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Reconstruction of neural current sources from magnetoencephalography (MEG) data provides two inde-
pendent estimates of the instantaneous current modulus and its direction. Here, we explore how different
information on the modulus and direction affects the inter-hemisphere connectivity of the human medial
temporal complex (hMT+). Connectivity was quantified by mutual information values of paired time
series of current moduli or directions, with the joint probability distribution estimated with an opti-
mized Gaussian kernel. These time series were obtained from tomographic analysis of single-trial MEG
responses to a visual motion stimulus. With a high-contrast stimulus, connectivity measures based on
the modulus were relatively strong in the prestimulus period, continuing until 100 ms after stimulus
onset. The strongest modulus connectivity was produced with a long lag (19 ms) of the right hMT+ after
ingle trials the left hMT+. On the other hand, connectivity measures based on direction were relatively strong after
100 ms, with a short delay of less than 6 ms. These results suggest that nonspecific and probably indirect
communication between the homologous areas is turned, by the stimulus arrival, into more precise and
direct communication through the corpus callosum. The orientation of the estimated current vector for
the strong connectivity can be explained by the curvature of the active cortical sheet. The temporal pat-
terns of modulus and directional connectivity were different at low contrast, but similar to those at high

at the
contrast. We conclude th

. Introduction

Sensory inputs are processed by functionally segregated brain
egions. The resulting segregated sensory information must be inte-
rated to produce unified perceptions, emotions, and behaviors
Damasio, 1989; Singer, 1993). Magnetoencephalographic (MEG)
nd electroencephalographic (EEG) recordings have the necessary
ime resolution to characterize the dynamics of integration in
umans. Together with theoretical considerations, evidence from
EG and MEG recordings has suggested that linked activity can be
odulated on time scales from a few milliseconds (Ioannides et al.,

005) to tens of milliseconds (reviewed by Friston, 2000; Varela et
l., 2001) or many hundreds of milliseconds (Ioannides et al., 2004).
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

odriguez et al. (1999) identified synchronized gamma oscillations
ver distant brain regions during periods corresponding to face per-
eption (230 ms after stimulus presentation) and motor response
650 ms), separated by a period of desynchronization (500 ms). This
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finding of Rodriguez et al. (1999) implies that temporal character-
istics of linked activity can identify distinct integration modes.

Using the high temporal resolution of MEG recordings, the delay
in linking between paired regional activities has also been exam-
ined, since it is indicative of an activation shift from one area to
the other. It is thus possible to identify activation shift processing
from areas higher in the visual hierarchy to the primary visual area
(V1). Such an activation shift has been identified from the human
medial temporal complex (hMT+) to the primary/secondary visual
area (V1/V2) with low-contrast stimuli (Maruyama et al., 2009) and,
with face stimuli in the upper visual field (Liu and Ioannides, 2006),
from the fusiform face area to V1/V2.

Early measures of linked activity were based on linked signals
between EEG sensors (Gevins et al., 1981) or MEG sensors (Friston,
1997). Recently, as methods for estimating brain activity from non-
invasive electrographic signals, namely EEG (Astolfi et al., 2007) and
MEG (Ioannides et al., 2000) signals, have become more established,
linked activity between specific brain areas has been estimated.
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

The electromagnetic inverse problem solutions are not unique, (for
a review, see Hamalainen et al., 1993) and so raise theoretical
questions about source modeling techniques and their ability to
localize neural currents from EEG and MEG data. These concerns
can be addressed by approaching the biomagnetic inverse problem

dx.doi.org/10.1016/j.jneumeth.2010.07.010
dx.doi.org/10.1016/j.jneumeth.2010.07.010
http://www.sciencedirect.com/science/journal/01650270
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s a probabilistic estimation problem (Ioannides et al., 1990) and
mplementing it by using magnetic field tomography (MFT). This,
ogether with post-MFT statistical analysis, can identify active brain
egions with excellent localization accuracy (Moradi et al., 2003).
ynamic imaging of coherent sources (DICS) is a spatial filtering
ethod that can also localize coherently activating areas from MEG

nd EEG signals (Gross et al., 2001).
It is generally believed that much of the MEG signal is generated

y currents along the interior of apical dendrites of postsynaptic
yramidal neurons (Murakami et al., 2002), which are oriented
oughly perpendicular to the cortical sheet of gray matter. The
olarity of the current vector depends on whether the postsynap-
ic potentials of the neurons are excitatory or inhibitory (Llinás and
icholson, 1974) and whether the postsynaptic neurons receive the

ynaptic input near the apical dendrites or the cell body (Kandel et
l., 2000). Furthermore, when the banks of opposite sulci are par-
llel and close to each other, the simultaneous activation of each
ank (by the same mechanism) will generate currents with oppo-
ite direction. Inevitably, a region of interest (ROI) centered nearby
ill receive some contributions of one polarity and some of the

pposite polarity.
Since the cortex is convoluted with numerous sulci and gyri, the

urrent can flow with any orientation, depending on the location
f the current flow in the cortical sheet. Therefore, the orientation
f the current vector estimated from MEG signals can be explained
y the orientation of the cortical sheet at the location of the cur-
ent vector. Following this general assumption, Lin et al. (2006)
btained more focal source localization results by applying a loose
rientation constraint to the estimation of current distribution.
erfetti et al. (2007) found that the current vector orientations for
ow (1–15 Hz)- and high (15–30 Hz)-frequency MEG signals were
ifferent, suggesting that distinct neural populations underlie the
ifferent frequency responses. Ioannides et al. (2005) observed
ifferent distributions of current vector direction, depending on
accadic eye movements. Taken together, the findings of these
tudies converge to the conclusion that current vector direction
s potentially very useful for gaining specific knowledge about the
eural generators of EEG and MEG signals.

MEG and EEG studies have characterized neural states mostly by
easures of activity intensity. Some of these measures were based

n the amplitude of the sensor signal, and others on the modulus of
he estimated current density vector or its projection onto a certain
irection. Our previous study on functional connectivity also indi-
ated a neural state by a projected component of the current vector
btained from a subset of trials onto the averaged direction over
ll trials (Maruyama et al., 2009). These measures did not reflect
urely directional changes of the current vector. As a consequence,
ossible distinct modes of connectivity could not be disentangled
y using the independent estimates of current vector modulus and
irection.

Motivated by the considerations above, we independently com-
uted statistically linked activities based on the current vector
odulus or its direction. The unique new contribution of this

tudy is its independent estimation of connectivity using either
odulus- or direction-based measures. We used MFT estimates

f single-trial-activity MEG data for the left and right hMT+, with
he corresponding well-separated ROIs already identified by their

otion sensitivity in an earlier analysis of the average MEG signal
btained during the same experiment (Maruyama et al., 2009). It is
nown that the hMT+ consists of two sub-regions: the middle tem-
oral (MT) area which is believed to project to the medial superior
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

emporal (MST) area. The receptive fields of MT areas are restricted
o the contralateral visual field while the MST areas receive input
rom the ipsilateral field as well (Huk et al., 2002). The MST areas are

ore sensitive than the MT areas to global flow structure, such as
he expansion of motion stimuli (Smith et al., 2006). While the dif-
 PRESS
roscience Methods xxx (2010) xxx–xxx

ferent activations of adjacent sub-regions have been distinguished
spatially in functional magnetic resonance imaging (fMRI) stud-
ies, it has not been easy to do this in MEG studies that focused on
spatial distribution of neural current amplitudes. However, when
the cortical sheet curved sharply between the adjacent regions so
that the current flow in the MT area was restricted toward a dif-
ferent direction from the flow in the MST area, the direction of
estimated current vector might be sensitive to different activations
of the two regions. We therefore used the current vector direc-
tion as a possible indicator for differentiating contributions from
distinct sub-regions in the hMT+ areas. The sensitivity differential
between measures that make use of the direction and modulus of
the current vector becomes more pronounced when the activity
of single trials is measured, because variability across trials can be
utilized. In contrast, when a signal averaged over multiple trials
is used, the estimates of regional activation are necessarily con-
founded by the mixing of contributions from nearby sources that
are not precisely time-locked to the stimulus.

