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Dekan der Fakultät für Biologie: Prof. Dr. H.A. Mallot
Dekan der Medizinischen Fakultät: Prof. Dr. I. B. Autenrieth

1. Berichterstatter: Prof. Dr. A. Kleinschmidt
2. Berichterstatter: Prof. Dr. K. Uludağ
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”Rest Energy” by Marina Abramovic, 1980.

The fascination of this performance by Abramovic lies in the energy that emanates from a state of apparent rest.

It described rest as a sensitive state of balance suspended at high energetic cost. The brain’s ”resting” state is likewise

a state of very high energy expenditure. The overwhelming majority of the extremely costly brain activity is indeed

intrinsic and makes the observer marvel about function of such complex state of spatio-temporal organization. Beyond of

what can be captured by this analogy is the dynamic character of intrinsic brain activity that is central to the provided

work.
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1 Synopsis

1.1 Introduction to ongoing brain activity

Ongoing brain activity has been observed since the earliest neurophysiological recordings
in humans (for instance Berger, 1929). Nonetheless, brain research has long under-
investigated this aspect of the brain’s design and thus its functional importance has
remained mostly elusive. Ongoing activity refers to neural activity that is intrinsic to the
brain, i.e. not driven by any specific external stimulus. In the recent years, this intrinsic
brain activity has become a new focus of interest and research (Fox and Raichle, 2007;
Buckner et al., 2008; Raichle, 2009). Three types of observations have substantially
contributed to this rise in interest. First, the brain expresses high levels of spontaneous
activity during a wide range of states even in the absence of external stimulation or overt
behaviour. Second, this intrinsic brain activity undergoes large spontaneous modulations
that occur coherently across reproducible large-scale and spatially-distributed networks.
And third, ongoing brain activity impacts on evoked information processing and hence
ultimately on perception and behaviour.

Ongoing brain activity constitutes a major proportion of neural activity with stimulus-
or task-evoked responses representing a relatively small addition (Arieli et al., 1995;
Fiser et al., 2004). The neuroimaging work by Raichle and colleagues on activity and
energy expenditure in the resting awake brain further underlines these findings (Raichle
et al., 2001). During task-free resting state, the oxygen metabolism as measured by
Positron Emission Tomography is very high throughout the cortex. In fact, task-related
increases in neural metabolism are quite small (< 5%) when compared with the large
resting consumption (Raichle and Mintun, 2006). One aspect of brain activity during
unconstrained resting wakefulness has been particularly intensely discussed in the recent
years. A group of brain regions including ventromedial prefrontal cortex (mPFC),
lateral parietal cortex and especially precuneus/posterior cingulate cortex (PCC) show
particularly high resting metabolism as measured by blood flow and oxygen consumption
(CMRO2) in comparison with the rest of cortex (Raichle et al., 2001). This group
of regions, dubbed the ”default mode” network, decreases activity during extroverted
processing as compared to rest (Gusnard and Raichle, 2001). These task-induced
decreases occur in the same regions independent of the type of task and correlate with
the degree of functional challenge (McKiernan et al., 2003; Greicius and Menon, 2004;
Mason et al., 2007; Singh and Fawcett, 2008). These observations together with the
role of PCC in mnemonic processes (Fletcher et al., 1995; Shannon and Buckner, 2004;
Daselaar et al., 2009) and mPFC in self-referential processes (Binder et al., 1999) have
led to the (controversial) proposal that activity in this network is related to conscious,
yet experimentally uncontrolled mentation (McGuire et al., 1996; Buckner and Carroll,
2007; Mason et al., 2007). The default mode network is referred to as the ”task-negative”
network (Gusnard and Raichle, 2001), contrasting it with the ”task-positive” behaviour
of regions such as dorsolateral parietal, frontal and prefrontal areas commonly increasing
activation in response to cognitive tasks (Corbetta et al., 2002; Smith et al., 2009).
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Intrinsic activity not only constitutes a substantial part of brain activity but also ex-
hibits remarkably large spontaneous modulations that can surpass task-evoked responses
in amplitude (Arieli et al., 1995). These fluctuations are found over a wide range of
temporal and spatial scales. Intrinsic activity is temporo-spatially organized, replay-
ing for instance functional architecture. As an example, distinct orientation-encoding
populations within orientation maps of visual cortex spontaneously increase activity
in alternating manner at sub-second speed (Tsodyks et al., 1999; Kenet et al., 2003).
Whole-brain Blood-Oxygenation-Level-Dependent signal (BOLD) imaging has revealed
spatio-temporal structure of ongoing brain activity at the scale of distributed networks,
substantially contributing to the recent strong interest in this subject (Fox and Raichle,
2007). The first report of coherent spontaneous activity fluctuations within organized
spatial patterns involved the motor system (Biswal et al., 1995). Several such intrinsic
functional connectivity networks (ICNs)1 have since been observed (see Figure 1) (Lowe
et al., 1998; Greicius et al., 2003; Laufs et al., 2003; Beckmann et al., 2005; Damoiseaux
et al., 2006; Varoquaux, Sadaghiani et al., 2010). These networks, whose regions undergo
coherent spontaneous activity fluctuations, strongly resemble patterns of activation or
deactivation evoked in task contexts (Smith et al., 2009). They include different sensory
systems (e.g. Nir et al., 2006), the default mode network (Greicius et al., 2003; Fox et
al., 2005; Fransson, 2005) and several task-positive attentional and cognitive control
networks (Fox et al., 2006; Dosenbach et al., 2007; Seeley et al., 2007; Vincent et al.,
2008).

Despite the static impression imposed by ICN maps as a result of correlation analyses,
it should be noted that the correlative relationship between constituent regions of ICNs
is not rigid, but rather these regions decrease and increase activity in coherence with each
other more often than with other regions (Chang and Glover, 2010; Popa et al., 2009).
This fact inevitably results in difficulties in drawing distinctive boundaries between
networks and assigning certain brain areas to particular ICNs. Another characteristic
that has likely led to more prevalent difficulties regarding the anatomical definition of
ICNs and caused much confusion2 is the nested correlation structure of ongoing brain
activity. This structure should be thought of as a hierarchical organization of multiple,
spatially embedded levels of correlation, ranging from global grey matter correlation
across the entire cortex to within-region correlations (for detailed discussion see section
2.5). Consequently, the spatial pattern and number of constituent regions depends upon
the emphasis and specific methods of each laboratory, such as exact positioning of the

1Intrinsic functional connectivity networks are also commonly referred to as resting-state functional
connectivity (rs-fc) networks, resting state networks (RSNs) or functional connectivity MRI (fcMRI)
networks. However, they should not be conceptually restricted to certain mental states nor imaging
methods.

2For instance, cf. controversy (stemming from global grey matter correlations) regarding putative
”anti-correlation” between the default-mode network and certain task-positive regions in Fox et al.
(2009) vs. Murphy et al. (2009). Another example concerns the definition of one large task-positive
system (Fox et al. 2005; Golland et al., 2008) versus different numbers of segregated task-positive
networks (Fox et al., 2006; Dosenbach et al., 2007; Seeley et al., 2007; Vincent et al., 2008). One aspect
of this discrepancy is discussed in section 1.2.
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correlation seed in seed-based approaches and the model-order chosen in independent
component analyses (ICAs). We have proposed an automatic model-order selection as a
solution to the latter problem (Figure 1, Varoquaux, Sadaghiani et al., 2010).

The spatio-temporal ICN patterns persist across different states, from task- and
stimulus-induced active states (Fair et al., 2007a; Golland et al., 2007; Eckert et al.,
2009), over resting wakefulness (Greicius et al., 2003; Fox et al., 2005; Fransson, 2005),
light and deep sleep (Horovitz et al., 2007; Horovitz et al., 2009) and light sedation
(Greicius et al., 2008), all the way down to the complete absence of awareness in deep
anaesthesia in monkeys (Vincent et al., 2007) or in vegetative state patients (Boly et al.,
2009). However, although qualitatively stable, ICNs show quantitatively fine-grained
changes in correlation strength both at short time scales in response to immediate
task-demands (Waites et al., 2005; Albert et al., 2009; Hasson et al., 2009; Tambini et
al., 2010), through the circadian time scale of the sleep-wake cycle (Horovitz et al., 2007;
Horovitz et al., 2009), as well as longer time scales reflecting intense learning (Lewis et al.,
2009). Interestingly, intrinsic functional connectivity strength is altered between selective
regions in many psychiatric or neurodegenerative disorders (e.g. He et al., 2007; Seeley
et al., 2009) and shows a gradual decline with the pathological loss of consciousness
from healthy state to minimally conscious state, vegetative state and ultimately coma
(Vanhaudenhuyse et al., 2010). Intrinsic connectivity analysis thus promises to become a
marker of normal brain function (Greicius, 2008). But the importance of ongoing brain
activity becomes most evident in its impact on moment-to-moment evoked information
processing.

