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Abstract. — One characteristic behavipur of the Hopfield model of neural networks, namely the
catastrophic deterioration of the memory due to overloading, is interpreted in simple physieal
terms. A general formulation allows for an exploration of some basic issues in learning theory.
Two learning schemes are construeted, which avoid the overloading deterioration and keep
learning and forgetting, with a statignary capaeity.

Neural networks with symmetric interactions provide a simple model for a distributed,
content-addressable memory [1]. A formal neuron is represented by a spin variable S,
which can take two values, S;=+1 (neuron firing), §;= —1 (neuron quiescent). The
synaptic efficacies T can be positive (excitatory) or negative (inhibitory). With the
assumption of symmetrie interactions, an energy function can be defined

- (%) L T4S:S; ()

and the neuron dynamies[1] leads to downhill motion on the energy landseape in the
configuration space defined by (1).
The standard procedure for the storage of p input patterns follows the generalized Hebb



. EUROPHYSICS LETTERS
rule, and is expressed by

Ty= L aTy(s), (2)

ATy(s) = &)ﬁrﬂaj @

where St-=r1;:a£ defines pattern s. Within such a process, optimal storage for randomly
independent patterns is obtained for p ~ 0.15 N, where N is the number of neurons in a fully
interconnected network. Above this value, confusion sets in and retrieval quality sharply
deteriorates[1-3]. A simple way to quantify this statement is to plot the number of
memories which are retrieved with better than 97% acecuracy, as a function of the total
number p of printed patterns. This is shown in fig. 1la) for N =100.

This procedure is typically instructive in character [4]. Recently, a selective version of
the model has been proposed [5]. Some of the distinctive issues under discussion concerned
the following aspects: initial state before learning, synaptic sign changes, categorization
properties, choice of learning rule. In the present paper the selective vs. instructive issue is
not addressed directly. The focus is put on the prevention of the afore-mentioned memory
deterioration, due to overloading. It is shown that the hypothesis of uniform amplitude for
the storage of any memory, and/or the absence of synaptic constraints, are responsible for
the breakdown. With the help of a simple unifying treatment, it is possible to go beyond
these restrictive hypotheses and to obtain a network that keeps a permanent capacity for
learning. New patterns are stored on top of previous ones, which get progressively erased.
For this reason, such a memory may be figuratively termed a palimpsest. Two such
schemes, named -marginalist learning= and slearning within bounds», are defined and
studied.

1. Basic formulation.

Two constitutive equations are derived. One relevant variable is the average of the
squared synaptic efficacy modifications, over all synapses (i, j), for one pattern s:

- K RB(s)= (AT%(s)} — (AT;(s))%, (4)

which defines the pattern acquisition intensity (a measure of its memory trace), Notice that
in the special case of the generalized Hebb rule (3), k(s) is independent of s,

K Ki(s)=1/N=,
The other basie variable iz the cumulated synaptic intensity after learning p patternas:
K(p)= (T%) — {T4)~ (5)
If the inputs are randomly independent, it is possible here to ignore the correlations
between synapses and to treat the AT(s) themselves as independent random variables.

Henece the central limit theorem goes

K(p)— Kip—1)=k(p). (6)
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Fig. 1. — Number of patterns with a retrieval overlap g (defined as the projection of an input pattern on
its attractor) better than 97%, as a function of the total number p of learned patterns, for N = 100. a)
Hopfield model, the optimal capacity is reached at p~12.5. b) Marginalist scheme for ¢ =2.7. ¢}
Scheme with bounded efficacies for e =1 (&) (the eatastrophic deterioration oceurs), and =27 (m)
(the memory reaches a stationary regime).
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A continuous version of this equation, in terms of a «times variable proportional to the
number of stored patterns, may be written as

K'(t) = k(t). (n

This first constitutive equation gives the increase in total synaptic efficacy due to the last
learning event.

The second equation gives the threshold intensity k for one pattern to be safely stored
against a background intensity K. It is known from spin glass theory, and it is easily checked
numerically [5] see also[6], that

k=¢KIN, (8)
where ¢ is a numerical factor, which was estimated as £ ~ 2.5 in the spin glass limit, where
strict random independence of the interactions holds by definition. This value (a kind of

eross-over point) was found to guarantee almost perfect retrieval (98% accuracy), and the
sealing dependence with N has been checked for N =64, 100, 200.

