = 15, all PFDR<0.05) with a
maximum classification performance observed at 160 ms (M
=0.32, SD =0.7; chance =0.25). Confusion matrices derived from
the decoding analyses revealed that classifiers were specific to a
category and no systematic overlap between categories was
observed (Supplementary Fig. 4a). Some classifiers performed
better than others (e.g., mean classification performance between
150 and 200 ms: 47%, 43%, 32% and 38%, respectively for face,
places, objects and body parts, ANOVA on aligned rank
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transformed data, N = 15: F(3,42) = 20.55, P< 0.001). However,
they all had similar onsets and offsets (defined as the first and last
points exceeding the 50th percentile of the distribution, measured
on group averaged data): 110–470, 90–450, 120–450, and 90–500
ms, respectively for face, place, object, and body parts categories
(Supplementary Fig. 4b).

To unravel the full dynamics of the underlying sequence of
processes, each classifier was systematically tested for general-
ization across time19 (see Methods section). The ability of a
classifier to perform above chance at other time samples allows
estimating the latency and the duration of a given pattern of
activity. As can be seen in Fig. 2b, classifiers’ temporal profiles
exhibited a mixture of a diagonal and a square shape. Classifiers
at 120 ms had above-chance performance over a relatively short
period (80–160 ms, signed rank tests, N = 15, all PFDR<0.05). At
170 ms, the time course exhibited a sharp peak between 80 and

210 ms and then decayed down to chance. Interestingly, the same
classifier again performed above chance from 320 ms up to the
end of the epoch, indicating that the patterns of brain responses
had similar features during these two periods of time. This
biphasic pattern, suggesting a late reactivation, seemed unique to
the classifiers trained between 170 and 210 ms. Beyond ~ 300 ms,
classification performance decreased, but the time course
remained steadily above chance level up to the end of the trial
(signed rank tests, N = 15, all PFDR<0.05). Note that classifiers
trained at 170 ms and applied at late latencies (> 400 ms) had
better performance than classifiers trained and tested at these late
latencies. This suggests that the two classifiers shared similar
features but the signal-to-noise ratio (SNR) at 170 ms was better
than at late latencies.

The dynamics revealed by the decoding analyses together with
the patterns of activity observed at the source level show that
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stimulus categories were processed through a series of cognitive
operations, starting with fast and short-lived processes in the
ventral visual cortex, and ending by stable and sustained
activations involving visual and parietal areas. Next, the very
same classifiers were directly applied to the RSVP data in order to
examine how the sequence of brain processes was affected by the
high presentation rate.

All stimuli undergo the same parallel processing pipeline.
Classifiers trained in the localizer task were applied to RSVP data
in order to track the processing stages of each stimulus presented
in the RSVP. The results show that stimulus categories can be
decoded from 90ms after stimulus onset up to 520 ms (signed
rank tests, N = 15, all PFDR<0.05, Fig. 2c). The classification
performance was however lower during RSVP than during the
localizer task between 100 and 530ms (all PFDR<0.05, Supple-
mentary Fig. 5). The generalization of classifiers across time
revealed dynamics similar to what was observed during the
localizer task. Classifiers trained at early latencies (< 170 ms) had
similar onsets and offsets during RSVP and during the localizer.
For instance, a classifier trained at 120 ms performed above
chance from 90 to 190ms in the RSVP task and from 80 to 160
ms in the localizer task. At 170 ms, classifiers performance was
above chance from 80 to 230 ms as in the localizer task but the
second, sustained phase of activity was not observed (Fig. 2c and
Supplementary Fig. 5). During this second phase of activity, the
classification performance was lower in the RSVP task compared
to the localizer task from 270 ms up to the end of the epoch
(signed rank tests, N = 15, all PFDR<0.05) and barely different
from chance level. In fact, the mean classification performance
between 400 and 550 ms was lower compared to the localizer task
(signed rank test, N = 15, W = 97; P =0.03) and not different from
chance level (signed rank test, N = 15, W = 72, P =0.52). Finally,
brain responses at later latencies had mainly smaller amplitude
and shorter durations (Fig. 2c and Supplementary Fig. 5). For
instance, classifiers trained at 320 ms performed above chance
between 130 and 480 ms during the localizer task but mainly
between 150 and 310 ms during the RSVP (signed rank tests, N =
15, all PFDR<0.05). The classification performance was sig-
nificantly stronger in the localizer task compared to the RSVP
between 170 and 440 ms (signed rank tests, N = 15, all PFDR
<0.05). These results show that part of the brain networks soli-
cited during the localizer task were also recruited during RSVP
even though the amplitude of brain responses was lower.