”Ignoring brain-derived variability would be a great loss since this spontaneous
coordinated variability may be the essence of cognition.” – György Buzsáki (2006)

Stimulus- or paradigm-evoked brain responses to repeated identical stimuli show high
variability from trial to trial for instance in amplitude, a phenomenon observed across the
temporal and spatial scale of electrophysiology, optical and functional imaging methods
(Schiller et al., 1976; Tsodyks et al., 1999; Ress et al., 2000; Pessoa and Padmala, 2005).
The influential work of Arieli and colleagues showed that this evoked-response variability
is largely accounted for by spontaneously occurring fluctuations of ongoing activity (Arieli
et al, 1996). They investigated background and stimulus-evoked activity with concurrent
optical and electrophysiological methods in anaesthetized animals. By linearly adding
an average evoked response estimate to the initial state of ongoing activity at stimulus
onset of a given trial they could predict the veridical evoked activity pattern in that
trial with high precision. Fox et al. (2006a) made a similar observation at very different
spatial and temporal resolution using fMRI. In a finger-tapping paradigm, they used
the motor cortex contralateral to the task-relevant hemisphere as a measure of ongoing
activity fluctuations, taking advantage of the coherence of these fluctuations across the
motor ICN. They found that trail-to-trial variability of finger movement-evoked activity
in motor cortex could be largely accounted for by ongoing activity fluctuations measured
in the contralateral motor cortex.
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Figure 1: ICN maps extracted by ICA from a resting-state data-set. We
introduced and applied an estimation procedure (CanICA) that uses a hierarchical
model for patterns in multi-subject fMRI datasets, similar to mixed-effect group models
used in linear-model-based analysis (Varoquaux, Sadaghiani et al. 2010). The maps
are ordered by reproducibility across subjects. Maps corresponding to functionally
plausible intrinsic connectivity networks (ICNs) are in a black frame, whereas maps
likely corresponding to artefacts are not framed. Extracted brain networks are labelled
with the name of the general structure to which they can be related. The right hemisphere
is on the left.
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Crucially, these ongoing activity fluctuations that propagate into the induced response
were shown to translate into behavioural variability. A follow-up to the aforementioned
study by Fox et al. showed that trial-by-trial variability in task-evoked motor cortex
activation affected the spontaneously variable force that subjects applied in different
trials when pressing a response button (Fox et al., 2007). Instead of using simultaneously
recorded signal in a region that belongs to the same ICN but is silent in a task context,
previous studies from our laboratory have taken pre-stimulus signal in the same region
that will subsequently respond to a given stimulus as a measure of ongoing activity. In a
decision task on Rubin’s vase-faces ambiguous figure with brief stimulus-presentation at
long variable intervals of ≥ 20 s, subjects reported perception of faces on approximately
half of the trials and a vase on the other trials (Hesselmann 2008b). Higher pre-
stimulus activity levels in the right fusiform face area (FFA), a region specialized on
face processing, were found to bias towards the percept of faces rather than a vase. This
finding was shown to generalize to the domain of visual motion perception (Hesselmann
et al. 2008a). In a decision task using random dot kinematograms at individual threshold
motion coherence level, subjects indicated whether they saw coherent or random motion
on a given trail. This time, subjects’ perceptual decision was biased by pre-stimulus
activity levels in right middle temporal cortex (hMT+). Perception of coherent motion
was preceded by significantly higher ongoing activity in this motion-sensitive region.
Likewise, Boly et al. (2007) investigated the perceptual impact of pre-stimulus activity
fluctuations in a somatosensory detection task. For laser stimuli close to perceptual
threshold, pre-stimulus activity levels in large distributed systems resembling ICNs
biased whether or not a stimulus was perceived on a given trial. The system biasing
towards perceiving the stimulus comprised task-positive systems of parietal, frontal and
prefrontal areas. Conversely, on trials where subjects missed the threshold stimulus,
pre-stimulus activity levels were higher in the task-negative default-mode network. In
summary, intrinsic activity fluctuations influence perceptual and behavioural outcome.
The need for investigating what aspects determine sign and site of this influence have
motivated my first experiment (section 2.2).

Electro- (EEG) and magnetoencephalographic (MEG) studies have likewise shown
the impact of ongoing activity on subsequent processing and behaviour by investigating
pre-stimulus band-limited oscillation power and phase3. Trial-to-trial variability in
perceptual outcome has been related to the phase of EEG α and θ band oscillations
in visual threshold detection tasks (Busch et al. 2009, Mathewson et al. 2009). Using
MEG, Jensen and colleagues observed that visual discriminability of a threshold stimulus
decreased with an increase in pre-stimulus occipito-parietal α band power (van Dijk et
al., 2008). Likewise, they reported in a go no-go task that false alarms were preceded by
higher levels of α band power in the occipital cortex and bilateral somatosensory cortices

3Only un-cued settings are discussed here. Several studies have shown the impact of preceding
oscillation power levels but in spatially cued settings (e.g. Thut et al. 2006, Wyart and Tallon-Baudry,
2009) where the pre-stimulus power levels could be thought to reflect variability in cue-induced evoked
response amplitude rather than spontaneous fluctuations. For a detailed comparison with cued settings
see section 2.5.
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(µ rhythm) as compared to correct withholds on no-go trials (Mazaheri et al., 2009).
Palva and colleagues investigated pre-stimulus power fluctuations with full-band EEG
sensitive to infraslow fluctuations (<0.1 Hz) using a somatosensory threshold detection
task in a free-response setting. They found highest detection rates and shortest reaction
times to be associated with intermediate power levels (inverse u-shaped relation) of α,
β and γ band oscillations over sensorymotor cortex, and with highest power of these
bands over parietal electrodes (Linkenkaer-Hansen et al., 2004). Interestingly, in this
task setting the phase of infraslow fluctuations was found to be strongly correlated to
the power of higher frequencies (1-40 Hz) and to be highly predictive of hits and misses
on a trial-by-trial basis (Monto et al., 2008). Invasive electrophysiological methods
have been used to characterize these infraslow fluctuations, their relation to oscillatory
activity and to the spatial structure of infraslow activity fluctuations as measured with
fMRI. In anesthetized monkey primary visual cortex, fMRI signal fluctuations strongly
correlate with simultaneously measured infraslow band-limited LFP power fluctuations,
multi-unit activity and spiking rate of small neuronal groups (Shmuel and Leopold,
2008). In presurgical human patients, infraslow fluctuations have been observed in
band-limited LFP power and spiking rates (depth electrodes) and shown to be correlated
across selective, functionally related electrodes as measured by electrocorticograpgy
(ECoG) (Nir et al., 2008). He et al. (2008) showed that slow cortical potentials (<0.5
Hz) as measured by full-band ECoG over sensory-motor areas in fact express a spatial
cross-electrode correlation pattern very similar to that measured by fMRI intrinsic
connectivity in the same patients. The relation of fluctuations in network-confined
activity levels, in oscillation power and in spontaneous top-down cognitive control
motivated my simultaneous EEG-fMRI study (section 2.3).

1.2 Summary of presented work on the functional impact of
ongoing brain activity

Sign and anatomical site of the impact of endogenous activity onto behavioural outcome
is an open matter of current research. The spatial pattern within which ongoing activity
affects perception and behaviour can range from very focal variations, e.g., in highly
specialized sensory regions (Hesselmann et al., 2008b; Hesselmann et al., 2008a), to
effects from large-scale systems (Boly et al., 2007; Fox et al., 2007). What determines
the spatial pattern within which this functional impact occurs, and whether higher
baseline activity levels in a given region or system facilitate or deteriorate perceptual
performance?

In the aforementioned study by Boly et al. (2007) somatosensory detection was facili-
tated by higher pre-stimulus activity levels in task-positive regions, notably the thalamus,
dorsal anterior cingulate cortex (dACC) and anterior insula (cf. later discussion of the
alertness network), as well as parietal and frontal areas including intra-parietal sulcus
(IPS) and dorso-lateral prefrontal cortex (dlPFC). Conversely, higher baseline activity in
the task-negative default-mode network impaired subsequent detection performance. A
related observation regarding the deteriorating influence of activity levels in the default-
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mode network comes form studies that have directly targeted the neurobiological basis
of erroneous behaviour (Li et al., 2007; Eichele et al., 2008). Rather than investigating
baseline fluctuations, these studies related trial-by-trial performance to variability in
evoked responses to the immediately preceding trial. They found that higher evoked
response amplitudes in default-mode network regions degrade motor performance in
speeded motor control tasks.