2, Standard learning process.

In thiz scheme, by assumption[1-3], the interactions are vanighing in the initial state
(tabula rasa hypothesiz) and the aeguisition intensity iz uniform:

klg)=k.
Accordingly, the cumulated intensity K(f) grows linearly with «times:
K(t)=kt, (9)
in virtue of (7), and the maximal capacity p obtains for
k=S K(p)N (10)
in virtue of(8). Inserting (9) into (10), one gets
p=N/&. (11)

Two remarks. The value of the learning intensity & has dropped out from expression (11;
thiz is not surprising, since there iz no intensity scale within the febula rasz hypothesis.
From the theoretical estimate p=0.138 N, one derives a value for £, = = 2.69, which is in
striking aceord with the spin glass estimate[2,5]. This suggests that the effect of
correlations between synaptic efficacies is small, at least for that matter. Continuation of
this learning process for p = p is catastrophic, because all memories sink simultanecusly
under the threshold level defined by (8).

The case without fabula rasa can be treated with equal ease. For simplicity, we assume
that the synapses are randomly excitatory or inhibitory, with K = K, before learning
oceurs. Then (9) is modified into

K(t)=Ky+ kt. (12)
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Inserting (12) into (8), one gets now
p=(NI&) - (Kyk). (13)

The asymptotic eapacity is unchanged, but a threshold in N has appeared. For efficient
storage to oceur, the network size must be larger than a threshold:

N>N.=Ky%k. (14)

It should be reminded here that, within this model, N is also the connectivity of the
network, i.e. the number of neurons connected to any given one. Note that the acquisition
intensity k iz no longer irrelevant and does govern N.. To give some numbers, if the synaptic
modification in one learning event is 10% of its initial value, the network must contain at
least a thousand neurons for any efficient storage. With a network size equal to double this
threshold, the optimal storage capacity is around a hundred patterns. When this number has
been reached, eumulated synaptic modifications amount to about 50%.

3. Marginalist learning.

By definition, a learning process will be called marginalist, if the acquisition intensity for
learning the last pattern is tuned to be exaectly at its thresheld value.

Catastrophic memory deterioration, due to overloading, is mainly due to the hypothesis
of uniform aequisition intensity. Indeed, we know from (8) that is it always possible to learn
a new pattern, provided the acquisition intensity is strong envugh. There is of course a price
to pay in order to secure this stabilization, and this eomes as an increased erasure of the
previously learned patterns.

As a consequence of the marginalist hypothesis, (7) and (8) combine to yield an
exponential growth for both the cumulated and marginal intensities:

K(t)/Ky = k()/k(D) = exp [ t/N]. (15)
Indeed, in the original diserete «times process, the synaptic efficacy evolution reads
Ty(p) = Tyy(p— 1) + =[Kip - 1Jﬁ]*aﬁ (), (16)
where, in the case of the generalized Hebb rule (3),
di(p) =a§nfn£af
This leads to
Kip)=Ey 1 [1 +(@)] an

with
a(8) = {85(s)®) — {dy(8))" =1 — (&y(a))™

For independently random patterns, and large N, =(s)=1. Thus asymptotically, (17)
reduces to (15). Note that the generalization of the preceding arguments to learning rules,
other than Hebb, is straightforward.



=40 EUROPHYSICE LETTERS

In the strict sense, only the last pattern emerges above threshold. However, if ot
counts the number of stored memories which are retrieved with better than, say, 97%
accuracy, our numerical results show that, for p=0.1N, the capacity reaches a running
plateau, which is about a half of the optimal storage capaecity (11). The ability to keep
learning has been paid by a factor two reduction in the storage capacity (fig. 1b)).

It is intuitive, and in fact true, that within this marginalist-learning process, the more
anciently a pattern has been printed, the more deeply it is buried and forgotten. This «time.
decay is illustrated in fig. 2, by plotting the retrieval quality as a function of storage
ancestry.