Mutual information (MI) (Shannon, 1948) estimates give a sta-
tistical relationship between the activity in two areas without
directly implying an anatomical connection between them; they
therefore express what has been termed “functional connectivity”
(Friston, 1994). Whereas a correlation coefficient analysis detects
only linear dependencies, an MI analysis accounts for both lin-
ear and nonlinear relationships. It is advantageous to eliminate
the need to assume a linear relationship, because fMRI studies
have found that nonlinear connectivity is present (Friston et al.,
1995; Buchel and Friston, 1997; Friston, 2002). However, MI anal-
ysis may be less sensitive to weak linear connectivity than other
methods of functional connectivity analysis, such as correlation
coefficient or phase synchronization analyses (David et al., 2004).
This low sensitivity is a consequence of the difficulty of estimat-
ing the joint probability density (JPD) distribution of two areas’
activities from a limited sample size. Although our previous study
and other MEG studies have estimated JPD by a histogram method,
Moon et al. (1995) have already suggested that a Gaussian ker-
nel estimator can be used for precise MI analysis. Therefore, the
current study used a Gaussian kernel estimator. To compute the
optimal smoothing length of the Gaussian kernel, Moon et al. (1995)
approximated the sample distribution by a normal distribution.
However, it is already known that the normal approximation leads
to over-smoothing in the case of a multimodal sample distribution
(Silverman, 1986), which can result in an underestimation of MI.
Moreover, when a statistical linkage exists, the sample distribu-
tion does not follow a normal distribution. Here, we optimized the
choice of smoothing length using the distribution-free method of
likelihood cross-validation (LH; Silverman, 1986).

We hypothesized that distinct modes of communication
between two segregated areas can be revealed by an MI analysis
based on the modulus and direction of the current vector, possi-
bly highlighting different stages of processing at different latency
ranges. We tested this hypothesis for a well-defined pair of neu-
ral systems: the left and right hMT+. These areas were expected to
communicate strongly, since they are anatomically well-connected
via the corpus callosum, as demonstrated in monkeys (Van Essen et
al., 1982). A motion stimulus in one visual hemifield is represented
in both contralateral and ipsilateral hMT+ areas in humans (Huk
et al., 2002), suggesting that the two areas share common visual
information. It has been claimed that motion signals are trans-
ferred from one hMT+ to the other not only via the corpus callosum
but also via pathways through other areas (ffytche et al., 2000). A
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

delay of the direct communication to the ipsilateral from contralat-
eral hMT+ area was estimated as 3 ms (ffytche et al., 2000). We
therefore examined a delay in functional connectivity between the
responses of these two areas. In general, delays shorter than several
milliseconds would be indicative of direct communication, longer

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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elays allow for the possibility of indirect connectivity. The specific
ypothesis we tested here was that direct and indirect commu-
ications are disentangled by independent estimations of current
odulus and direction.

. Materials and methods

.1. MEG experiment and analysis

We used single-trial MEG data from a recent study that focused
n the analysis of average signals (Maruyama et al., 2009). There-
ore, in this paper we provide only a brief overview of the MEG
xperiment and signal processing for estimation of the current
ensity vector in the hMT+.

Eight healthy, right-handed men with a mean age of 30 par-
icipated in the experiment. All experimental procedures were
ndertaken with the understanding and written consent of each
ubject, conformed to the Code of Ethics of the World Medical Asso-
iation (Declaration of Helsinki), and were approved by the RIKEN
thics Committee.

A random dot pattern was presented on a screen. One circular
egion was presented at a distance of 8◦ along an axis oriented 45◦

o the horizontal and vertical, and one stimulus was presented cen-
rally. The region had a radius of 4◦, and within this circle 250 dots,
ach 0.15◦ in size, were placed. For the stationary stimulus, the dot
attern was fixed. For the motion stimulus, each dot moved along
radius toward the outside of the circle at a speed of 15◦/s and

isappeared on reaching the perimeter, to be replaced by another
andomly situated dot. High-contrast (0.8, by the Michelson defini-
ion) or low-contrast (0.2) stimuli were created by setting the dot
uminance to 63 or 10.5 cd/m2, respectively, and the background
uminance to 7 cd/m2. The subjects were instructed to fixate on a
lack square in the center of the screen. To maintain alertness, the
ubjects were asked to quickly lift the index finger of their right
and from a fiber optical button when the color of the fixation
quare changed to red. Both the random dot patterns and the red
xation square were presented for 300 ms with an inter-stimulus

nterval of 700 ± 100 ms. During each run, each stimulus condition
as presented either in one of the quadrants or in the central visual
eld 15 times in random order. The color of the fixation square
hanged 1, 2, or 3 times with random timing during the run. The
iming of the color change was not related to any particular random
ot pattern. Each subject performed 10 such runs.

The experiment presented high- and low- contrast motion stim-
li to determine the feedforward and feedback processing between
1/V2 and hMT+, as published in our recent paper (Maruyama et
l., 2009). In addition, each stimulus was presented repeatedly (150
imes in total) in order to obtain a rich response variance among
he trials. The present study used the trial variance to indicate the
unctional connectivity. We analyzed those MEG signals obtained
hen the high- and low-contrast motion stimuli were presented

t the bottom-right location, where we had previously obtained
esponses with greater intensity in the left hMT+ under the high-
ontrast condition.

The magnetic field was measured with a 151-channel whole-
ead MEG system (Omega, CTF Systems Inc., Vancouver, Canada).
ye movement artifacts and the subject’s heart function were
imultaneously measured by electrooculography (EOG) and elec-
rocardiography (ECG) for off-line noise reduction. The signals were
ampled at 625 Hz. After DC-offset removal, the signals were band-
ass-filtered below 200 Hz and above 3 Hz, and notch-filtered to
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

liminate power-line noise (50 Hz). We extracted trials between
00 ms before and 300 ms after the onset of the stimulus. The EOG
ignal was visually inspected and any trials that contained blinks
r saccadic eye movements were discarded, leaving 138–148 tri-
ls from each subject. Independent component analysis was then
 PRESS
roscience Methods xxx (2010) xxx–xxx 3

applied and the components correlated with the EOG and ECG sig-
nals were eliminated to remove heart-beat and eye-blink artifacts
(Jahn et al., 1999). Magnetic resonance imaging (MRI) was per-
formed with either a 1.5-T Magneton Symphony (Siemens Inc.,
Erlangen, Germany) or ExcelArt (Toshiba Inc., Tochigi, Japan) MRI
machine. The MEG coordinate system was transformed into the
MRI coordinate system by the standard method used by our group
(e.g., Liu and Ioannides, 2006; Maruyama et al., 2009).

We extracted tomographic estimates of source current from
the MEG signals by using MFT. We used the standard MFT algo-
rithm in which the order of the weighted minimum norm is set
to zero, i.e., p = 0 in the generalized mathematical formalization of
MFT, as concisely described in Supplementary Materials. [Gener-
alized description is provided by Poghosyan and Ioannides (2008,
supplementary materials) and details by Ioannides et al. (1990) and
Taylor et al. (1999).] The standard MFT has two adjustable param-
eters. One is the a priori probability weight, which compensates
for the lead-field bias for superficial sources. The a priori prob-
ability weight is uniquely optimized, using computer-generated
data, for the data of each run by taking into account head position
relative to the sensors (Ioannides, 1994). The second is the regular-
ization parameter, which resolves the conflicting requirements of
high spatial accuracy and insensitivity to noise. The regularization
parameter in MFT code is determined via a dimensionless quantity
(ς̃), which is chosen according to the noise level of the recording
environment. For the details of mathematical formulation of the
regularization parameter, see Ioannides et al. (1990). In the rel-
atively quiet and stable environment at RIKEN, we were able to
use the same value (ς̃ = 0.1) for all our experiments, including the
present one.