These observations together with the typical task-induced activation vs. deactivation
of these systems could motivate a dichotomic view in which higher ongoing activity
in task-positive brain networks would facilitate performance whereas higher activity
levels in the default mode network would degrade performance (Golland et al., 2008).
From a computational point of view, however, such a simplistic account seems unlikely.
As discussed above, neural processing of stimulus-evoked information is a function of
local and distributed neural networks in which it is embedded (Fontanini and Katz,
2008), and therefore in all likelihood is subject to the moment-to-moment state of the
respective network at each level of processing hierarchy. Which network is exerting
an influence, and whether it is facilitating or detrimental, would then depend on the
functional role of that network in the specific task at hand. We hypothesized that the
cognitive context determines where in the brain an impact will occur, and whether it
will be deteriorating or facilitatory.

Extending previous work in the visual modality from our laboratory discussed above
(Hesselmann et al. 2008a, b) we probed the aural consequences of baseline variations in
an auditory detection paradigm using a very sparse event-related fMRI design (section
2.2, Sadaghiani et al., 2009). In contrast to those former studies, here we targeted
distributed effects with an emphasis on the perceptual impact of large-scale ICNs.
Therefore, rather than a decision task, we chose a threshold detection paradigm, which
previously was found to invoke large-scale effects in the somatosensroy modality (Boly
et al., 2007). We moved to the as yet unassessed auditory modality and adopted a
context that was different from previous studies in the sense that the stimulus comprised
little spatial connotation (as compared to visual and somatosensory modalities) and
was presented in a free-response setting. Subjects listened for a broad-band noise target
sound that was presented at unpredictable intervals of 20-40 s and at an individually-
defined detection threshold against scanner background noise. They freely pressed a
button whenever they perceived the target.

Successful detection was preceded by significantly higher pre-stimulus activity in
early auditory cortex as compared to misses. We could thus generalize earlier findings
with respect to local effects in specialized sensory areas (Hesselmann et al., 2008a; 2008b)
to an as yet not studied modality. This study involved detection of near-threshold
stimuli in a free-response setting instead of two-alternative forced-choice decisions on
ambiguous but clearly notable stimulation as in the earlier work. As we expected the
effects extended beyond the relevant sensory region and into three large-scale ICNs.
Increased perceptual performance was associated with higher pre-stimulus activity in a
network comprising thalamus, anterior insula and dACC. We proposed that this finding
suggests a role for this ICN in maintenance of alertness and pursued this hypothesis
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directly in a subsequent study (see below and section 2.3). Likewise, higher baseline
activity in the precuneus/PCC region of the default mode network preceded hits, a
finding that at first glance might appear at odds with the existing literature but that
likely reflects the importance of retrieving a memory template of the target for successful
performance on the continuous sensory input (Shannon and Buckner, 2004; Daselaar
et al., 2009). In accord with this view, this default mode network region was task-
positive in this experiment and showed task-induced activation before entering a delayed
deactivation. Again, counter to common intuition higher baseline activity in the dorsal
attention ICN including parietal and frontal areas biased towards misses. This finding
presumably reflects the absence of a spatial component in our paradigm in which non-
spatial attentional operations might compete with the processing of spatial information
by the dorsal attention system for similar central resources.

We concluded that the simplistic account is hence insufficient. Rather, the effects
of spontaneous baseline activity fluctuations on perception depend upon the specific
context in which stimuli are embedded and, in parallel the specific states of the rele-
vant brain systems in processing the incoming sensory information. In our case, with
an essentially non-spatial, novel and non-semantic stimulus we could unveil different
and in fact opposite contributions from ongoing activity than in the existing previous
studies. An additional important finding concerns the aforementioned task-positive
attentional and cognitive control networks. These putative networks are co-activated in
most paradigm settings (e.g. Shulman et al., 2003; Wu et al., 2007) and their ongoing
activity has been associated with uniform functional and behavioral impacts (Boly et
al., 2007). Anatomical segregation on the basis of intrinsic functional connectivity as
well as functional characterization of these systems is still a matter of open debate (for
a discussion cf. section 2.5). Despite a certain level of shared ongoing activity variance
(Fox et al., 2005), we provide evidence for functionally independent and antagonistic
influences on perceptual performance of two task-positive systems often described as
conjoint, i.e. deterioration by the parieto-frontal dorsal attention ICN, and facilitation
by a cingulo-insular-thalamic ICN. While the former is well-characterized to implement
selective spatial attention (Corbetta and Shulman, 2002), functional characterization of
the latter has remained elusive.

This cingulo-insular-thalamic network has received diverse functional labels in other
studies. While some investigators have defined one large ICN for cognitive control
(Vincent et al., 2008), others have attempted to dissect this system into sub-networks
linked to (1) executive and adaptive control and (2) task-set maintenance or salience
(Dosenbach et al., 2006; Dosenbach et al., 2007; Seeley et al., 2007). Our paradigm
required the simple detection of non-semantic sparse stimuli through the maintenance
of tonic alertness and hence did not support the above functional characterizations.
Results from our previous study suggest the hypothesis that this cingulo-insular-thalamic
network is involved in the maintenance of tonic or sustained alertness. In accord with
this interpretation, several studies that explicitly probed tonic alertness found effects in
similar brain structures (Sturm and Willmes, 2001; Sturm et al., 2004). In my second
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experiment, I sought to further corroborate this functional interpretation (section 2.3,
Sadaghiani et al., 2010a).

Due to the conceptual impact of frameworks that emphasize cue-driven attentional
functions (Posner et al., 1980), tonic alertness has remained somewhat under-studied in
functional neuroimaging experiments. But an analogous EEG literature suggests that
sustained alpha oscillations are the most prominent signature of tonic alertness (Makeig
and Jung, 1995; Jung et al., 1997). If our functional interpretation was correct, activity
fluctuations (as measured by fMRI) within this ICN in the absence of any paradigm
should be associated with fluctuations in the electrical signatures of tonic alertness (as
recorded by concurrent EEG) and hence show a positive correlation with alpha band
power. In this study, we used a fairly recent methodological approach, concurrent EEG
and fMRI recording of ongoing (i.e. continuous and task-unconstrained) human brain
activity, to test this hypothesis.

Previous concurrent EEG-fMRI studies have linked power fluctuations in EEG
frequency bands to activity in ICNs. However, not even the most comprehensive of these
studies included the cingulo-insular-thalamic ICN (Mantini et al., 2007). And regarding
alpha oscillations as the most salient feature of the EEG during resting wakefulness,
previous findings involved mainly negative correlations (Goldman et al., 2002; Laufs et
al., 2003; Moosmann et al., 2003). We reinvestigated the issue of positive correlation
with alpha power by means of two analyses of concurrent resting-state EEG-fMRI. In a
first region-of-interest approach, we regressed the BOLD time course extracted from the
cingulo-insular-thalamic ICN onto the spectrally resolved EEG power fluctuations. This
analysis allowed us to identify the putative frequency bands to which this ICN is linked.
Second, we performed a voxel-wise regression of the BOLD data with a band-limited
global field power time course of alpha to identify brain areas whose activity is correlated
with power within this band. In line with previous literature that emphasizes specifically
upper alpha in (inhibitory) cognitive control, we concentrated the latter analysis on this
band as defined subject-by-subject relative to individual alpha power peak (Klimesch,
1999).

As hypothesized, we found selective correspondence between global power in the
alpha band and activity in the system we termed the ”tonic alertness network”. The
channel-frequency spectrum revealed positive correlations with the BOLD time course
extracted from the tonic alertness ICN. These correlations occurred selectively in upper
alpha (∼10-12 Hz) and broad beta (∼17-24 Hz) bands; the latter is in line with the
previously observed relationship between beta power and sustained performance levels
(Townsend and Johnson, 1979; Belyavin and Wright, 1987). The correlations occurred
globally across the majority of EEG-channels resulting in a distributed topography.
We observed a similar spectral pattern in all individual constituent regions of the
network. In the voxel-wise analysis, positive correlations of upper-alpha global field
power with the BOLD signal occurred selectively in regions of the tonic alertness network
comprising dACC, anterior insula, thalamus and anterior prefrontal cortex. Negative
correlations with upper alpha power were observed in extra-foveal visual areas and
the dorsal attention network. An equivalent analysis for the beta band revealed more
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confined correlation with dACC and thalamic-basal sub-cortical regions.
We sought to corroborate our functional interpretation of the tonic alertness network

in our earlier auditory detection dataset. We used the network defined through positive
correlation with alpha power as a spatial mask to extract peri-stimulus time courses of
the previous activation study. We hypothesized that if the system as defined here by
EEG correlation underpinned tonic alertness then it should show the same pre-stimulus
effects as previously found for the cingulo-insular-thalamic ICN. Indeed, successful
detection of the auditory stimulus as compared to misses was preceded by significantly
higher pre-stimulus activity levels in those areas where activity correlates with upper
alpha band power in a different set of subjects.