Figure 2d shows an overlay of the temporal generalization
matrices for each of the 12 successive images following T1 in the
rapid stream. A first striking aspect in this figure is that it is
possible to decode the brain responses to each stimulus separately
from the others. Second, the processing of each stimulus is highly
systematic, starting at ~ 90 ms and ending around ~ 350 ms.
Third, it appears that at any given moment in a trial, the brain
activity contains multiple overlapping codes for distinct stimuli at
different stages. For instance, the activity at 1190 ms after RSVP
onset already contains decodable information about the 9th
image: classifiers between 80 and 200 ms performed above
chance. However, the 8th and 7th image can still be decoded
from the same data, but only using classifiers trained at later
stages (150–250 ms and 270–330 ms respectively, signed rank
tests, N = 15, all PFDR<0.05). Interestingly, even stimuli presented
after the second target (i.e., after the two tasks were completed)
were processed just like any other stimulus in the stream, thus
demonstrating that these processes are task-independent. These
findings suggest the existence of a “pipeline” of neural processes
which is automatically deployed each time a stimulus is presented
(independently of the task being performed), even if the subject’s

attention is focused elsewhere. We next examined what brain
processes characterized target selection.

Target stimuli elicit sustained brain activations. In order to
track target-selective brain responses, we measured the classifi-
cation performance for target stimuli at position 1, 3, 7, and 9 and
compared it to trials where the stimulus at the very same position
was not a target. Figure 3a shows the classification performance
for target and non-target stimuli averaged across lags. The cate-
gory of the target was decodable from 70ms until the end of the
epoch while the category of non-target stimuli could be decoded
only from 60ms to 340 ms (signed rank tests, N = 15, all PFDR
<0.05). Classification performance was significantly stronger for
target than for non-target stimuli from 330 to 420ms (signed
rank tests, N = 15, all PFDR <0.05). This indicates that a stimulus
undergo additional processing stages when it is relevant to the
task.

Temporal generalization revealed that classifiers trained at 120
ms exhibited a sharp peak of performance that was similar for
target and non-target stimuli. At a training time of 170 ms, a
biphasic response was observed for target stimuli with a first
response between 70 and 230 ms and a second, sustained one
between 440 and 720 ms (Fig. 3b, signed rank tests, N = 15, all
PFDR<0.05). This pattern is similar to what was observed in the
localizer task and shows that, when the stimulus was a target, the
networks in the two phases of response shared similar features. By
contrast, when the stimulus was not a target, only the first phase
was observed (signed rank tests, N = 15, all PFDR>0.11). The
classification performance was steadily better for target compared
to non-target stimuli from 530 ms to the end of the epoch (signed
rank tests, N = 15, all Puncorr<0.05) although this effect barely
survived corrections for multiple comparisons (signed rank tests,
N = 15, PFDR ranging from 0.04 to 0.36). A similar biphasic
response was observed for classifiers trained at 220 ms with a first
phase between 90 and 310 ms and a second one between 520 and
570 ms (signed rank tests, N = 15, all PFDR<0.05), and stronger
classification performance for target than for non-target stimuli
between 510 and 590 ms (signed rank tests, N = 15, all PFDR
<0.05). Classifiers trained at 270 and 320 ms revealed similar
responses for target and non-target stimuli although target
stimuli induced slightly stronger responses between 480 and 500
ms (signed rank tests, N = 15, all PFDR<0.05). A marked
difference was observed for classifiers trained at 370 ms: for
target stimuli, classifiers performed above chance from 140 ms up
to the end of the epoch, and significantly stronger than for non-
target stimuli from 270 to the end of the epoch. By contrast, non-
target stimuli induced only short brain responses from 180 and
260 ms (Fig. 3b, signed rank tests, N = 15, all PFDR<0.05). These
results suggest that, following initial automatic processing, target
images induced additional brain activity that involved both a
reactivation of early stages and additional late stages that were
sustained over time.

Even though the spatial precision of the MEG signal is limited,
we attempted to localize the brain areas that provided target-
related informative activity. To this end, the classifiers’ weights
were projected into an interpretable source activation space (see
method). We found that the location of the informative activity
depended not only on the category of the presented stimulus, but
also on the processing stage (Fig. 3c). At early stages (150–200
ms), the information was located in high-order visual areas such
as the right fusiform gyrus for face stimuli or the left fusiform and
parahippocampal cortices for place stimuli. During late proces-
sing stages (350–400 ms), decodable information was much more
scattered. The posterior parietal cortex, the visual cortex and to a
lesser extent the frontal cortex contributed to the classification of
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stimulus categories. For instance, information regarding face
targets were found not only visual areas (occipital and infero-
temporal cortices) but also in parietal (inferior and superior
parietal cortex) and frontal areas (superior frontal gyrus, central
and precentral areas).

These results reveal that target processing involves (i) a
pipeline of automatic sensory processes combined with (ii)
specific maintenance of early sensory activity, and (iii) late task-
related sustained activity. Next, we attempted to better char-
acterize the properties of early and late target-specific activity in
order to distinguish the gradual vs discrete selection hypotheses.