Four separate MFT computations were performed, in each
case using partially overlapping hemispheric source spaces
(17 × 17 × 11 grid points each) which completely covered the left,
right, back and top (superior parts of the brain) (Ioannides, 2002).
Each MFT computation uses a spherical conductor model for the
conductivity of head (Grynszpan and Geselowitz, 1973), with the
center of the conducting sphere in each case chosen to fit the inner
surface of the skull in the appropriate hemisphere. Source currents
were allowed only within the appropriate source space, i.e., the
brain area of the corresponding MFT hemisphere (left, right, back
and top). MFT was performed separately for each source space,
after choosing 90 MEG sensors from the corresponding side. The
solutions from all four source spaces were combined into a sin-
gle, large source space which covered the whole brain, using the
sensitivity-profile-modified current density values of the sensors
from nearby points in the individual source spaces. The result was
stored at a resolution of 9–12 mm, depending on the size of subject’s
head.

This study applied MFT to each trial: that is, the source cur-
rent was estimated for single trials. The current density vector was
estimated throughout the brain at each time slice.

We used the hMT+ ROIs defined in our previous MEG study
(Maruyama et al., 2009). The ROIs were defined at foci showing a
strong current density consistent in amplitude and direction across
runs, as quantified by an estimator of the signal-to-noise ratio. We
employed a contrast between moving and stationary stimuli known
to favor selective activation in hMT+. For further details of the ROI
definition, please refer to our previous study. The current density
vector was regionally averaged within a 5-mm radius with an expo-
nential weight (decay, 5 mm). This is the minimum ROI size that
we could choose under the spatial resolution of current density
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

estimation.
For a spherical conductor, MEG measurements are sensitive only

to the tangential direction of the current vector (Grynszpan and
Geselowitz, 1973). Therefore, the current density estimates that
can be extracted from the MEG data are confined mostly to the

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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Fig. 1. Schematic diagram illustrating the procedure used for obtaining mutual information between the left hMT+ moduli at latency l and the right hMT+ at l + d, using the
Gaussian kernel method. The diagram outlined in black shows the extraction of samples from time courses of current vector moduli over all trials in the left hMT+ (thick
black curves) and the right hMT+ (thin black curves). First, moduli recorded at a sampling frequency of 625 Hz were resampled at intervals of three-sample (i.e., every fourth
value was sampled). Open and filled symbols represent used and unused samples as a consequence of the re-sampling. Next, in each trial, seven samples were extracted
within 19.2 ms before and after the left hMT+ latency [Xt(l + w)], and within 19.2 ms before and after the right hMT+ delay [Yt(l + d + w)]. Then the right hMT+ samples were
paired with the left hMT+ samples in each trial with delay d, as shown in the diagram outlined in red. After normalization of the left and right hMT+ samples in relation
to their standard deviation [SDx(l), SDy(l + d)], the optimal smoothing length of the Gaussian kernel (hopt) was computed by using the normalized samples. The optimized
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aussian kernel estimator was used to estimate the joint probability distribution o
P̂(l, d; x; hopt ), P̂(l, d; y; hopt )]. Using the probability distributions, a mutual informat
verestimation of mutual information for the cases where no relationship was pres
rials (MIRan) using the optimal smoothing length used for the original samples (dia
he reader is referred to the web version of this article.)

angential direction, even though the actual neural current in the
rain can flow in any direction. In this study, we computed the
I by using the current density vector confined to the tangential

lane of a large sphere whose radius and center was chosen to fit
he inner surface of the skull. We made separate computations for
he modulus and the direction of this vector and compared them
ith each other. To gain insight into the anatomical explanation for

he current vector direction, orientations of the closest sulci were
ompared with highly frequent directions for which a relatively
igh MI value was obtained.
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

.2. Paired samples between left and right hMT+

The time-series samples of current vector moduli or directions
ere paired between the left and right hMT+. Here we describe the
ft and right hMT+ [P(l, d; x, y; hopt )] and the probability distribution of each region
lue was estimated for the originally paired samples (MIOri). To obtain the degree of
e also computed mutual information for samples randomized over time slices and

outlined in blue). (For interpretation of the references to color in this figure legend,

pairing method over the trials. For the schematic illustrating of the
pairing method, see Fig. 1.

Since the MEG signal recorded at the sampling frequency of
625 Hz was low-pass-filtered below 200 Hz during preprocessing,
neighboring samples were dependent on each other. Given the
potential risk that this analysis-induced sample dependency would
distort the results, we first resampled at 6.4-ms intervals. The alias-
ing effect that this re-sampling may introduce will be confined to
the frequency range between the effective Nyquist frequency due
to re-sampling (78 Hz) and the original upper limit of 200 Hz. This
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

effect is negligible because the strong biological signal is likely to
be at lower frequencies, while the noise from the environment is
effectively attenuated for frequencies higher than a few Hz by the
passive reduction of environmental noise provided by the shielded
room housing the MEG hardware. Next, the resampled time series

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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as segmented in order to examine the dynamics of functional con-
ectivity. Longer segments include more samples, allowing more
etailed estimation of the probability distribution with shorter
moothing lengths. In addition, long segments would be beneficial
f a change of slow activation was too small to detect within a short
eriod. However, longer segments also decrease the time resolution
f our functional connectivity results. In order to choose a seg-
ent length, we considered the suggestion of Friston (1997), who

howed in a MEG study that the significance of MI was increased
ith a segment length of around 40 ms. Liu and Ioannides (2006)
ave also shown the effectiveness of 48-ms MI segments. In view of
hese findings, we chose a segment length of 44.8 ms. We defined
as the latency of the left hMT+ from the stimulus onset, and d
s the delay of the right hMT+ with respect to the left hMT+. We
xtracted seven resamples within 19.2 ms before and after the left
MT+ latency [Xt(l + w); w = −19.2, −12.8, . . . , 0, . . . , 19.2 ms;
= 1, 2, . . ., Nt; Nt is the number of trials] and within 19.2 ms
efore and after the right hMT+ delay [Yt(l + d + w)]. Finally,
e paired the left and right hMT+ samples of each trial, as

Xt(l + w), Yt(l + d + w)}.
We used seven sample pairs from each trial. The total number

f paired samples for each calculation of MI ranged between 966
7 samples × 138 trials) and 1036 (7 samples × 148 trials). A set
f paired samples was made in 6.4-ms steps over a latency range
rom −100 to 300 ms and a delay range from −64 to 64 ms. MI
as computed for each latency and delay. The paired samples were
sed to estimate the JPD distribution, as described in the following
ubsection.

.3. Estimation of the joint probability density distribution

The estimation of the JPD distribution from a limited sample
ize is a key issue in MI analysis. The current study used a Gaussian
ernel estimator. We optimized the smoothing length by the LH
ethod. Here, we first defined the kernel for the modulus samples.
ext, we defined the kernel for the tangential direction, which is
ot identical to the kernel for the modulus because direction is
circular variable (i.e., the angles ϕ and ϕ + 2� are equivalent in

adians). We next describe the method of kernel optimization.
The JPD of the current vector moduli in the left hMT+, x, and

n the right hMT+, y, was calculated by using the Gaussian kernel
stimator, defined as

P̂(l, d; x, y; hx, hy) = 1
NwNthxhy

Nt∑
t=1

∑
w

1
2�

exp

[
−{x − Xt(l + w)}2

2 · hx
2

− {y − Yt(l + d + w)}2

2 · hy
2

]
, (1)

here Xt(l + w) and Yt(l + d + w) denote the samples of the cur-
ent vector moduli in the left and right hMT+, w indicates one
f seven time slices in the segmented window, Nw is the num-
er of time slices in each trial (i.e., seven time slices), and Nt is
he number of trials. hx and hy represent the smoothing lengths
f the Gaussian kernel. The optimal smoothing lengths depend on
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

he dispersion of modulus samples as well as their scales of ampli-
udes. We know empirically that the dispersion of current density
istributions varies between regions in MEG studies; the optimal
moothing length should therefore be different among regions.
owever, we wanted to reduce the number of free parameters to
e optimized in order to reduce the computational load. To do this,
e normalized the samples in relation to their standard deviation.
s a result, the Gaussian kernel estimator becomes as follows:
 PRESS
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P̂(l, d; x, y; h) = 1
NwNth2

Nt∑
t=1

∑
w

1
2�

exp

[
− {(x−Xt(l + w))/SDx(l)}2+{(y − Yt(l + d + w))/SDy(l + d)}2

2 · h2

]
,

(2)

where SDx(l) and SDy(l + d) are the standard deviations of samples
Xt(l + w) and Yt(l + d + w), respectively, and h represents the com-
mon smoothing length between the two regions. Note that the h is
optimized for the normalized samples, and thus its scale does not
need to be comparable to the original samples, unlike the hx and
hy.