In summary, we observed in a large subject sample that ongoing activity in an intrin-
sic connectivity network comprising anterior insula, dACC, anterior prefrontal cortex
and thalamus was tied to global field power in the upper alpha range. While previous
exploratory studies found pieces of this network to correlate with (mostly occipital)
alpha (Goldman et al., 2002; Moosmann et al., 2003; de Munck et al., 2007; Ben-Simon
et al., 2008; Difrancesco et al., 2008), this is the first demonstration linking a specific
frequency component with a widespread topography to an entire intrinsic connectivity
network. Of note, this network did not include other task-positive regions such as dlPFC
or lateral parietal cortex and thus supports the view of segregated cognitive control
networks (Dosenbach et al., 2007; Seeley et al., 2007). We’ve outlined our hypothesized
functional role of this network but also proposed a hierarchical view of attentional
functions in which alertness and selective attention deploy antagonistic but mutually
reinforcing mechanisms that manifest in the power of alpha oscillations. Specifically,
we propose that the cingulo-insular-thalamic network serves the maintenance of tonic
alertness through synchronized oscillations in the upper alpha range that generalize
over major portions of the cortex. Selective attention, likely mediated by activity in the
dorsal attention network, focally disrupts alertness-related suppression in accordance
with the type of input expected and hence manifests as local attenuation of alpha activity
(see section 1.3 for further discussion).

In our two studies introduced above I argued that ongoing brain activity fluctuations
are source of variability in behaviour, ranging from simple perceptual decisions up to
higher cognitive functions such as maintaining alertness. Variability in function could
be potentially detrimental to overall performance. So why doesn’t the brain compensate
for this background ”noise”? To answer this question we need to further understand the
very nature of intrinsic brain activity.

We have proposed that spontaneous brain activity reflects the brain’s internal model
of the environment, i.e., the neuronal activity that predicts the causes of sensory inputs
(section 2.5 part 4, Sadaghiani et al. 2010b). The notion that ongoing activity represents
the brain’s internal context for processing external stimuli has recently been emphasized
by many researchers based on the observation that background activity modulates
stimulus-evoked responses (Kenet et al., 2003; Buzsáki, 2006; Fontanini and Katz, 2008).
One theoretical account that is particularly well-suited to aid in the formalization of
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this interaction of internal and external information is provided by a Bayesian view of
the brain as hierarchical cortical inference machine (Kersten et al., 2004; Hohwy et al.,
2008). In such a view, perception is a recognition mechanism that substantially depends
on the internal model that generates predictions on sensory input.

This predictive nature of perceptual processes is formally embedded into the broader
context of a free-energy account of brain function by Karl Friston (2009; 2010). The
free-energy principle states that the brain’s perceptual system seeks to minimize surprise.
This is achieved by continuously updating an internal model that emits top-down
predictions of sensory input. Unexpected sensory input that cannot be ”explained away”
by the current internal model leads to the signalling of bottom-up prediction errors
(predictive coding). Perception rests on the top-down prediction that best succeeds
in explaining the bottom-up prediction error caused by incoming sensory information
(Friston et al., 2006; Friston, 2009; Friston, 2010). We discuss that within the free-energy
framework spontaneous activity becomes a historically informed internal model of causal
dynamics in the world that serves to generate predictions of future sensory input. This
fits nicely with a large body of experimental observations that support a functional role
for itinerant activity in short term (Bick and Rabinovich, 2009) and especially long term
memory (Jeffery, 2004; Foster and Wilson, 2006; Vyazovskiy et al., 2008; Diekelmann
and Born, 2010). Itinerant fluctuations of this ongoing activity reflect the dynamic
nature of the underlying internal model that does not remain locked in a stationary
mode but remains malleable by continuously exploring hypotheses regarding future
experience and action. Importantly, from this view it follows that this itinerant activity
also manifests in the absence of sensory information.

However, the free energy framework provides more fine-grained predictions about
the nature of intrinsic brain activity. In free energy formulations of predictive coding, a
major contributor to measured neuronal activity is precision-weighted prediction error.
The formulation of precision in this framework is necessitated in order to account for
noise in environmental states or sensory input. Precision (inverse variance) regulates
the reliability or relative weighting of bottom-up prediction error against top-down
predictions (Friston, 2008). Neurophysiologically, precision is thought to be implemented
as synaptic gain of prediction error-coding neurons, controlled e.g. through modulatory
neurotransmitters (Friston, 2010). In this view, prediction errors are boosted selectively
according to the context established by predictions or cues. This means that fluctuating
activity levels may reflect not just itinerant optimization of predictions but fluctuations
in their precision. In other words, precision implements selective boosting of itinerant
system memories that make up the internal model (section 2.5 Sadaghiani et al. 2010b).

Section 2.4 provides supporting evidence for this interpretation (Sadaghiani, Hes-
selmann et al. 2010). In short, the nature of intrinsic brain activity in sensory cortex
could be interpreted as endogenous implementation of precision in the predictive coding
or free-energy framework (Friston, 2008). In the context of perceptual decisions, an
alternative hypothesis on the nature of ongoing activity in sensory areas comes from
random walk or race models (an extension of signal detection theory (Smith and Ratcliff,
2004; Gold and Shadlen, 2007). In these frameworks, accurate modelling of variability in
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perceptual decisions requires the implementation of random variability not only in the
accumulation process but also independently in the initial pre-stimulus state (Ratcliff,
2001). Consequently, in random walk models intrinsic activity levels in sensory cortex
implement the initial level of sensory evidence. In these evidence accumulation models,
activity increases with the evidence for a stimulus. Thus, high ongoing activity will
bias towards perceiving a stimulus, be it physically present (hit) or not (false alarm).
Conversely, under predictive coding, ongoing activity levels in sensory cortex reflect
precision of prediction error units that is amplified when sensory noise is low and sup-
pressed when sensory noise is high. Therefore, importantly, while this latter framework
suggests that high ongoing activity (i.e., precise prediction errors) will bias towards
subsequent correct inference (hits or correct rejections) evidence accumulation models
suggest high pre-stimulus ongoing activity (i.e. high starting level of random walk) to
bias towards subsequent stimulus detection (true hits or false alarms).

We tested these two possibilities against findings in our auditory threshold detection
paradigm discussed above (Section 2.2, Sadaghiani et al., 2009) in which subjects had
occasionally reported false alarms in the absence of stimulation. As predicted by the
predictive coding account (but incompatible with evidence accumulation models), false
inference, i.e. misses and false alarms, where both preceded by significantly lower activity
levels as compared to correct inference, i.e. hits. Likewise, we investigated data from
the visual motion decision paradigm introduced in the first section (Hesselmann et al.,
2008a). In this experiment, both false alarms and correct rejections had been recorded in
response to a quasi-random motion stimulus that was occasionally presented as control
to the threshold motion stimuli. Again, wrong inference, i.e. misses and false alarms,
were foreshadowed by significantly lower ongoing activity levels than both hits and
correct rejections. In summary, in both datasets we found that pre-stimulus activity
levels biased towards correct inference and hence support the interpretation of ongoing
activity -at least as it translates into the fMRI signal- as precision of prediction error
signals (section 2.4, Sadaghiani, Hesselmann et al. 2010). In conclusion, our study gave
specific insight into the nature of ongoing activity. Importantly however, the implications
of this study went beyond this specific question and made use of pre-stimulus activity
in sensory cortices to adjudicate two general theories on cortical processing architecture,
predictive coding vs. evidence accumulation, which cannot be easily dissociated when
investigating evoked activity per se.

The above and other aspects that I regard important in understanding the functional
significance of spontaneous brain activity have been discussed in our review article
(section 2.5, Sadaghiani et al. 2010b).