Early target responses reflect gradual selection. According to
the gradual selection hypothesis, multiple stimuli are selected on
each trial. This hypothesis predicts that sustained brain responses
should be observed for both the target and temporally nearby

distractors. We focused our analyses on stimuli at positions T-4
to T + 2, where T is the ordinal position of the target, averaged
across lags 7 and 9.

Classifiers trained at 170 ms revealed biphasic responses for
stimuli at positions T–1 and T–2, i.e., a first sharp peak followed
by a sustained activity extending over several hundred milli-
seconds, which were highly similar to the one observed for target
stimuli (Fig. 4a). Specifically, relative to target onset, the stimulus
at position T–2 elicited above-chance classification performance
between −152 and + 8ms, and between 278 and 578 ms. Similarly
for the stimulus at position T–1, we observed above-chance
classification performance from −46 to 114 ms and from 354 to
724 ms. Finally, above-chance classification performance for the
target stimulus was observed from 80 to 240ms and from 410 to
690 ms (signed rank tests, N = 15, all PFDR<0.05, see Fig. 4b).
Thus, both the peak and the sustained phase of activity followed
the order of presentation of the stimuli. Crucially however, the
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second phase of activity occurred after target onset for all three
stimuli. Furthermore, at least between 410 and 578 ms (relative to
target onset), category information for stimuli T–2, T–1 and T
could be decoded simultaneously and from the same data with
classifiers trained at 170 ms. This is evidence for gradual, parallel
processing in the early stages of temporal selection.

The average classification performance between 400 and 550
ms after stimulus onset was above chance for stimuli at positions
T, T–1, and T–2 (Fig. 4c, signed rank tests, N = 15,
W = 108, PFDR =0.028; W = 103, PFDR =0.04 and W = 101, PFDR
=0.047 respectively). Distractors at positions T–1 and T–2
induced responses similar to the one observed for target stimuli

(T vs T–2, signed rank tests, N = 15: W = 58, PFDR =0.93 and T vs
T–1: W = 62, PFDR =0.93, respectively). For each of these stimuli,
the classification performance seemed slightly stronger compared
to stimuli at positions T−4 (signed rank tests, N = 15, all
PFDR<0.056), T + 1 (signed rank tests, N = 15, all PFDR<0.05),
and T + 2 (signed rank tests, N = 15, all PFDR<0.1). To further test
that this effect reflects within-trial modulations and not between-
trial variance, we conducted the same analyses only on trials
where subjects correctly reported the target stimulus as Guess 1.
Although the reduction in the number of trials limits the
statistical power of this analysis, we found that the average
classification performance between 400 and 550ms after stimulus
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onset was significantly above chance for stimuli at positions T
and T-2 when considering uncorrected p-values (signed rank
tests, N = 15, W = 95, Puncorr =0.048 and W = 99, Puncorr =0.026).
Stimuli at positions T, T−1, T–2 also elicited stronger responses
compared to stimuli at position T + 1 (signed rank tests, N = 15,
all Puncorr<0.05). No difference was found with stimuli at
position −4 (signed rank tests, N = 15, all PFDR>0.15) and + 2
(signed rank tests, N = 15, all PFDR>0.11). Together, these results
suggest that target-selection processes affected simultaneously the
processing of multiple nearby distractors. This is consistent with
the gradual selection hypothesis in which attention would affect
the processing of multiple stimuli simultaneously on each trial.

To test whether the observed sustained activations were related
to subjects’ attention and reports, we examined the effects of
inter-target lag and subjects’ order of guesses on the mean
classification performance between 400 ms and 550 msms for
each guess and for unreported stimuli (i.e., a stimulus not
reported by subjects that was randomly selected on each trial).
We found a main effect of inter-target lag (Repeated-measures
ANOVA on aligned rank-transformed data, N = 15, main effect:
F(3,42) = 4.38, P = .009). When averaged across Guess 1 and
Guess 2, which corresponded to actual report of the subject rather
than random guessing, the classification performance varied as a
U-shape function of inter-target lag (Fig. 4d). The classification
performance decreased from lag 9 to lag 3 (signed rank tests,
N = 15, W = 17, PFDR =0.036). In fact, the performance at lag 3
was not different from chance (signed rank tests, N = 15, W = 84,
PFDR =0.72), unlike the performance in the other lag conditions
(signed rank tests, N = 15, W = 114, PFDR =0.008, W = 105,
PFDR =0.033 and W = 112, PFDR =0.008 for lag 1, 7, and 9,
respectively). This result shows that these sustained brain
responses were affected by attentional constraints and supports
the idea that these are linked to attentional modulations.