The Gaussian kernel estimator of the JPD between the current
vector direction in the left hMT+, ϕx, and that in the right hMT+, ϕy,
is given as

P̂(l, d; ϕx, ϕy; h) = 1
NwNth2

Nt∑
t=1

∑
w

1
2�

exp

[
− {Dxt(l + w)/SDx(l)}2 + {Dyt(l + d + w)/SDy(l + d)}2

2 · h2

]
,

Dxt(l + w) = |� − |� − |ϕx − ˚xt(l + w)|||,
Dyt(l + d + w) = |� − |� − |ϕy − ˚yt(l + d + w)|||, (3)

where ˚xt(l + w) and ˚yt(l + d + w) denote the samples of current
vector direction in the left and right hMT+. Dxt(l + w) represents
the circular difference between ϕx and ˚xt(l + w), and similarly
for Dyt(l + d + w). SDx(l) is the standard deviation of the circular
samples ˚xt(l + w), given by Mardia and Jupp (2000) and Batschelet
(1981):

SDx(l) =
√

−2 log R(l),

C(l) = 1
NwNt

Nt∑
t=1

∑
w

cos ˚xt(l + w),

S(l) = 1
NwNt

Nt∑
t=1

∑
w

sin ˚xt(l + w),

R(l) =
√

C
2
(l) + S

2
(l).

, (4)

and similarly for SDy(l + d). These standard deviations were used
for normalization of the circular differences in Eq. (3) for the same
reason as in the modulus analysis.

The LH optimization method is identical for the modulus and
circular samples. We describe the method by referring to the mod-
ulus variables (x and y), and the method for the circular samples
can be found by replacing those variables with directional ones (ϕx

and ϕy).
The difference between the JPD estimated from the samples

[P̂(l, d; x, y; h)] and the true JPD [P(l, d ; x, y)] is quantified as the
information distance (Silverman, 1986), defined as

ID(l, d; h) =
∫ ∫

P(l, d; x, y) ln

{
P(l, d; x, y)

P̂(l, d; x, y; h)

}
dx dy. (5)

Although ID(l,d;h) contains the function P(l, d ; x, y), which we can-
not compute because the number of samples was limited, we can
minimize ID without knowing it because the optimal smoothing
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

length maximizes the score function:

CV(l, d; h) =
Nt∑

t=1

∑
w

ln P̂−t,−w[Xt(l + w), Yt(l + d + w); h], (6)

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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here P̂−t,−w[Xt(l + w), Yt(l + d + w)] is the probability density for
= Xt(l + w) and y = Yt(l + d + w), estimated by using all samples
xcept the paired samples {Xt(l + w), Yt(l + d + w)}. We sought the
ptimal value of h (hopt) that maximized the score function.

Using the optimal smoothing length, we estimated the JPD
istribution according to Eq. (2) for the modulus samples [and
ccording to Eq. (3) for the directional samples]. The probabil-
ty of each modulus variable, P̂(l, d; x; hopt) and P̂(l, d; y; hopt), was
btained by the integration of the JPD over y or x:

P̂(l, d; x; hopt) =
∫

P̂(l, d; x, y; hopt)dy,

P̂(l, d; y; hopt) =
∫

P̂(l, d; x, y; hopt)dx. (7)

he estimated probabilities [P̂(l, d; x, y; hopt), P̂(l, d; x; hopt), and
ˆ(l, d; y; hopt)] were then used to calculate MI values.

.4. Mutual information analysis

MI analysis measures statistical relatedness in an entropy form.
he entropy of the current vector modulus in the left hMT+ is
efined as

L(l, d; hopt) = −
∫

P̂(l, d; x; hopt) ln P̂(l, d; x; hopt)dx, (8)

nd similarly for the right hMT+ [HR (l,d)]. The entropy of the joint
urrent vector moduli in the two regions is

LR(l, d; hopt) = −
∫ ∫

P̂(l, d; x, y; hopt)ln P̂(l, d; x, y; hopt)dx dy. (9)

I quantifies the relatedness between the two regions as

I(l, d; hopt) = HL(l, d; hopt) + HR(l, d; hopt) − HLR(l, d; hopt). (10)

I for the circular samples can be found by replacing the mod-
lus variables by the directional ones (ϕx and ϕy). The MI value

ncreases as the probability distribution of the modulus or direc-
ion of the current vector in the left hMT+ (right hMT+) becomes

ore dependent on that in the right hMT+ (left hMT+). The MI value
eaches a maximum when the states of the two areas are iden-
ical to each other. The upper bound of MI is HL(l, d ; hopt) + HL(l,
; hopt) − HLL(l, d ; hopt), which depends on the probability distribu-

ion P̂(l, d; x; hopt). The MI value approaches zero as the states of the
wo areas become independent.

It is known that measurements of low MI are typically over-
stimated because of limited sample size (Samengo, 2002). The
verestimation tends to be larger for smaller sample sizes rela-
ive to the bin number in histogram methods. Our simulations
ased on computer-generated samples also indicated overesti-
ation of low MI values, but only by small amounts (< 0.06). It

evertheless implied that the overestimation could be reduced
y using the Gaussian kernel. To facilitate the removal of over-
stimation, we used a randomization method that estimated the
ias for cases where no relationship was present. First, we paired
he samples of the left hMT+ and right hMT+ after randomizing
cross the trial order (t′ = 1, 2, . . ., Nt in random order) and the
ime series of the seven samples within the segment period (w′ =
19.2, −12.8, . . . , 0, . . . , 19.2 ms in random order), i.e., {xt(l +
), yt′ (l + d + w′)}. Then an MI value of the randomized samples

MIRan (l,d;hopt)] was computed, using the smoothing length opti-
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

ized based on the original samples. This procedure helps shorten
he computational time of JPD estimation, and we confirmed that
he MI analysis was not degraded. We repeated the randomiza-
ion 100 times, producing 100 values of MIRan (l,d;hopt) for each

I value of the original samples, MIOri (l,d;hopt). The mean of the
 PRESS
roscience Methods xxx (2010) xxx–xxx

MIRan values (MIRan(l, d; hopt)) reflects the expectation of overesti-
mation given no statistical relationship. We defined the corrected
MI value, MICor, as the difference between the MIOri and MIRan val-
ues: MICor(l, d; hopt) = MIOri(l, d; hopt) − MIRan(l, d; hopt). As a result
of the subtraction operation, both the upper and lower limits of
our MI estimation (MICor) are lower than those of MI defined by Eq.
(10).

The set of MIRan values was also used to determine the presence
of a statistical relationship. We deemed a MIOri value above the 0.95
quantile of MIRan values to be significant (one-tailed test, p < 0.05).
We did not deem a low MIOri value to be significant, since an MI
value close to zero indicates no relationship.