1.3 Future directions

One future direction of investigation involves the context-dependent dynamics of in-
trinsic functional connectivity. As discussed above, intrinsic connectivity is subject to
quantitative changes, and revealing determinants of these dynamic adjustments is key
in understanding the nature and function of fluctuations in ongoing activity. In the
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context of our auditory detection experiment (Sadaghiani et al., 2009) I have acquired
additional scanning sessions within the same subjects. Across sessions, I manipulated
the context along with the factors task (i.e. with detection task or passive listening) and
perceptibility (stimulus at threshold or largely above threshold volume). I will apply
integration, a connectivity measure that allows for quantification of the correlation
strength (or shared information) between multiple regions of an ICN as well as between
ICNs (Marrelec et al., 2008). This measure was proposed by Tononi et al. (1994) on the
basis of mutual information as defined in information theory frameworks and laid the
foundation for the observation of small-world architectures that optimize segregation
and integration in functional and anatomical brain connectivity (Sporns et al., 2004).
The very long inter-trial intervals (20-40 s) and long sessions (20 min) in the acquired
data permit the complete exclusion of all periods of task-evoked activity and the exclu-
sive use of pure baseline epochs in the connectivity analyses, taking advantage of the
mathematical independence of integration from the temporal sequence. This allows for
studying adjustments of intrinsic connectivity in response to context or task-set during
task execution rather than in test re-test designs that compare resting state connectivity
before and after task manipulation (Waites et al., 2005; Albert et al., 2009; Tambini et al.
2010) and without influence of the evoked activity itself on the connectivity measure (cf.
Eckert et al., 2009; Hasson et al., 2009). I hypothesize that information exchange will
selectively increase within and between certain ICNs (e.g. auditory cortex, the alertness
system and motor cortex), and decrease between certain other regions in response to
context. Interestingly, the large dataset involving detection of peri-liminal sounds, which
was used in the previous analyses (Sadaghiani et al., 2009, Sadaghiani, Hesselmann et al.,
2010), permits the splitting of the inter-trial baseline periods into pre-hit, pre-miss, and
pre-false alarm segments and the calculation of integration as a function of subsequent
perception. In summary, these future analyses will enable assessing whether and how
intrinsic connectivity is subject to immediate changes in response to ongoing sensory and
task context, but also how moment-to-moment functional connectivity affects perceptual
performance.

Another particularly interesting aspect that calls for further investigation is the
functional role that we have postulated for the cingulo-insular-thalamic system which we
termed the alertness network. Our findings open several questions both with respect to
cognitive functions as well as their variability. The maintenance of endogenous (uncued),
sustained alertness appears to not be bound to specific task sets. This is why I restrain
from the functional label ”task-set maintenance” postulated for this network in the
related and very interesting recent work of the Peterson group (Dosenbach et al., 2006;
Dosenbach et al., 2007; Dosenbach et al., 2008; Fair et al., 2007b). In other words, the
function of the alertness network is not an engagement in a specific task, but rather a
generalized, active disengagement and readiness for processing. This function is recruited
more intensely the more the suppression of irrelevant information becomes necessary.
At high demands, this mechanism is cognitively effortful and more strongly subject to
variability over sustained periods of time (Mackworth, 1968; Makeig and Inlow, 1993).
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Thus, it is important to investigate alertness as a fundamental cognitive faculty but also
as a specific source of variability in human perception and behaviour.

Tonic alertness has been generally recognized as a central function in attentional
control. Given the complexity and multifariousness of attentional functions the need
for a taxonomy is clear. The proposed cognitive architectures differ from one another
in several respects, but they mostly include a sustained and intrinsic type of attention
as a cognitive faculty distinct from phasic attention. In particular, this function has
been conceptualized as ”vigilant attention” by Robertson and Garavan (2004), as ”tonic
alerting” in a taxonomy of orienting, tonic and phasic alerting, and executive control by
Posner (2008), and similarly, as ”vigilance” by Parasuraman (1998) in contradistinction
to selection and control. Dispite conceptual similarities however, these theories differ from
our proposal with respect to the anatomical interpretation of alertness; they commonly
emphasize (mostly right-hemispheric) dlPFC and lateral parietal cortex, in contrast to
our proposal of a cingulo-insular-thalamic implementation. This discrepancy might stem
from the aforementioned difficulty of most paradigms in isolating often co-activated
systems that implement distinct aspects of attentional control. For example, an imaging
study that serves as principal reference to Posner (2008) used cued alerting rather than
endogenously maintained alertness (Coull et al., 2000). We turned to the resting state
paradigm to test our hypothesis based on the known electroencephalographic markers
of alertness without interference from task-induced selective attention mechanisms. The
resulting findings led to a hierarchical view that provides both, a neuroanatomical and
an antagonistic electrohpysiological distinction between sustained alertness and selective
phasic attention (Figure 2). This model provides concrete predictions that can now be
tested in carefully designed cognitive paradigms.

The difficulty of studying sustained alertness in isolation from phasic attention and
executive control explains why the former has been under-investigated as compared to
the latter aspects which are easier to manipulate experimentally. Therefore, a future
challenge lies in designing paradigms that specifically orthogonalize alertness and phasic
aspects of attentional control. It has been proposed that particularly good paradigms to
assess tonic alertness are those that require inhibition of response to rare events during
continuous routine behaviour rather than settings that require an explicit response to the
rare target (Robertson and Garavan, 2004). The idea that sustained vigilant attention is
particularly necessary in settings that require occasional withhold from behaviour is in
line with our interpretation of alertness being implemented as inhibitory top-down control
through enhancement of alpha oscillations. In this type of paradigms the necessary level
of continuous alertness maintenance can be parametrically modulated by manipulating
the predictability of the rare withheld target. Orthogonal to this factor, the paradigm is
required to parametrically manipulate selective attention to a certain feature such as
colour, orientation, location or pitch. With respect to sensory modality, audition and
vision provide different advantages. Alertness has often been studied using auditory
tasks (Makeig and Inlow, 1993; Jung et al., 1997; Sturm et al., 2004) and our own
study in the auditory modality strongly implicated the alertness network (Sadaghiani et
al., 2009). Auditory paradigms might be more sensitive to detect effects of alertness
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Figure 2: A hierarchical view on attentional functions. The distinguishing new characteristic of
this proposal is that alertness and selective attention deploy antagonistic but mutually reinforcing mech-
anisms which manifest with opposite sign in the power of alpha oscillations. Attention, Alertness and
Arousal hierarchically depend upon each other but are distinct functions with differing neuroanatomical
and mechanistic implementation. Arousal as controlled by the ascending reticular activating system
is the basic function of wakefulness and general responsiveness. Building upon this primary level,
alertness or vigilance implies top-down controlled readiness for processing and action and, in contrast
to phasic attention, is independent of specific content. In our model, this function is put in place by
means of rhythmic noise-reduction manifesting in widespread increase of power in the upper alpha
band. Note that the cingulo-insular-thalamic network is not the source but a modulator of cortical
alpha oscillations. On the contrary, phasic attention acts selectively e.g. upon sensory modality, or
stimulus features such as colour and orientation. This function is implemented by fronto-parietal areas,
most importantly the superior parietal lobe and frontal eye fields of the dorsal attention system. We
have proposed that one mechanism deployed by this network is a selective release from alpha-induced
inhibition manifesting in local desynchronization of alpha oscillations. For completeness, it should be
noted that this basic model does not depict the likely distinct faculty of adaptive executive control
which has been proposed to provide feed-back adjustments of control, and to be driven by a network
comprising dlPFC and inferior parietal cortex (Dosenbach et al., 2006). For complimentary discussion
see section 2.3, Sadaghiani et al., 2010a.
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as they reduce contamination by spatial attention in behavioural, electrohpysiological
and functional imaging measures of alertness. For example, alpha oscillations are
particularly susceptible to eye movements and spontaneous covert attention shifts in
visual paradigms. On the other hand, visual tasks provide unparalleled possibilities for
focally guiding and isolating effects of selective attention by making use of the spatially
segregated organization of the visual system. Visual attention can be selectively guided
to different retinotopically-represented locations, or to dorsal- vs. ventral-stream features
such as location vs. identity (Jokisch and Jensen, 2007) or motion direction vs. color
(Snyder and Foxe, 2010). Paradigms adjusted to disentangle alertness and selective
attention can be used in functional imaging studies to directly investigate our functional
interpretation of the cingulo-insuar-thalamic network, and in MEG studies to assess
the proposed antagonistic mechanism by which alertness and selective attention deploy
alpha oscillations. Additionally, trial-by-trial variability in these cognitive functions can
be especially well studied using concurrent EEG-fMRI.