Next, we examined the link between sustained brain responses
and subjects’ behavior. The main effect of guesses did not reach
significance (Fig. 4e, Repeated-measures ANOVA on aligned
rank-transformed data, N = 15, F(3,42) = 2.33, P =0.09) and there
was no significant interaction with the inter-target lag (F(9126) =
1.64, P =0.11). However, the classification performance was
significantly above chance for Guess 1 and 2 (signed rank tests,
N = 15, W = 112, PFDR =0.01 and W = 117, PFDR =0.006, respec-
tively) but not for Guess 3 and unreported stimuli (W = 67,
PFDR =0.72 and W = 84, PFDR =0.31, see also Supplementary Fig.
5). In fact, Guess 1 and 2 induced responses of similar amplitudes
(W = 68; PFDR =0.72), slightly stronger than Guess 3 (G1 vs G3:
W = 96, PFDR =0.1; G2 vs G3:W = 103, PFDR =0.04). Finally, Guess
3 did not differ from unreported stimuli (W = 39, PFDR =0.38).
These results show that these sustained brain responses were only
partially related to subjects’ behavior: although they were related
to the selected stimuli, they did not reflect subjects’ order of
preference.

Together, these results reveal that temporal selection first
proceeds through a gradual attentional enhancement centered on
target position, but spreading to temporally nearby stimuli.
Temporal attention can thus affect the processing of multiple
stimuli in parallel.

Late target responses reflect discrete selection. Target stimuli
did not only elicit a maintenance of initial brain responses but
also a late activity (> 350 ms) originating from visual, parietal
and frontal areas. However, this activity was not observed for
nearby distractors (Figs. 4a and 5a). In fact, at 370 ms, the brain
responses elicited by these stimuli were only transient and short-
lived. Only the reported target stimulus elicited a strong and
sustained activity (Fig. 5a, signed rank tests, N = 15, all

PFDR<0.05). Examining the average classification performance
between 400 and 550 ms after stimulus onset revealed that the
response to the target stimulus was stronger than the ones
observed for all other stimuli (signed rank tests, N = 15, all PFDR
<0.02) and the only one above chance (signed rank tests, N = 15,
W = 120, PFDR =0.001, Fig. 5b). This is in contrast to what was
observed with classifiers trained at 170 ms for which we observed
an effect of the temporal proximity of the target stimulus.

To investigate whether these late brain responses were
influenced by attentional constraints, we tested the effects of
inter-target lag on the mean classification performance over a
period of 400–550 ms after stimulus presentation for each guess
and for unreported stimuli. We found a significant main effect of
inter-target lag (Fig. 5c, Repeated-measures ANOVA on aligned
rank-transformed data, N = 15, F(3,42) = 7.89, P<0.001). When
averaged across Guess 1 and 2, the performance was significantly
lower in lag 1 condition compared to lag 9 (signed rank tests,
N = 15, W = 14, PFDR =0.027). No other difference between lag
conditions was observed (all PFDR>0.11). The performance at lag
1 and 3 did not significantly differ from chance (W = 91, PFDR
=0.14; W = 96, PFDR =0.1), while it was above chance for long lag
conditions (W = 114, PFDR = 0.006; WW = 120, PFDR =0.001 for
lag 7 and 9, respectively). Thus, attentional constraints also
affected late stages of temporal selection.

We next examined the effect of subjects’ behavior. We found a
main effect of Guesses on classification performance (Repeated-
measures ANOVA on aligned rank-transformed data, N = 15,
F(3,42) = 3.23, P =0.03) but no interaction with the inter-target
lag (F(9126) = 1.34, P =0.22). When averaged across lag condi-
tions, the classification performance was significantly stronger for
Guess 1 than unreported stimuli (signed rank tests, N = 15,
W = 111, PFDR =0.01). Similar but weaker differences were
observed for Guess 2 and Guess 3 compared to unreported
stimuli (Guess 2: W = 97, PFDR =0.1; Guess 3: W = 95, PFDR =0.1).
In fact, the performance linearly decreased from Guess 1 to
unreported stimuli (Fig. 5d, mean slope of a linear regression with
Guesses: M = 1.4e−3, s.e.m.: 4.64e−4; signed rank tests, N = 15,
W = 110, P =0.003). Only Guess 1 and 2 elicited reliable sustained
activity (Fig. 5d and Supplementary Fig. 6, Guess 1: W = 119,
PFDR =0.001; Guess 2: W = 105, PFDR =0.028; Guess 3: W = 93,
PFDR =0.11; Unreported: W = 46, PFDR =0.48). This shows that the
multiple guesses produced by subjects were differentiated mainly
by the amplitude of late brain responses in a distributed network
including visual, parietal and, to a lesser extent, frontal areas.

Taken together, these results show that, among the stimuli that
benefit from attentional enhancement, only those that subjects
eventually report undergo an additional late processing stage.
Both gradual and discrete selection exist: target selection
processes starts with a gradual amplification of early brain
responses and ends with late discrete stages tightly linked to
subjects’ order of preference.