Marginalist learning is not completely unrealistic for some forms of memory. Suggestive
possibilities are also open by unlearning effects[7], allowing for the recovery of sunk
memories. Exponential growth, however, becomes asymptotically unrealistie, whether for
natural or artificial memories. A simple alternative process (1), which captures learning and
forgetting, in a stationary mode, free from any exponential growth, is studied in the next
section.
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Fig. 2. — Marginalist learning: mean retrieval overlap {g(p)}, of the p-th pattern onee { have been
learned, as a function of p/t, shown here for N= 100, e=2.7, and ¢ =20 (O), 30 (+), 40 (A) and E—'»{'I (m).
Apart from the most recently learned patterns, (g) takes the minimal possible value —0.15.

4. Learning within bounds.

The notion of learning without synaptic sign changes has been evoked already[5]. We
impose here a stronger constraint, namely that the synaptic efficacies are bounded above
and below:

0=Ty=<A, or -A=<T;=<0. (18)

The acquisition intensity k is taken uniform for simplicity.

e ——

() We are thankful to G. PARISI for his contribution te the definition of this simple model.




IYSICE LETTERS

wever, if one
1an, say, 97%
hes a running
bility to keep
fig. 1)),

e58, the more
1. This «times
ion of storage

~y. Suggestive
wery of sunk
¢, whether for
s learning and
ed in the next

nee t have been
1 {a) and 50 (m).
Ine —0.15.

Iready [5]. We
wunded above

(18)

imple model.

J. P, NADAL et al.: NETWORKS OF FORMAL NEURONS AND MEMORY PALIMPSESTS ad1

If k is very small, the bounds have little effect, and the catastrophie deterioration of sect.
2 still cecurs. If k is very large, however, the last pattern will be optimally memorized.
Consideration of these two limits, therefore, suggests that a transition takes place as a
funetion of k. From the constitutive eqgs. (6), (8), one sees that if

A =1NY (19)
then the critical value k., should scale as L/N®:
ke = (2a/ND, (20)

We have found numerical evidence for such a transition, by looking at different values of
e=k!N, at N=100 and N =200. In fig. 1c) one sees that for ¢ = 1.0 the characteristic
deterioration is observed, whereas for ¢ = 2.7 a stationary regime is reached with a capacity
C'y which is a fraction of the optimal, but transient, eapacity observed at ¢ = 1. The capaeity
Cx, shown in fig. 3 as a function of £, behaves as an order parameter. The threshold, or
critieal value, is found at s, ~1.2. Remarkably, a maximum occurs at a value e, In our
calculations with N = 200, this value seems to be independent of N: &, ~ 3, and the optimal
capacity O grows with N: C¥~0.016 N. For ¢=N?, only the last pattern is perfectly
memaorized, the asymptotic capacity is one exactly. It is known [8] that human short-term
memory can keep seven (plus or minus twao) separate items (e.g. numbers). It is amusing to
note that in our scheme, a capacity of geven patterns is reached with a connectivity of about
500, each neuron being connected to five hundred other neurons.
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Fig. 3. — Asymptotic capacity: Cy as a function of ¢, for & = 100 {4 ) and N = 200 (m, +). For comparison
with the other models, C'y is the mean number of patterns with retrieval better than 97%. Shown alzo
is the mean number of patterns with quasi-perfect retrieval (99%) (+) for N= 200,

These results remain qualitatively similar with other learning rules, such as the one
considered in{56). Dropping the sign constraint, so that (18) is replaced by the unique
constraint —A=<Ty=A, was found not to affect significantly the qualitative results.
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As a final remark, it is worth stressing that, in these schemes of palimpsest-type
memories (sect. 3 and 4), forgetting appears as an active process, directly related to new
learning events, as distinet from a passively relaxational time decay. Forgetting comes as a
masking effect, due to interference of superimposed memory traces. There are suggestive
analogies between some properties of these memory palimpsests and several features of the
short-term memory in man[8, 9). The possible biclogical relevance of this study will be
critieally discussed in a fortheoming publication.

In concluszion, this paper illustrates a perhaps counterintuitive phenomenon: The
introduction of eonstraints in the learning proeess can lead to improved, instead of
diminished, storage performances,
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