Finally, the mechanism by which alertness acts locally, i.e. alpha-induced inhibition,
requires invasive investigations in task settings. In the context of top-down control, alpha
oscillations have been conceptualized to entrain local neural populations into a rhythmic
suppression (Klimesch et al., 2007), a principle termed ”pulsed inhibition” (Mathewson
et al., 2009). Examples of cyclic inhibition of intrinsic neural spiking in the alpha
frequency range have indeed been observed (Lorincz et al., 2009). However, how such a
mechanism might be dynamically engaged in implementing cognitive control functions
such as alertness is an open question. While studying the effects of alpha synchronization
upon fine-scale local processing requires single and multi-unit recordings in behaving
animals, several aspects of alertness on local processing can be studied using ECoG and
depth electrodes in pre-surgical epilepsy patients to which I will have access in the near
future. These methods allow me to test, with high spatial resolution, the hypothesis that
alertness enhances alpha oscillations accompanied by suppression of neural activity, while
selective attention leads to focal desynchronization and release from inhibition in local
information processing. Another question arises from our observation that activity in the
alertness network correlates with the majority of scalp EEG channels. The unobscured
signal in ECoG would allow me to verify the distributed character of alertness control
that we have proposed. In summary, our neuroanatomical and electrohpysiological
hypotheses on sustained alertness maintenance provide a rich repertoire of predictions
to be tested in a variety of future studies.
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Distributed and Antagonistic Contributions of Ongoing
Activity Fluctuations to Auditory Stimulus Detection

Sepideh Sadaghiani,1,2,3,4 Guido Hesselmann,1,2,4 and Andreas Kleinschmidt1,2,4

1Unité 562, Cognitive Neuroimaging, Institut National de la Santé et de la Recherche Médicale and 2Commissariat à l’Energie Atomique, Direction des
Sciences du Vivant, Institut d’Imagerie Biomédicale, NeuroSpin, 91191 Gif-sur-Yvette Cedex, France, 3Graduate School of Neural and Behavioural Sciences,
International Max Planck Research School, University of Tübingen, 72074 Tübingen, Germany, and 4Université Paris-Sud, 91405 Orsay, France

Recent studies have shown that ongoing activity fluctuations influence trial-by-trial perception of identical stimuli. Some brain systems
seem to bias toward better perceptual performance and others toward worse. We tested whether these observations generalize to another
as of yet unassessed sensory modality, audition, and a nonspatial but memory-dependent paradigm. In a sparse event-related functional
magnetic resonance imaging design, we investigated detection of auditory near-threshold stimuli as a function of prestimulus baseline
activity in early auditory cortex as well as several distributed networks that were defined on the basis of resting state functional connec-
tivity. In accord with previous studies, hits were associated with higher prestimulus activity in related early sensory cortex as well as in a
system comprising anterior insula, anterior cingulate, and thalamus, which other studies have related to processing salience and main-
taining task set. In contrast to previous studies, however, higher prestimulus activity in the so-called dorsal attention system of frontal
and parietal cortex biased toward misses, whereas higher activity in the so-called default mode network that includes posterior cingulate
and precuneus biased toward hits. These results contradict a simple dichotomic view on the function of these two latter brain systems
where higher ongoing activity in the dorsal attention network would facilitate perceptual performance, and higher activity in the default
mode network would deteriorate perceptual performance. Instead, we show that the way in which ongoing activity fluctuations impact on
perception depends on the specific sensory (i.e., nonspatial) and cognitive (i.e., mnemonic) context that is relevant.

Introduction
Despite its ubiquitous prevalence, spontaneous activity has con-
ceptually long been considered technical or biological “noise”
and has been discarded as unexplained variance when estimating
average evoked neural responses to an externally imposed para-
digm. Yet, ongoing activity fluctuations contribute to variability
of evoked responses (Arieli et al., 1996) and impact on perceptual
performance (Linkenkaer-Hansen et al., 2001; Boly et al., 2007;
Hesselmann et al., 2008a,b). These effects range from focal obser-
vations in functionally specialized regions to distributed patterns
involving areas that are less specifically related to task demands.

Perceptual performance is affected by variations of preceding
ongoing (Boly et al., 2007) or evoked (Li et al., 2007; Eichele et al.,
2008) activity in neuroanatomical systems that resemble those
networks which functional neuroimaging studies have defined
on the basis of coherent spontaneous fluctuations during resting
wakefulness (Fox and Raichle, 2007). One of these so-called
resting-state networks that comprises posterior cingulate and
precuneus, the temporoparietal junction, and medial prefrontal

regions will stereotypically deactivate during a typical sensorimo-
tor or cognitive task. This task-negative behavior correlates with
the degree of functional challenge (McKiernan et al., 2003; Gre-
icius and Menon, 2004; Mason et al., 2007; Singh and Fawcett,
2008) and has been taken as a possible sign of suspending a de-
fault mode of brain function (Gusnard and Raichle, 2001). An-
other network of bilateral frontal and parietal regions is involved
in attentional control, and of all resting-state networks, its activ-
ity is least correlated with that in the default-mode network (Fox
et al., 2005; Fransson, 2005). Together with other systems, this
network usually shows task-positive behavior, i.e., activation
when subjects are engaged in a paradigm.

These observations could indicate that higher ongoing activity
in sensory and attentional brain systems facilitates perceptual
performance, whereas higher activity in regions of the default
mode network deteriorates perceptual performance. The present
study sought to explore several related issues. Our starting hy-
pothesis was that where and how ongoing activity impacts on
perceptual performance is strongly context dependent. Our own
previous studies with perceptual decisions on supraliminal but
ambiguous visual stimuli identified effects from ongoing activity
only in those brain regions where functional specialization
matched the perceptual feature to be judged (Hesselmann et al.,
2008a,b). We hypothesized that for detection of near-threshold
stimuli, effects would be unveiled not only in specifically related
sensory cortex but also in other more generic brain systems as
suggested by a somatosensory study (Boly et al., 2007). We
also sought to test whether previous observations in the visual
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(Hesselmann et al., 2008a,b) and sensorimotor system (Boly et
al., 2007; Fox et al., 2007) generalize to the auditory modality
where evidence is so far lacking. We hence chose an auditory task
that relies more on recognition and less on spatial orienting than
somatosensory and visual perception and focused on the relation
of stimulus detection and prestimulus activity in auditory cortex
as well as the aforementioned task-positive and task-negative
systems.

Materials and Methods
Subjects, imaging data acquisition, and paradigm. Twelve right-handed
normal-hearing subjects (two female; ages, 19 –30) gave written in-
formed consent before participation in imaging on a 3T magnetic reso-
nance imaging (MRI) whole-body scanner (Tim-Trio; Siemens). The
study received ethics committee approval by the authorities responsible
for our institution. One subject reported to have fallen asleep in one
session and was thus excluded from analysis. Anatomical imaging used a
T1-weighted magnetization-prepared rapid acquisition gradient echo se-
quence [176 slices, repetition time (TR) � 2300 ms, echo time (TE) �
4.18 ms, filed of view (FOV) 256, voxel size 1 � 1 � 1 mm). Functional
imaging used a T2*-weighted gradient-echo, echo-planar-imaging se-
quence (25 slices, TR � 1500 ms, TE � 30 ms, FOV 192, voxel size 3 �
3 � 3 mm). Stimulus presentation and response recording used the
Cogent Toolbox (John Romaya, Vision Lab, UCL; www.vislab.ucl.ac.uk)
for MATLAB (Mathworks) and sound delivery a commercially available
MR-compatible system (MR Confon).

We acquired in the same subjects at an earlier occasion 820 volumes of
task-free “resting state” data (with closed, blind-folded eyes) and then,
on a later occasion, experimental sessions of 820 volumes each during
which subjects were exposed to sparse near-threshold auditory stimuli
and performed an auditory detection task. An additional passive localizer
run for defining auditorily responsive brain regions was acquired after
the main experiment. This 81 volume run consisted of three 20 s blocks of
repetitive stimulus presentation with 0.5 s interstimulus intervals (ISI) at
clearly audible volume separated by 15 s baseline epochs.

The auditory stimulus was a 500 ms noise burst with its frequency
band modulated at 2 Hz (from white noise to a narrower band of 0 –5
kHz and back to white noise). Subjects were blindfolded and instructed
to report as quickly and accurately as possible by a right-hand key press
whenever they heard the target sound despite scanner’s background
noise. In a first 6.5 min run, which was not analyzed, we determined each
subject’s auditory threshold using a simple staircase procedure. We refer
to auditory threshold as the signal level for which the probability of
detection is 50%. The staircase procedure started out at a clearly audible
volume and applied a simple up– down rule (von Békésy, 1960) with 25
trials and interstimulus intervals randomized between 2.5 and 5 s. The
signal level of the last 6 trials was averaged to yield an estimate of subjects’
threshold. Next, each subject performed two and some subjects three
experimental runs of 20 min duration. On each run, target stimuli were
presented at individual threshold (periliminal stimuli) on 36 trials and at
a fixed suprathreshold level on 4 “catch” trials. ISIs ranged unpredictably
from 20 to 40 s, with each specific ISI used only once. Before each run, the
target stimulus was played a few times at suprathreshold volume for
(re)memorization, and subjects were informed that in most of the trials
the target sound would be played at a barely perceptible level. If within
1.5 s of stimulus onset a key was pressed, this trial was counted as a hit, if
not as a miss. All other key presses were classified as false alarms.