2.5. Simulation for comparisons of analysis methods

The optimization of Gaussian kernel by the LH method has
already been discussed from a theoretical perspective, but its effec-
tiveness in MI analysis has been poorly understood. Moreover, the
method has never been applied to circular samples. Therefore,
we first tested the method by using computer-generated sam-
ples. Its effectiveness for real samples was examined by comparing
with a histogram method which has often been used in previous
MEG studies. Next, we compared with a Gaussian kernel method
optimized using a least-squares cross-validation (LS) method in
which the sample distribution is approximated by the normal
distribution (Moon et al., 1995). Finally we compared with corre-
lation coefficient analyses, which might be more sensitive than MI
analysis to weak linear connectivity (David et al., 2004). Summa-
rizing the results of our simulations, we conclude that MI analysis
using LH kernel optimization reduced the MI underestimation that
often appears when a multimodal JPD distribution is approximated
by the normal distribution. The simulation also showed that our
method can reduce the standard deviation (SD) of MI estimation
relative to the previous histogram and kernel methods, when con-
nectivity is weak (MI < 0.1). For the details of our simulation, see
Supplementary Materials.

3. Results

3.1. Joint probability density distribution of current vector moduli

JPD distributions obtained from the modulus samples are shown
in Fig. 2 (left panels) for three representative subjects presented
with the high-contrast stimulus. We chose the JPD distribution in
which a peak MI value was found in relation to the latencies and
delays (arrows in Fig. 3A, left panels). The distributions we obtained
were unimodal and skewed. They were elongated toward the upper
right (panels in Fig. 2), producing relatively high MIOri values (Sub.
1, 0.098; Sub. 2, 0.044; Sub. 3, 0.073). This elongation was slight
when the probability distribution of the original samples is com-
pared with the probability distribution of the randomized samples
(Fig. 2, right panels). However, a significant MI can appear even for
such slight difference of JPD distributions. Indeed, the MIOri val-
ues were significantly high relative to the set of 100 MIRan values
(p < 0.01). In all eight subjects, the JPD distributions were almost
always unimodal and skewed at any latencies and delays.

To examine the influence of stimulus presentations repeated
150 times during the experiment, we analyzed statistical relation-
ships between the current vector modulus and the order of trials.
The influence was seldom found to be significant over the subjects.
For the details, see Supplementary Materials.
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

3.2. Functional connectivity at high contrast based on current
vector moduli

The time courses of MICor values at high contrast for subjects
1–3 are shown in Fig. 3A (left panels). The horizontal axes show

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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Fig. 2. Joint probability density (JPD) distributions of current vector moduli in three subjects at representative latencies and delays for which a peak corrected MI value
(MICor) was found (see Fig. 4A, open arrows). A high-contrast motion stimulus was presented at the bottom-right location. Horizontal and vertical axes represent the moduli
of the current density vector in the left and right hMT+, respectively, in a.u. (arbitrary units defined by the MFT analysis). The JPDs are indicated by the colors as specified
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n the color bars. Left panel: Results from the original paired samples. Right panel: R
timulus onset and the delay of the right hMT+ with respect to the left hMT+ were
12.8 ms in Sub. 3. The MI value of each JPD distribution is noted at the top right of

s referred to the web version of this article.)

he latency of the left hMT+ from the onset of the stimulus, and the
ertical axes denote the delay of the right hMT+ relative to the left
MT+. Relatively high MICor values (compared with other values
btained in this study) were found in all three subjects during the
restimulus period, and the MICor values continued to be relatively
igh until a latency of around 100 ms. Afterward, the functional
onnectivity tended to vanish. We obtained MICor values of less
han 0.1.

The MIOri value at each latency and delay was statistically tested
y comparing it with the set of 100 MIRan values. The latencies and
elays of significant connectivity are shown in the right panels of
ig. 3A as yellow (p < 0.01) and orange (p < 0.05) areas. The dark
rown areas are those where the connectivity was not significant
p ≥ 0.05). The MIOri values obtained in the late period (after about
00 ms) tended not to be significant.

The average across all eight subjects also shows relatively strong
onnectivity during the prestimulus period, which continued until
latency of around 100 ms (Fig. 3B, left panel). Interestingly, the
aximum MICor was found at a negative delay (latency, 104.8 ms;

elay, −19.2 ms; MICor = 0.012). In other words, the strongest func-
ional connectivity corresponds to the ipsilateral hMT+ (i.e., right
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

MT+ relative to the bottom-right visual field) leading the con-
ralateral hMT+. The right panel of Fig. 3B shows the percentage
f subjects exhibiting a significant MIOri (p < 0.05). Six of eight
ubjects exhibited a significant MIOri at the identical latency and
elay to the maximum MICor, shown by the yellow area. Significant
from the pairs of samples after randomization. The latency of the left hMT+ from
ectively, 104.8 and −19.2 ms in Sub. 1, 85.6 and −12.8 ms in Sub. 2, and 104.8 and
panel. (For interpretation of the references to color in this figure legend, the reader

connectivity was found in more subjects during the prestimulus
and early stimulus periods (orange and red areas) than during the
late stimulus period (dark brown areas). These results are entirely
consistent with the connectivity patterns identified in individual
subjects.

3.3. Joint probability distribution of current vector directions

The JPD distributions of the tangential current vectors in the left
and right hMT+ were often multimodal. Fig. 4 (left panels) shows
representative JPD distributions of the original samples for which
a peak of MI value was found in relation to the latencies and delays
(open arrows in Fig. 6A, left panels). The high-contrast motion stim-
ulus was presented. Each JPD distribution possessed two peaks
(Subs. 1 and 2) or more than two (Sub. 3). It should be noted that the
smoothing length of Gaussian kernel was optimized to minimize a
difference between estimated and true JPD, hence the multimodal
distributions were not likely to be an artifact of our estimation
method. Indeed, our simulation results of MI estimation demon-
strated a successful optimization for multimodal distributions (see
Supplementary Materials). Rather, our results demonstrated that
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

an approximation of sample distribution by the normal distribution
could be erroneous for directional samples in MEG studies, and thus
a distribution-free method such as the LH method is very impor-
tant for the optimization of Gaussian kernel. The most frequent
direction (open arrow) was nearly opposite the second-most fre-

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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Fig. 3. (A) Left panel: Time courses of MICor values computed with the current vector moduli in single subjects presented with high-contrast stimuli. Horizontal axes show the
latency of the left hMT+ from the onset of stimulus. Vertical axes show the delay of the right hMT+ with respect to the latency of the left hMT+. The MICor value is indicated
by the colors, as specified by the color scales. Arrows indicate latencies and delays at which MICor exhibited peaks. (JPD distributions at these latencies and delays are shown
in Fig. 2.) Right panel: Latencies and delays of significant MI values, tested in relation to the distributions of 100 MI values. Yellow areas denote MI values that were
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ignificant at the level of p < 0.01, and orange areas indicate those significant at the
anel: MICor values averaged across all eight subjects. Right panel: Percentage of su
olor in this figure legend, the reader is referred to the web version of this article.)

uent direction (filled arrow) in one hemisphere (Subs. 1 and 3) or
oth (Sub. 2). In all subjects, the current vector direction frequently
hanged to the opposite direction across trials.

The statistical relationship between the left and right hMT+ can
e read from the JPD distributions. For example, in Sub. 3 (Fig. 4,
ottom-left panel), the most frequent direction in the right hMT+
as −0.49� when in the left hMT+ it was 0.46�, whereas the most

requent direction was 0.73� in the right hMT+ when in the left
MT+ it was −0.39�. The dependency of the different frequent
irections in the left hMT+ on those in the right hMT+ produced
he relatively high MIOri of 0.04. On the other hand, in the JPD dis-
ribution of the randomized samples in the same subject (Fig. 4,
ottom-right panel), the frequent direction in the right hMT+ was
ither −0.5� or 0.5� with nearly equal probability, regardless of
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

he direction of the left hMT+; thus, its MIRan value was very low
0.008).