Discussion
The present study aimed at understanding how the brain pro-
cesses, selects and gates relevant information to awareness when
it is bombarded by visual inputs. Previous studies using RSVP
have shown that the efficiency of brain areas to process external
information varies along the ventral stream, with lower-order
areas processing information at a faster rate than higher-order
areas20, 21. In the present study, we explored the dynamics of the
selection mechanisms. Specifically, we tested whether temporal
selection operates on multiple stimuli in parallel (“gradual selec-
tion”) or whether stimuli are selected one after the other (“discrete
selection”). So far, the existence of such mechanisms in the brain
was only indirectly suggested15, 17. The present study provides
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strong empirical evidence that both hypotheses are true but occur
at different times. When multiple stimuli are flashed, the brain is
able to efficiently process each stimulus. The multiple repre-
sentations coexist in the visual cortex for several 100 ms, but at
different processing levels within the same pipeline. When one of
these representations is task-relevant, the selection starts by a
continuous attentional enhancement of multiple stimuli around
the target position. Then, a subset of these stimuli accesses
additional discrete processes that allow conscious report. These
results suggest that temporal selection involves at least two suc-
cessive operations: a parallel probabilistic selection followed by a
serial sampling. This provides new perspective on how the human
brain reliably extract relevant information from overwhelming
external inputs.

The high spatial selectivity of decoding algorithms allowed us
to separate, for the first time to our knowledge, category-related
brain responses to each stimulus in a rapid visual stream. The
results revealed that all stimuli elicited a sequence of brain
responses with highly similar temporal profiles. This suggests that
these stages of processing can be deployed in parallel to another
task, even under attentional constraints. It does not, however,
imply that each of these early stages can process multiple stimuli
simultaneously. Rather, our data show that the representations of
multiple stimuli can coexist in sensory areas but at different stages
of processing. Altogether, these results suggest that stimuli pre-
sented at high presentation rate are systematically integrated via
an automatic, parallel and effortless pipeline of processes.

Our results revealed that the classification performance was
overall smaller in the RSVP task than in the localizer task,
probably due to a partial masking effect22. Importantly, we also
found that the sustained activations in visual areas observed in
the localizer task were specifically disrupted during RSVP, at least
for non-target stimuli. Previous studies have shown that back-
ward masking leaves intact the early feedforward activity of V1
neurons and mainly disrupts the later and sustained part of the
activity linked to feedback attentional signals from higher
areas23–25. This is consistent with monkey studies which showed
that the effects of attention on higher-order visual areas are
essentially observed between 100 and 300 ms after stimulus
onset26. The present results suggest that, for irrelevant stimuli,
feedback attentional signals were disrupted during RSVP, while
feedforward processing was left unaffected. To what extent sen-
sory information continues to be processed normally through
these feedforward processes during RSVP remains an open
question. Our data merely indicates that it is processed up to the
categorical level (“gist recognition”), but this need not imply that
precise identification was achieved. There is evidence that feed-
forward processing allows the brain to quickly extract complex
information such as category6 or meaning5 from rapidly changing
visual inputs. By contrast, as further discussed below, only the
stimuli surrounding the target elicited additional processes
including feedback attentional signals and were processed up to
complete identification.

When a target stimulus was presented, a specific activity in the
visual cortex was elicited around 150–200 ms and sustained over
several 100 ms. This activity was modulated by the amount of
attention devoted to Task 2, and observed simultaneously for the
target stimulus and for nearby distractors during an extended
period of time. This rejects the hypothesis of a discrete selection
mechanism and rather shows that temporal attention gradually
selects multiple stimuli in parallel on each trial. That stage may
therefore correspond to the forming of a continuous probability
distribution over potential target stimuli, from which subsequent
reports are sampled, as inferred from earlier behavioral experi-
ments17. The width of this distribution, and thus the number of
stimuli affected by attention, might not be fixed and could instead

depend on the task. It is plausible for instance that the attentional
time window would shrink or expands depending on subjects’
goal.

In contrast with early selection processes, late brain responses
(370 ms) exhibited a discrete profile. Sustained brain responses in
visual, parietal and frontal areas were specifically observed for the
target stimulus while nearby distractors elicited only short-lived
and transient activity. This sustained activity was only observed
for reported stimuli, and its amplitude decreased under atten-
tional constraints. Furthermore, this activity also reflected sub-
jects’ order of guesses. This is fully consistent with the idea of a
discrete, all-or-none sampling process and rejects a gradual
selection. Assuming that subjects only reported stimuli that they
were conscious of, these late “discrete” brain responses should be
related to either the conscious representation of the stimulus or
its gating into awareness. Taken together, the present results show
that the ability of the brain to select relevant information among
multiple coexisting representations relies on two successive
operations: first, a global and non-specific attentional enhance-
ment of the multiple representations present in the sensory cor-
tex; second, a discrete maintenance of a subset of these
representations, consciously reportable, and weighted by their
probability of corresponding to the target stimulus.