Standard analysis of functional magnetic resonance imaging data. We
used statistical parametric mapping (SPM5, Wellcome Department of
Imaging Neuroscience, UK; www.fil.ion.ucl.ac.uk) for image preprocess-
ing (realignment, coregistration, normalization to MNI stereotactic
space, spatial smoothing with a 5 and 6 mm full-width at half-maximum
isotropic Gaussian kernel for single-subject and group analyses, respec-
tively) and estimation of general linear models with a high-pass filter of
1/128 Hz and realignment parameters as nuisance covariates.

Regressors for event-related analysis were obtained by convolving for
each condition unit impulse time series with a canonical hemodynamic
response function. The statistical model included the four events hits,

misses, false alarms, and catch trials. Timing of false alarm events (re-
sponse in the absence of an external stimulus) was defined based on the
subject’s mean reaction time in hits. For each subject, we estimated
condition-specific effects using a general linear model, then created con-
trast images and entered these into a second-level one-sample t test.

Unless otherwise stated, we report activations of this standard anal-
ysis at p � 0.05 corrected at the cluster level for multiple comparisons
using an auxiliary (uncorrected) voxel threshold of p � 0.0001. This
auxiliary threshold defines the spatial extent of activated clusters,
which form the basis of our (corrected) inference. Results are rendered
onto an inflated average brain as provided by FreeSurfer (CorTechs Labs;
http://surfer.nmr.mgh.harvard.edu) with the help of SPM SurfRend
toolbox (http://spmsurfrend.sourceforge.net).

Resting state functional connectivity analysis. We used a 20 min task-
free session recorded in each of the subjects on an earlier occasion to
analyze resting-state functional connectivity (rs-fc). We thereby defined
the default mode network as well as two other large-scale networks, one
related to spatial attention and another to “task set maintenance”
(Dosenbach et al., 2006, 2007). In the context of our study, we preferred
to label the latter system as an “intrinsic alertness” network for the fol-
lowing reasons: This label allowed us to pay tribute to results involving
this network in previous functional neuroimaging studies probing audi-
tory intrinsic alertness (Sturm et al., 2004) and to the role that alertness
has been assigned in performance fluctuations during long-lasting audi-
tory detection tasks (Makeig and Inlow, 1993). Seed regions for calcula-
tion of rs-fc networks were the gray-matter voxels in a sphere of 10 mm
radius centered on stereotactic coordinates reported in three meta-
analyses by other laboratories: (1) Posterior cingulate cortex (PCC)/pre-
cuneus (�5, �49, 40) and medial prefrontal cortex (MPFC)/ventral
anterior cingulated cortex (vACC) (�1, �47, 4) for the default mode
network (Fox et al., 2005); (2) right intraparietal sulcus (IPS) (27, �58,
49) and right frontal eye fields (FEF) (24, �13, 51) for the dorsal spatial
attention system (Fox et al., 2006); and (3) right anterior insula (36, 16, 4)
and right anterior thalamus (10, �15, 8) for the intrinsic alertness sys-
tem. While coordinates for the latter system were hence derived from
studies revolving around task set maintenance (Dosenbach et al., 2007),
it should be pointed out that those as well as our results partially over-
lapped with results from studies that used slightly different seed regions
in the anterior insula and that provided other functional interpretations
for their findings (Seeley et al., 2007; Eckert et al., 2009). We, therefore,
preferred to apply a label to this network that was intuitively plausible
within the context of our own present study.

For each of six seed regions, the high-pass (1/128 Hz)-filtered signal
time course was averaged across all respective voxels and used as a regres-
sor of interest in a separate general linear model. Imaging data were
preprocessed as described above. In addition to the same nuisance vari-
ables as in the activation experiment, we also included the global signal of
three separate brain compartments (all white matter voxels, all gray mat-
ter voxels, and all CSF voxels) as covariates of no interest. Contrast
images corresponding to each regressor were created for each subject
and entered into a second-level one-sample t test for each seed region.
Again, maps were rendered onto a canonical average brain provided
in FreeSurfer.

Definition of regions of interest. We defined several regions of interest
(ROIs) from which we extracted time course data estimated in a finite
impulse model procedure. Voxels responding to the auditory stimulus
were defined on a subject-by subject basis in two steps. First, at the group
level, the contrast periliminal stimuli (i.e., hits and misses) � baseline
( p � 0.001) was masked by the passive auditory localizer contrast at p �
0.001. A spherical search space of 10 mm was defined around the peak of
the periHeschl clusters with the highest z score [right hemisphere: (42,
�6, �12), z � 4.14, 94 voxels and left hemisphere: (�42, �18, �6), z �
3.9, 23 voxels]. Next, for each subject’s corresponding first-level contrast,
all voxels within this search space were selected that passed a lenient
threshold ( p � 0.05, uncorrected).

Further ROIs were defined from the rs-fc maps (see above). For every
subject, default mode, spatial attention, and intrinsic alertness networks
were defined as those voxels whose time course significantly correlated at
p � 0.001 (uncorrected) with that of both respective seed regions. The

Sadaghiani et al. • Baseline Activity and Auditory Stimulus Detection J. Neurosci., October 21, 2009 • 29(42):13410 –13417 • 13411



resulting subject-specific rs-fc networks were then further constrained by
masking with the corresponding group result. These group masks were
defined at a second level of analysis as the overlap of corresponding pairs
of rs-fc networks from either seed region at threshold p � 0.005,
uncorrected, and cluster extent �200 voxels. The right and left mid-
dle temporal complex (MT�) clusters (31 and 14 voxels in the con-
junction analysis) were also included in the group mask of the spatial
attention system, because they have been considered one of the sys-
tem’s core constituents in cognitive studies (Corbetta and Shulman,
2002) and in rs-fc studies (Fox et al., 2006). In the group statistical map of
the intrinsic alertness system, bilateral anterior insula and anterior thal-
amus merged into a single big cluster. To enable separate investigation of
these regions, the map was masked by anatomically defined masks of
insula and thalamus, respectively (WFU PickAtlas 2.4, Wake Forest Uni-
versity School of Medicine; http://www.fmri.wfubmc.edu/cms/software).

For each subject, the resulting networks as a whole and each of their
clusters in isolation were used as ROI for time course extraction.

Statistical analysis of functional magnetic resonance imaging signal time
courses. After the aforementioned spatial preprocessing, we used a tem-
poral high-pass filter with very low cutoff (1/1000 Hz) and no prewhit-
ening. This ensured linear drift removal, a common practice in many
related studies to deal with technical noise sources (Golland et al., 2007;
Hesselmann et al., 2008a,b), while minimizing interference with low
frequency brain activity fluctuations. A finite impulse response (FIR)
model was applied using 24 peristimulus stick functions (�1.5 s bins) for
each of the four conditions, hits, misses, false alarms, and catch trials.
Nuisance covariates included the realignment parameters.

The estimated time course was then averaged across voxels of specific
ROIs. Condition-dependent time courses were indistinguishable for cor-
responding regions of the two hemispheres and therefore collapsed. For
each ROI, a paired t test of “perceptual outcome” was performed for the
hemodynamic signal at the immediate prestimulus time point 0 s. This
time point was chosen because it is the latest epoch that is with certainty
not yet contaminated by stimulus-evoked activity. Accordingly, it has
proven informative to predict perceptual outcome in earlier related stud-
ies (Hesselmann et al., 2008a,b). Based on our previous observations, we
tested one-tailed in the auditory ROI, where we hypothesized prestimu-
lus signal to be larger for detected stimuli and two-tailed in all other
ROIs. For display purposes, but not statistical analyses, signal time
courses were temporally smoothed with a (1, 2, 1) kernel.

The FIR model was also used to generate a map of prestimulus effects
on auditory detection by contrasting parameter estimates for hit and
miss trials at time point 0 s. The corresponding contrast images were
entered into a second-level one-sample t test. We report results of this
analysis at p � 0.05 cluster-level significance after applying an auxiliary
voxel-level threshold of p � 0.01 and extent threshold �50 voxels.

Results
A group of 11 subjects performed a detection task on auditory
stimuli presented at their individually determined detection
threshold in a very sparse event-related functional MRI (fMRI)
paradigm with highly variable ISI ranging from 20 to 40 s.

Behavioral findings
Overall, the stimulus was detected in slightly more than half of
periliminal trials (62.2 � 17% hits). The individual hit–miss ratio
was largely consistent across separate sessions, with the exception
of one session each in two of the subjects with 94.4% hits (i.e.,
only two misses). Subjects’ accuracy in detecting the rare supra-
liminal catch stimuli was 93.2 � 0.1%. Reaction times were 788 �
102 ms for detected periliminal stimuli (hits) and 578 � 142 ms
for detected catch trials. Subjects reported a highly variable num-
ber of false alarms. Many sessions had no false alarms at all,
although each subject reported at least one false alarm. The me-
dian of false alarms per session (within-subject average across
sessions) was median � 4.5 � interquartile range � 6.9.