The influence of repetition of stimulus presentations was also
xamined for the current vector directions. We found a similar
esult as for the current vector moduli, namely that the influ-
Ran Ori

f p < 0.05. Dark brown areas indicate non-significant MIOri values (p ≥ 0.05). (B) Left
exhibiting significant MI values (p < 0.05). (For interpretation of the references to

ence was seldom significant over the subjects. For the details, see
Supplementary Materials.

3.4. Current vector direction relative to sulcus orientations

It is generally assumed that the source current of the MEG sig-
nal is located in a sulcus, and that the current vector direction is
perpendicular to the sulcus orientation. This assumption guided
the present study; thus, we compared the highly frequent direc-
tions with the orientations of the closest sulci. The open and filled
arrows on the MRI images (Fig. 5) indicate the highly frequent direc-
tions of the current vector, averaged regionally within each ROI (red
area). The high-contrast motion stimulus was presented. The junc-
tion of the inferior temporal sulcus (ITS) with its ascending limb
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

(ALITS) and its posterior continuation (PCITS) and the lateral occip-
ital sulcus (LOS) were identified around the ROIs, as expected in
accordance with the work of Dumoulin et al. (2000). In the left
hemisphere of Sub. 1 (Fig. 5A), both the ALITS (green lines) and
LOS (orange line) were identified within the ROI; thus, both sulci

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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Fig. 4. JPD distributions of the tangential directions at representative latencies and delays for which a peak of MICor value was found (see Fig. 6A, open arrows). A high-contrast
motion stimulus was presented. Horizontal and vertical axes represent the direction of the current vector in the left and right hMT+, respectively. The JPDs are indicated by the
colors in units of (rad)−2, as specified in the color bars. Left panel: Results from the original paired samples. Right panel: Results from the pairs of samples after randomization.
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he latency of the left hMT+ from stimulus onset and the delay of the right hMT+ wit
n Sub. 2, and 111.2 and 0 ms in Sub. 3. Open and filled arrows in the left panels de
requent directions are superimposed on the MRI images in Fig. 5. The MI value of e
eferences to color in this figure legend, the reader is referred to the web version of

ere candidate sources of the regionally averaged current. How-
ver, of these sulci, we identified an ALITS segment that was nearly
rthogonal to the high-frequent directions, suggesting that it was
he main current source. Similarly, among the three sulci within
he ROI of the left hemisphere in Sub. 2, a vertical segment of the
LITS was almost perpendicular to both the most and second-most

requent directions (Fig. 5C, thick red line on cartoon panel); thus,
his segment is most likely the current source.

In the right hMT+ of Sub. 1, the most frequent direction of the
egionally averaged current was nearly orthogonal to the second-
ost frequent one (Fig. 5B). These directions probably reflected

urrent sources along different segments of the curved ALITS, as
hown by the thick red lines on the cartoon panels. In the right
MT+ of Sub. 2, the most frequent direction can be explained by the
omposition of two current vectors from separate segments of the
LITS (Fig. 5D). Possible current sources were not always identified
n the ALITS. In Sub. 3, a segment nearly orthogonal to the most and
econd-most frequent current vectors was identified on the LOS in
ach hemisphere (Fig. 5E and F).

The results for the other subjects are similar to the results for
ubs. 1–3, as can be seen by inspecting Fig. 5G–P. In each ROI we
ould identify sulcus segmentations orienting nearly orthogonal to
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

he frequent directions, as expected from the general assumption
hat the neural currents that are responsible for the generation of
he MEG signal flow perpendicularly to the cortical surface of a sul-
us. The variation across subjects for the orientations of the sulci,
ssociated with the frequent directions of current vectors, is con-
ect to the left hMT+ were, respectively, 181.6 and −6.4 ms in Sub. 1, 143.2 and 0 ms
the most and second-most frequent directions of the JPD distributions; the highly
D distribution is indicated at the top right of each panel. (For interpretation of the
rticle.)

sistent with the study of Dumoulin et al. (2000). The origin of the
variability in the frequently occurring current directions is unclear
at this point; it is very likely a reflection of anatomical individual-
variance in the terms of sulcus orientation.

3.5. Functional connectivity at high contrast based on current
vector direction

Fig. 6A (left panels) shows the time courses of the MICor value
obtained from the analysis of the direction of the current vectors in
Subs. 1–3 when they were presented with the high-contrast stim-
ulus. Relatively high MICor values were found after 100 ms. This
is in sharp contrast to the results based on the moduli of the cur-
rents, where significant linked activity was identified before 100 ms
(Fig. 3, left panels). The MICor values of direction also ranged below
0.1, but they were generally higher than the values obtained by
using the moduli. Accordingly, the periods of significant MIOri were
longer with respect to the current vector directions (Fig. 6A, right
panels) than with respect to the moduli (Fig. 3, right panels).

Averaging across all subjects showed that the relatively strong
connectivity started at a latency of 100 ms and continued until a
latency of 200 ms (Fig. 6B, left panel). The maximum MICor value
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

was 0.028 at a latency of 117.6 ms, a delay range between −10 and
10 ms centered on zero. Fig. 6B (right panel) displays the percent-
age of subjects exhibiting a significant MIOri (p < 0.05), showing that
a significant MIOri was identified in all subjects in the latency range
between 90 and 200 ms. There were also two other peaks with pos-

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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Fig. 5. Frequent directions of the current vector relative to its closest sulci. Each panel shows a sagittal MRI view with an enlargement of hMT+ area. Below is a cartoon to
highlight the position of the sulci. ITS, inferior temporal sulcus; ALITS, ascending limb of the inferior temporal sulcus; PCITS, posterior continuation of the inferior temporal
sulcus; LOS, lateral occipital sulcus. The open and filled arrows indicate the most and second-most frequent directions of the current vector in the left hMT+ (A, C, E, G, I, K,
M and O) and the right hMT+ (B, D, F, H, J, L, N and P). The subject numbers are above each panel. The latency and delay at which the frequent directions were obtained are
noted in parentheses for each subject. The directions in Subs. 1–3 were obtained from the JPD distributions shown in Fig. 4, and similarly in the other subjects. The volume
of the region of interest (ROI) of hMT+ is indicated by the red areas, which denote the weight decay used in the regional averaging of current density (radius = 5 mm). These
ROIs were defined in our previous study (Maruyama et al., 2009) by the contrast of response between motion and stationary stimuli. The sulcus denoted by the green lines
i t it w
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n the left hemisphere of Sub. 1 appears as separate segments on this MRI slice, bu
LITS. On the cartoon panels, the thick red lines denote the sulcus segments whos

he frequent direction of the current vector was identified within the ROIs, althoug
O) was explained by the composition of two current vectors on separate segments
o the web version of this article.)
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
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tive (+50 ms) and negative (−60 ms) delays near the latency of the
ighest MICor. Although MIOri values were continuously significant
ver the delays from −60 to 50 ms in most of the subjects (Fig. 6B,
ight panel), the three peaks of MICor were distinguishable from
ach other based on the MICor troughs lying between the peaks
as continuous on a more lateral MRI slice. Thus, both segments were deemed the
tation can explain the frequent directions. A sulcus segment nearly orthogonal to

most frequent direction of the right hMT+ in Sub. 2 (D) and the left hMT+ in Sub. 8
interpretation of the references to color in this figure legend, the reader is referred
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

(left panel). The short delay of less than 10 ms for the highest peak
of MICor suggests direct communication between the left and right
hMT+ areas via the corpus callosum, whereas the long delay of sev-
eral tens of milliseconds for the secondary peaks was possibly a
reflection of indirect communication.