Our interpretation of the present findings builds on previous
research which provided evidence that representations of multiple
stimuli are actively maintained in a perceptual buffer and com-
pete for access to awareness10, 11, 27–29. Eventually, one of these
representations will trigger the activation of all-or-none conscious
processes30–32. When resources are limited (i.e., when the inter-
target lag is short), the attentional amplification is weaker and
more distractors are likely to win the competition. In that case,
the identification of the target stimulus might be degraded or
alternatively, a distractor stimulus could be erroneously bound to
the target feature (the green square) and identified in place of the
actual target stimulus.

The fact that the number of conscious reports that subjects can
produce in a single trial is limited (around 2 or 3)17 might result
from the serial characteristic of conscious access10, 11. The con-
scious representation of a stimulus takes time. Because the sen-
sory information in the buffer decays over time, each iteration
(i.e. each conscious report) decreases the chance that an addi-
tional stimulus will be successfully retrieved.

The present data also has implications for current theories of
dual-task interference. Research on the AB revealed that the
visibility of the second target is degraded when the inter-target lag
decreases. The AB typically reaches its maximum at lags 2–3 (i.e.,
200–300 ms after the first target) but surprisingly subjects’ per-
formance recovers at the shortest lag (the so-called
‘lag-1 sparing’). It has been debated whether at lag-1 the first
and the second target are perceived serially as two separate events,
or in parallel as a single perceptual event, which would imply that
multiple stimuli can be consciously perceived simultaneously33–
35. The “boost and bounce” model of the AB for instance proposes
that the target stimulus triggers an attentional enhancement
which affects not only the target but also the successive stimuli
presented at the same location36. After this initial “boost” which
gates sensory information into working memory, inhibitory
feedback signals would “bounce” subsequent irrelevant sensory
information (i.e., distractor stimuli)36. According to the model,
the consolidation of T2 in working memory would only proceed
once the attentional set switches from T1 to T2. Therefore, T2
would benefit from attentional enhancement if it shares features
with T1, but its consolidation would nevertheless be delayed.
According to the model, the attention devoted to T2 at lag-1 is
sufficient to explain why its perception is spared. Interestingly,
another dominant model of the AB the “simultaneous type, serial
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token” (ST2) model37 makes a different prediction: according to
this model, after an initial attentional enhancement, T1 and
T2 stimuli would enter awareness simultaneously if T2 is pre-
sented at lag−1. T2 perception would therefore be spared at lag−1,
not only because it receives attentional signals but also because T1
and T2 access the same conscious episode. The present results are
compatible with the Boost and Bounce model and support the
serial view: at lag 1, consecutive stimuli benefit from parallel
attentional enhancement, but their access to awareness is serial
(as also suggested by other studies11, 29).

The present findings show how a computational architecture
that involves a succession of gradual and all-or-none processes
allows the brain to select relevant information even when it is
bombarded by visual inputs. We provide evidence that the visual
cortex acts as a perceptual buffer in which multiple representa-
tions temporarily coexist. Attention allows a gradual maintenance
and amplification of a subset of these representations. Late dis-
crete processes samples information from the buffer and broad-
cast it to consciousness and working memory in an all-or-none
manner. Although the present study focuses on the temporal
domain, it also connects to other aspects of human cognition.
There is evidence that a similar succession of parallel probabilistic
selection followed by serial sampling exist in spatial attention
tasks17, 38, sentence comprehension28, or the chaining of mental
operations39. Thus, the mechanisms depicted in our study seem
to reflect general mechanisms by which the brain selects infor-
mation and gates it to awareness so that it can be further
manipulated.

Methods
Subjects. Sixteen subjects (11 male, 20–35 years of age) with no history of neu-
rological or psychiatric disorders participated to the experiment and received 40 €
for their participation. The study was approved by the ethical committee (“Comité
de Protection des Personnes”) and all subjects gave informed and written consents
before the experiment. Subjects were naive with respect to the task and all had
normal or corrected to normal visual acuity. One subject did not comply with the
task instructions and was therefore excluded from the analyses.

Stimuli and apparatus. Images of five categories (colored squares, grayscale
images of faces, places, body parts and objects), downloaded from the internet,
were presented at the center of the screen on a black background (for copyright
reasons, the stimuli used in the experiment are replaced by representative images in
Fig. 1b). Stimuli were back projected on a screen (refresh rate: 60 Hz) placed one
meter in front of the subject under standard overhead fluorescence lighting. The
experiment was controlled by a Pentium IV PC running PsychToolbox 3.0.9 with
Matlab 7.11. Subjects’ hand responses were recorded with a five button non-
magnetic response box (Cambridge Research System Ltd. Fibre Optic Response
Pad). Vocal responses were recorded with a microphone placed next to the head of
the subjects. The luminance was kept similar between stimuli (M = 29.87 lx, SD =
1.61) to ensure that subjects’ attention was not captured by the unusual luminance
of one of the stimuli. We also examined whether report accuracy was comparable
between categories. No significant effect of Category was observed on report
accuracy (Repeated-measures ANOVA, N = 15, F(3,42) =0.37, P =0.77).

Localizer task. The experiment started with two blocks (150 trials each) of a
single-task condition in which only one stimulus was presented on each trial (see
Fig. 1a). A trial started with the presentation of a fixation cross (duration:
800–1200 ms) immediately followed by the stimulus (duration: 84 ms, size: width:
12°, height: 7°). The fixation cross then reappeared for 1000 ms after which the
response screen was presented. A list of the possible categories was displayed on the
screen, each one associated with a specific button (e.g., 1: Face; 2: Place; 3: Body
part; 4: Object; 5: Color). Subjects were instructed to report the category of the
stimulus by pressing one of the five response buttons with their dominant hand.
The relation between response buttons and stimuli categories was randomly
shuffled on each trial so that subjects could not anticipate their motor response
before the presentation of the response screen.

Dual-task. Subjects then performed five blocks (60 trials each) of a dual-task
experiment in which, on each trial, 13 stimuli were presented in a rapid visual
stream (presentation rate: 8.6 Hz; stimuli onset asynchrony, SOA: 116 ms, stimulus
duration: 84 ms, see Fig. 1b). The first task was to identify the color of the very first
stimulus of the stream (T1, either a blue or a red square). For each of the following

12 stimuli, one image was randomly selected among 40 possibilities and could
either be a face, a place, body part or an object (10 possible stimuli per category).
The second task was to identify the stimulus that was surrounded by a green square
(T2). T2 was presented at one of four possible positions (1, 3, 7, or 9 with respect to
T1, thereafter referred to as Lag 1, 3, 7, and 9).

A trial started with the presentation of a fixation cross (duration: 600–800 ms)
followed by the first stimulus (T1) of the RSVP. At the end of the RSVP, the
fixation reappeared for 1000 ms. The response screen for Task 1 was then
presented. Subjects reported T1 color with their dominant hand by pressing one of
two buttons (e.g., 1: red; 2: blue). The association between colors and response
buttons was shuffled on each trial. Once a response for Task 1 was recorded, the
response screen for Task 2 appeared. All stimuli presented in the RSVP were
displayed simultaneously and evenly spaced on the screen. Each image was topped
by a letter that was orally named by subjects to indicate their choice. On each trial,
subjects made systematically three guesses to identify T2, that is, they orally named
three letters, each letter corresponding to one stimulus. Guesses were given by
order of preference, the first response corresponding to subjects’ first choice for T2
identity. A maximum of five seconds was allowed for Task 2 responses. Again, the
positions of the images on the screen were randomly shuffled on each trial so that
subjects could not anticipate their response before the presentation of the response
screen.

MEG recordings and preprocessing. Brain signals were continuously recorded
with a 306-channel whole-head magnetometer (Elekta Neuromag®, Sampling rate:
1000 Hz; High pass filter: 0.1 Hz; Low pass filter: 330 Hz) within a room shielded
against electromagnetic noise (Maxshield). MEG channels were organized in 102
triplets composed of one magnetometer and two orthogonal planar gradiometers.
In addition, electrocardiogram, and vertical and horizontal electro-oculograms
were also recorded for offline rejection of artefacts induced by eye movements and
heartbeat. Subjects’ head positions were tracked with four coils placed over frontal
and mastoïdian skull areas and measured at the beginning of each run with an
isotrack polhemus Inc. system. Head positions were then realigned on the position
of the first run in order to compensate for head movements between runs. Signal
Space Separation40 was applied to MEG signals in order to decrease the impact of
magnetic sources outside the sensor helmet. Magnetometers and gradiometers were
visually inspected to identify bad channels (1–7 bad channels across subjects).
Head movement compensation, bad channel correction and signal space separation
were applied using MaxFilter software (Elekta®).

Continuous data were then epoched with the Fieldtrip software41 (http://www.
fieldtriptoolbox.org/). Localizer epochs range from −200 to 600 ms after stimulus
presentation. Dual-task epochs started 500 ms before T1 onset and ended 2000 ms
later during. A baseline correction was applied for each trial and each sensor using
the time period before stimulus onset. A panel of measures (variance, minimum,
maximum, range) were then computed across sensors and displayed in scatter plots
in order to identify and reject the trials that might be artifacted (mean proportion
of rejected trials per subject: M = 4.68%, SD = 3.77). Independent component
analyses were applied separately for each type of sensor using fastICA algorithm42.
Components topographies were visually inspected and their time courses were
correlated with the EOG and ECG signals. The components related to the cardiac
artefact or to the eye movements were then rejected from the raw data.