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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Fig. 6. (A) Left panel: Time courses of MI values in single subjects, based on the tangential direction of the current vector. A high-contrast motion stimulus was presented at
the bottom-right location. Horizontal axes show the latency of the left hMT+ from the onset of stimulus. Vertical axes show the delay of the right hMT+ with respect to the
latency of the left hMT+. Open arrows indicate latencies and delays at which a peak of MICor was found. (JPD distributions at these latencies and delays are shown in Fig. 5.)
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ight panel: Latencies and delays of significant MIOri values, tested in relation to the d
he level of p < 0.01, and orange areas indicate that they were significant at the level
B) Left panel: MICor values averaged across all eight subjects. Right panel: Percentage
o color in this figure legend, the reader is referred to the web version of this article

.6. Functional connectivity at low contrast

Fig. 7 shows the time courses of functional connectivity under
he low-contrast condition. The left panels show the average across
ll subjects of the MICor value computed using the Gaussian kernel
stimator. The functional connectivity based on the moduli was rel-
tively strong during the prestimulus period, and continued to be
trong until a latency of around 50 ms (Fig. 7A, left panel), whereas
t continued until the latency of 100 ms at high contrast (Fig. 3B,
eft panel). In the early stimulus period, a relatively high MICor was
ften obtained at negative delays, as under the high-contrast con-
ition. The right panel of Fig. 7A shows the percentage of subjects
xhibiting a significant MIOri (p < 0.05). Significant connectivity was
ound in more subjects during the prestimulus and early stimulus
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

eriods (yellow and orange areas) than during the late stimulus
eriod (dark brown areas).

For the connectivity based on the directions, averaging across all
ubjects showed that the relatively strong connectivity started after
latency of 120 ms (Fig. 7B, left panel). Like the high-contrast condi-
utions of 100 MIRan values. Yellow areas denote that MIOri values were significant at
0.05. Dark brown areas indicate that the MIOri values were not significant (p ≥ 0.05).
jects exhibiting significant MI values (p < 0.05). (For interpretation of the references

tion, two peaks of MICor were observed with long delays in positive
(+50 ms) and negative (−60 ms). The delay range of the strongest
connectivity was negative after a latency of 200 ms at low contrast,
whereas the highest peak of MICor at high contrast centered on zero
until it vanished at the latency of 200 ms. A significant MIOri was
identified in all subjects (white areas in Fig. 7B, right panel) at more
latencies and delays after the latency of 120 ms, which is consistent
with the temporal pattern of the averaging.

Overall, the temporal patterns of connectivity computed with
moduli and directions were different at low contrast, as they were
under the high-contrast condition.

3.7. Comparisons of analysis methods using real samples
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

Using the real MEG data, the MI analysis with the optimized
Gaussian kernel was compared with relatively simple methods: MI
analysis with a histogram method and correlation coefficient anal-
yses. The simple methods indicated similar temporal patterns of
connectivity to those indicated in the MI analyses with the Gaussian

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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ig. 7. Temporal pattern of functional connectivity at low contrast. Top-left panel:
ubjects is shown. Horizontal axes show the latency of the left hMT+ from the onse
f the left hMT+. Top-right panel: Percentage of subjects exhibiting significant MIOri

ased on the current vector directions, averaged over all subjects. Right panel: Percen

ernel estimator. However, the temporal patterns took the form of
meared patches in the MI analysis with the histogram method.
oreover, the connectivity was significant at fewer latencies and

elays with the histogram method than with the Gaussian kernel
ethod. It was also the case in the correlation coefficient analyses,

hough their sampling method was identical to the MI analyses. It
s possible that the computation of the correlation coefficient with
maller size windows will remove some of the blurring. However
he computation of the (linear) correlation coefficient with smaller
indows will also emphasize linear relations, both the ones arising

hrough actual linkage between the two time series and ones simply
rising by chance. Also, the use of a smaller window is not appro-
riate for the computation of nonlinear relationships, and it would
herefore obscure the comparison between the linear and nonlinear

ethods. Taking into account the simulation results in which the
I estimation with the histogram method possessed the large SD

see Supplementary Materials), the smeared patches and the fewer
atencies and delays of significant connectivity could reflect a noisy
stimation of MI with the histogram method. Overall, we found that
I analysis becomes a better estimator of functional connectivity

y using the Gaussian kernel optimized with the LH method. For
he details of the methodological comparisons, see Supplementary

aterials.

. Discussion

.1. Single-trial analysis

Single-trial MI analysis demonstrated that the trial variance of
he current vector of the left hMT+ was significantly linked with
hat of the right hMT+. A statistically significant link was found
sing both the moduli and directions (Figs. 3 and 6, right panels).
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
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e also found that the directions of the most and second-most
requent current vectors were often opposite to each other in the
ame latency range (Fig. 4). This finding implies that, because of
veraging, the event-related magnetic field (ERMF) often underes-
imates the intensity of the neural response to a stimulus; thus, the
courses of MICor values based on the current vector moduli. The average over all
imulus. Vertical axes show the delay of the right hMT+ with respect to the latency
s computed with the moduli (p < 0.05). Bottom-left panel: Time courses of MI values
f subjects exhibiting significant MIOri values computed with the directions (p < 0.05).

ERMF might not be always an appropriate indicator of response
intensity. This limitation of averaging should also be relevant for
event-related potential (ERP) analysis.

The influence of sensor noise might be larger when current
sources are reconstructed from single-trial MEG signals than when
they are reconstructed from averaged MEG signals. The sensor noise
near the left hMT+ was independent of that near the right hMT+;
thus, the influence of noise on the current estimation in the left
hMT+ was also independent of that in the right hMT+. As a conse-
quence, the random nature of sensor noise might lower the total
MI values between the left and right hMT+. However, sensor noise
would not significantly change the temporal pattern of MI values.

4.2. Current vector direction

The neural current that is responsible for the generation of the
MEG signal is generally assumed to flow perpendicularly to the cor-
tical surface of a sulcus. In accordance with this general assumption,
we identified the sulcus segments whose orientations could explain
our estimation of highly frequent directions (Fig. 5). These findings
confirm the presence of a possible neural substrate for our direction
results and thus support the reliability of current vector estimation
by MFT analysis.

The hMT+ has been reliably colocalized to the ITS, ALITS, PCITS,
and LOS (Dumoulin et al., 2000). In the current study, the ROIs cov-
ered the various sulci in the left hemispheres of Subs. 1 and 2 (Fig. 5).
Among the sulci, only the ALITS segment could explain the direc-
tion of the frequent current vector by its orientation. The curvature
of that sulcus in the ROI in the right hemisphere of Sub. 1 made it
possible to estimate the location of that current source at a higher
spatial resolution relative to the size of the ROI (10 mm in diameter).
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

4.3. Joint probability estimation with an optimized kernel

We used the Gaussian kernel optimized by the LH method to
estimate the JPD distribution from a limited sample size. This esti-
mation is a straightforward procedure based on the samples, and

dx.doi.org/10.1016/j.jneumeth.2010.07.010
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hus its results are objective. On the other hand, the often-used his-
ogram method requires choices for bin size and the origin of the
inning. These choices by the user can affect the JDP distribution
esults and hence limit their objectivity. Frequent current vector
irections were clearly identified from the JPD distributions with
he optimized kernel, allowing the direction results to be compared
ith the sulcus orientations. The optimized kernel method pro-
uces a smaller SD for the MI estimation than the histogram method
Treves and Panzeri, 1995; Darbellay and Vajda, 1999; Kraskov et
l., 2004); this makes it easy to detect the peak of functional connec-
ivity in relation to the latencies and delays (Figs. 3 and 6), whereas

I time courses obtained by the histogram method often take the
orm of smeared patches (Supplementary Fig. 7A and C) because of
he large SD. Taking into account these observations, we deem the
ptimized kernel method to be appropriate for our study purpose.
ore detailed simulation-based comparisons with the histogram
ethod can be found in Supplementary Materials.