Source localizations. An anatomical MRI (3T Siemens MRI scanner with a spatial
resolution of 1 × 1 × 1.1 mm3) was acquired for each subject. Subjects’ head were
digitized and their position inside the sensor helmet was tracked in order to cor-
egister the MEG signals and subjects’ anatomy. Gray and white matters were
segmented with the Freesurfer software43, 44 (http://surfer.nmr.mgh.harvard.edu/).
Cortical surfaces were reconstructed with Brainstorm©45. Models of the cortex and
of the head were used to estimate the current-source density over the cortical
surface. The forward model was computed with overlapping spheres analytical
model. Weighted minimum norm estimate (wMNE) was used for inverse modeling
(depth-weighting factor: 0.5) and dipole orientations were constrained to be nor-
mal to the cortical mantle. In order to perform group analyses, the source estimate
data of each individual were projected on the freesurfer standard anatomical
template (an average brain based on 40 subjects). Single subject MEG signals were
transformed in Z-scores relative to baseline and spatially smoothed over 10 mm.

MEG, MRI data, and analyses code are available upon request.

Multivariate pattern analysis. In order to facilitate data handling and decrease
the computation time of decoding analyses, MEG signals were filtered below 30 Hz,
down-sampled to 100 Hz, and the epochs used as training data set (the localizer
task) was restrained to −50 to 550 ms after stimulus onset. Multivariate pattern
analysis were applied in the sensors space at each time sample using the Scikit-learn
python package46. A 5-fold stratified cross-validation procedure was used for
within-subjects analyses. For a given time sample, the MEG data were randomly
split into 5 folds of trials and normalized (Z-score of each channel-time feature
within the cross-validation). The same proportion of each class was kept within
each fold (stratification). A linear support vector machine47 (SVM) (penalty
parameter C fixed to 1) was trained on 4 folds and tested on the left out trials in
order to find the hyperplane that best separated the classes without overfitting. A
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weighting procedure was applied in order to equalize the contribution of each class
to the definition of the hyperplane. The procedure was iteratively applied for each
time sample of each fold. The multiclass classification problem was decomposed
into multiple binary classification problems using a “one-vs-the-rest” strategy: for
each class, one classifier was fitted against all the other classes.

Classifiers trained at each time sample were also tested on their ability to
discriminate categories at all other time samples. The complete “temporal
generalization”19 results in a matrix of training time×testing time. The diagonal of
this matrix corresponds to classifiers trained and tested on the same time sample.
Training one classifier at time t and generalizing it at time t′ was performed within
the cross-validation so that t and t′ data came from independent sets of trials.

Classifiers were trained in the Localizer task to separate four stimulus categories
that could correspond to T2 in the Dual-task condition (i.e., face, place, body parts,
and objects). These classifiers were then applied to each trial of the dual-task
condition.

The weights assigned by classifiers to MEG sensors correspond to the degree to
which the signal measured by a given sensor is used by a classifier to separate
classes. Interpreting the weights is difficult because a high weight can be assigned
either because the sensor provides class-specific information or because it is useful
to decrease the noise. In order to project the classifiers’ weights into an
interpretable activation space, the SVM weights were multiplied by the covariance
of the data. In that space, MEG sensors with large amplitudes indicate a high
degree of class-specific information (for a full description and discussion of this
method, see ref. 48). Of particular interest, it is possible to apply on these activation
patterns standard source-localization methods to identify brain areas that
contributed the most to the separation of the classes (“Informative activity”) (see
Fig. 3c).

Statistical analyses. Classification was complemented with a continuous prob-
abilistic output49 representing the probability that the stimulus presented belonged
to one of the four T2 categories (the chance level was therefore 0.25). The classi-
fication procedure was repeated for each time point of each trial, resulting in a
matrix training time×testing time×trials×classes. The probabilities of correct clas-
sification were averaged for each stimulus in the RSVP and for each trial, thus
resulting in a matrix train time×test time×stimulus. Trials were then averaged
according to the condition or report of interest (e.g., Lag 9 trials).

Statistical analyses were performed across subjects using signed rank tests with a
threshold of significance set at α =0.05 to assess whether classifiers could predict the
trials’ classes above the chance level. Comparisons between experimental
conditions were performed using repeated-measures ANOVA on aligned rank
transformed data (ARTool library for R-software50) and signed rank tests. Analyses
were performed between 0 (i.e. stimulus onset) and 550 ms for the localizer task
and between 0 and 900 ms for each stimulus of the RSVP. Unless otherwise
specified, a correction for multiple comparisons was applied (FDR) across testing
times, specific training times (120, 170, 220, 270, 320, and 370 ms), conditions (e.g.,
target and non-target stimuli), and/or stimulus positions. Exact adjusted P-values
are reported unless it was below 0.001.

Data availability. The data that supporting the findings of this study are available
from the corresponding author upon reasonable request.
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