.4. Nonlinear relationship in functional connectivity

For a comparison with the MI analysis, which accounts for both
inear and nonlinear relationships, we also examined correlation
oefficient analyses as representative of methods for detecting only
inear relationships. Correlation coefficient analyses obtained a
imilar temporal pattern of functional connectivity, i.e., the connec-
ivity based on the moduli was relatively strong in the prestimulus
eriod, continuing until a latency of 100 ms (Fig. 3B and 8B),
hereas the connectivity measured with the directions became

trong after that latency (Fig. 6B and 8D). However, in spite of the
ame sampling condition, the peak correlation coefficient values
omputed with the moduli were not as sharp as those of MI, which
ight be a reflection of the presence of a nonlinear component at

eaks of functional connectivity.

.5. Strength of functional connectivity

The MICor values in the current study were always less than 0.1
Figs. 3 and 6). Two previous MEG studies performed MI analyses
omparable to that of the current study in which the MI value was
efined in accordance with the standard form (Kwapien et al., 1998)
nd applied to tomographic estimates of neural currents. In these
tudies, the MI values obtained were less than 0.2, both between
he left and right auditory areas (Kwapien et al., 1998) and between
1/V2 and hMT+ (Maruyama et al., 2009). Here, we discuss the MI
alues obtained in these two studies and our MEG study relative to
hose obtained in other previous studies, described below.

Chen et al. (2008) applied an MI analysis to magnetic field sig-
als of sensor channels in which the largest MI values exceeded
.9. The signal of each channel contains contributions from many
egional neural generators. Equivalently, each of these generators
ontributes to many channels. The high MI values obtained by Chen
t al. (2008) might reflect contributions to different channels from
he same generators. In EEG studies, Jeong et al. (2001) and Na et al.
2002) applied MI analysis to signals from many pairs of electrodes.
n their studies, base-two logarithms were used in the definition of
ntropy, whereas our MEG studies used natural logarithms (Eqs.
8) and (9)). This produces a 1.44-fold difference (=log2 P/ln P) in
he MI value. Some MI values that they obtained when converted
o the natural logarithm form exceeded 0.4, which is also higher
han our MI results. However, we note that, in comparison with the
Please cite this article in press as: Maruyama M, Ioannides AA. Modulus a
connectivity modes between human MT+ areas. J Neurosci Methods (2010

I computed between regional estimations of the current vector,
s in the present study, the MI computed between electrodes can
e more strongly influenced by correlations due to common sensi-
ivity to the same generator being mixed with correlations due to
nteractions between distinct neural generators.
 PRESS
roscience Methods xxx (2010) xxx–xxx 13

Previous fMRI studies have rarely performed a comparable MI
analysis. However, the range of correlation coefficients (R) between
−0.8 and 0.8, provided by Fox et al. (2005), may allow the typical
range of MI values to be inferred, since in a bivariate normal dis-
tribution [see Eq. (S5) in Supplementary Materials], R values can
be converted to MI values by the equation MI = 0.5 × ln(1 − R2). By
using this equation, the range of MI values in the fMRI study of
Fox et al. (2005) can be estimated to be up to around 0.5, which
is also larger than our MI results. The large difference in the con-
nectivity strength requires further investigation to pinpoint how
the very different temporal sensitivities and underlying mecha-
nisms between MEG and fMRI signals contribute to the connectivity
estimates.

4.6. Time courses of functional connectivity

The previous fMRI study found a positive correlation between
the left and right hMT+ under various resting conditions, including
while the subjects fixated on a crosshair without any other visual
stimuli (Fox et al., 2005). Similarly, the subjects in the current study
fixated on a central black dot without any other stimuli during the
prestimulus period. Thus, the relatively high MI values of the cur-
rent vector moduli in the prestimulus period (Fig. 3) agree with
the fMRI study results of Fox et al. (2005). The intensity of neu-
ral responses can be detected by current vector moduli as well as
by fMRI signals, in spite of the large modality difference of signals
between the methods.

Under the high-contrast condition, the relatively strong connec-
tivity computed with the current vector moduli continued until a
latency of around 100 ms after the onset of the stimulus. The delay
of the ipsilateral hMT+ relative to the contralateral one could be
both positive and negative (Fig. 3B), which may be a reflection of
bidirectional information exchange between the areas related to
the appearance of the visual stimulus. With regard to the strongest
modulus connectivity, obtained in most of the subjects at a latency
of around 100 ms, the delay was negative, suggesting feedback
processing from the ipsilateral hMT+ (right hMT+ relative to the
bottom-right visual field) to the contralateral one. The long delay
of 19.2 ms of the strongest modulus connectivity allows the pos-
sibility of an indirect pathway, as implied by ffytche et al. (2000).
The link between the hMT+ areas in the two hemispheres might be
unspecific before the stimulus is adequately processed (i.e., in the
prestimulus period and until about 100 ms after onset). In the early
period the ipsilateral hMT+ might send signals to higher frontal cor-
tical regions, such as the frontal eye fields that could input signals to
the contralateral hMT+ (Silvanto et al., 2006). Such pathway might
be beneficial when subjects’ attention can facilitate visual motion
processing. After peaking at around 100 ms, the modulus-based MI
values declined.

Alternatively, high MI values appeared for the current vector
directions, beginning around 100 ms and continuing until 200 ms.
The delays of the major peak of MI values were centered around
zero at high contrast until it vanished at the latency of 200 ms
(Fig. 6B), but not at low contrast (Fig. 7B). With long delays in posi-
tive (+50 ms) and negative (−60 ms) two other peaks were observed
at latencies of 100 and 200 ms, but their magnitude was lower than
the major peak. While the longer delays of high MI values allow for
the possibility of indirect connectivity, the short delays observed in
the direction-based MI values are more consistent with direct com-
munication between the two hMT+ areas (Van Essen et al., 1982;
ffytche et al., 2000). At high contrast a focused link between the
nd direction of the neural current vector identify distinct functional
), doi:10.1016/j.jneumeth.2010.07.010

hMT+ areas might come out after the appropriate stimulus fea-
tures are selected (i.e., latencies around and after 100 ms). The later
stage results could then be a signature of the integration of stimu-
lus representations in the left and right hMT+ areas into coherent
representational states, most likely through direct communication

dx.doi.org/10.1016/j.jneumeth.2010.07.010


 ING

N

1 of Neu

v
r

c
s
m
a
o
T
p
p
r
t
a
d

l
a
t
o
e
d
t
a
n
v
c

A

D
a
w
u
F
b
R
h
E

A

t

R

A

B
B

C

d

D

D

D

D

ARTICLEModel

SM-5685; No. of Pages 15

4 M. Maruyama, A.A. Ioannides / Journal

ia the corpus callosum, although common input from a third area
emains a possibility (Singer, 1993).

The modulus- and direction-based connectivity appeared
onsistent with two distinct periods of transcranial magnetic
timulation (TMS) studies, in which subjects’ performance of
otion-direction detection was reduced by stimulating the hMT+

reas before 40 ms or between 80 and 210 ms relative to motion
nset (d’Alfonso et al., 2002; Sack et al., 2006; Laycock et al., 2007).
he functional distinction of neural processing in the separated
eriods has not been fully understood yet. Our results suggest a
ossibility that the two hMT+ areas exchange information indi-
ectly with contributions of other areas in order to interpret better
he visual inputs. Visual features computed in the separate hMT+
reas are then integrated into a coherent perception, possibly via
irect communication.

In summary, we showed that the MI results based on the modu-
us and direction were sensitive to different aspects of connectivity,
nd they were consistently so across subjects. The use of informa-
ion about the direction of the current adds specificity, because one
f the nearby sulci can be selected as the most likely neural gen-
rator on the basis of how well its orientation matches the current
ensity direction corresponding to a peak in the MI. In conclusion,
his study demonstrated that MI analyses of current vector moduli
nd directions can disentangle different types of functional con-
ectivity into different dynamics, thanks to the ability of current
ector direction analysis to reveal detailed aspects of functional
onnectivity.
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