The incidence of percept repetitions was well approximated
by a binomial distribution indicating approximately stochastic
stimulus detection and hence independence of successive trials
(Fig. 1). The probability for different perceptual outcomes in two
immediately successive trials (i.e., “zero repetition”) reflected the
slight overall bias for hits. Finally, there was no bias for misses to
occur after shorter or longer ISIs than hits. The length of pre-
stimulus ISIs was indistinguishable (paired t test p � 0.6) between
hits (30.6 � 0.7 s) and misses (30.3 � 1 s).

Imaging results
Figure 2 shows statistical parametric maps of evoked responses.
Hits versus baseline involved distributed activation in a large set
of cortical and subcortical areas summarized in supplemental
Table 1, available at www.jneurosci.org as supplemental material.
Misses versus baseline did not yield significant activation in these
maps ( p � 0.001, uncorrected), nor did misses versus hits. A
direct comparison of hits versus misses revealed an activation
pattern very similar to hits versus baseline with an additional
activation in the cerebellum (supplemental Table 1, available at
www.jneurosci.org as supplemental material).

Signal time course of early auditory cortex
Figure 3 shows the time course from the bilateral auditory region.
Voxels in auditory cortex responding to the periliminal stimula-
tion (hit and miss � baseline) were selected for time course ex-
traction on a subject-by-subject basis. They were restricted to a
search sphere that was defined at group level by masking activa-
tion foci of periliminal stimulation with a mask obtained from a
passive auditory localizer session. The Talairach coordinates [42,
�6, �12 and �42, �18, �6] of the search sphere are in good
agreement with cytoarchitectonic (Morosan et al., 2001) and
functional (Scott and Johnsrude, 2003) descriptions of Heschl’s
gyrus and presumably include parts of primary auditory cortex.
Based on previous results (Hesselmann et al., 2008a,b), we tested
the immediate prestimulus time point 0 s for percept-dependent
differences in BOLD signal time course. As hypothesized, we
found slightly but significantly higher prestimulus baseline signal
in hits than in misses (t(1,10) � 2.21, p � 0.025 one-tailed).

Signal time course of functional networks
We next investigated the signal time course in a set of distributed
networks and their constituent regions. The spatial patterns of
rs-fc networks that we obtained here are in good agreement with
previous studies (Greicius et al., 2003; Fox et al., 2005; Fransson,
2005; Dosenbach et al., 2007; Seeley et al., 2007). Figure 4 shows
each network as defined from an independent resting-state ses-

Figure 1. Distribution of percept repetitions. The incidence of repetitions for hits and misses
is well approximated by a binomial distribution (goodness-of-fit R 2 � 0.93 for hits, R 2 � 0.83
for misses).
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sion by rs-fc analysis. It also shows the corresponding signal
time courses in the auditory detection sessions. For each sys-
tem as a whole and for each of its constituent regions in isola-
tion, these signal time courses were tested for differences at
time point 0 s as a function of perceptual outcome.

The dorsal attention system showed higher prestimulus ac-
tivity preceding misses than hits (t(1,10) � 3.82, p � 0.005). On a
region-by-region level, this effect was significant in IPS (t(1,10) �
4.21, p � 0.005) and MT� (t(1,10) � 2.23, p � 0.05) but not in
FEF. Interestingly, task-positive behavior was preserved in the
evoked responses during hit trials, whereas misses showed a
blunted pattern, if any stimulus-locked response at all. In con-

trast, hits were preceded by significantly
higher prestimulus baseline activity in the
default mode network than misses (whole
system: t(1,10) � 2.43, p � 0.036). This ef-
fect was driven by the PCC/precuneus
component (t(1,10) � 2.61, p � 0.026),
whereas the baseline signal difference did
not reach significance in MPFC/vACC or
lateral parietal cortex. Again, task-
negative behavior was conserved across
all regions but only in hit trials, and it ap-
peared fairly late in relation to stimulus
timing. Moreover, in the precuneus, the
heightened prestimulus signal in hit trials
evolved into an early but stimulus-locked
task-positive response that was absent in
miss trials.

Activity fluctuations in these two afore-
mentioned networks, the dorsal attention
system and the default mode network, have
been described to be intrinsically anticorre-
lated or rather to show the lowest degree
of correlation of all resting-state networks
(Fox et al., 2005, 2009; Fransson, 2005).
Inverse correlations with performance
across the two systems could then be as-
cribed to a source in merely one system
and an epiphenomenon in the other. Vi-
sual inspection of the time courses renders
this interpretation unlikely for our exper-
iment. The prestimulus signal in the dor-
sal attention system that is associated with
misses shows a slow build-up over time
and that in the default mode network
associated with hits shows a very brief
build-up before stimulation, in each in-
stance without mirroring signal behavior
in the respective other system. And the
evoked responses showed task-positive
behavior in both the dorsal attention sys-
tem and the precuneus, which also ren-
ders a hard-wired antagonistic relation
unlikely.

Finally, in the intrinsic alertness sys-
tem, hits were preceded by greater pre-
stimulus activity than misses (t(1,10) �
3.86, p � 0.005). This pattern was consis-
tent across all regions of this network (an-
terior thalamus: t(1,10) � 3.76, p � 0.005;
dorsal ACC: t(1,10) � 3.6, p � 0.005 and
trend in anterior insula: t(1,10) � 2.23, p �

0.05). While the intrinsic alertness system is also in general found
to be as much anticorrelated with the default mode network as
the dorsal attention system (Fox et al., 2005; Fransson, 2005), its
behavior was nonetheless opposite to the one in the dorsal atten-
tion system.

As in our previous studies, we performed a voxel-by-voxel
mapping of the prestimulus effect by computing the contrast of
the estimated signal at time point 0 s as a function of perceptual
outcome (Fig. 5). This allowed investigating whether the effects
observed in a priori defined ROIs were spatially specific to those
regions. At the whole-brain mapping level, the prestimulus effect
at time point 0 s on stimulus detection was significant ( p � 0.05

Figure 2. Spatial distribution of evoked cortical responses during successful stimulus detection. Activations evoked in hit trials
versus baseline are shown in cold colors (for details, compare supplemental Table 1, available at www.jneurosci.org as supple-
mental material). A direct comparison of greater responses during hits than misses (warm colors) revealed a very similar activation
pattern. Threshold height p � 0.05 corrected at the cluster level using an auxiliary (uncorrected) voxel threshold of p � 0.0001.
Group results (n � 11) are superimposed onto the lateral and medial aspects of an inflated cortical surface of a canonical average
brain.

Figure 3. Prestimulus fMRI time courses from bilateral auditory cortex. Left, Map of activation evoked by the near-threshold
stimulus (independent of percept) assessed in a group analysis. This map served as the basis for subject-by-subject definition of the
auditory ROI (shown on the group’s average brain; threshold height p �0.001 uncorrected; see Materials and Methods for details).
Right, In accord with our previous findings, we tested the effect of prestimulus activity at time point 0 s and found significantly
higher activity preceding hits than misses (as indicated by an asterisk). Error bars indicate �SEM.
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at cluster level after voxel-level threshold of p � 0.01 and extent
threshold �50 voxels) in the following regions: dorsal ACC [146
voxels, (�15, 39, 3), z � 3.71, p � 0.034], an extended cluster
[1064 voxels, (27, 0, 12), z � 4.35, p � 0.001] containing thala-

mus [left: (�12, �21, 12), z � 4.27; right: (21, �15, 15), z � 4.04]
and left superior frontal gyrus [143 voxels, �18, 39, 36), z � 3.74,
p � 0.038] showed significantly higher prestimulus signal for hits
than misses. Conversely, IPS [right: 477 voxels, (30, �48, 57), z �

Figure 4. Prestimulus time courses from resting-state functional connectivity (rs-fc) networks. Left, Time courses averaged over the complete rs-fc systems. Middle, Rs-fc networks as defined by
seed-based analysis of a resting-state scanning session. Numbers indicate regions of interest for which peristimulus activity time courses are plotted in the right-hand panels. Right, Time courses of
individual regions of the respective network. While higher signal levels in the default mode system (A) and the intrinsic alertness system (C) were found before successful stimulus detection, higher
signal in the dorsal attention system (B) preceded misses. Asterisks indicate significant percept-dependent time course difference at time point 0 s. Error bars indicate �SEM.

Figure 5. Statistical parametric maps of difference in prestimulus activity between hit and miss trials. Signal at time point 0 s (as estimated in the FIR-model, see Materials and Methods) was
contrasted between hit and miss trials. The resulting second-level maps are shown at p � 0.05 uncorrected to illustrate spatial specificity of prestimulus activity biasing for hits (left) and misses
(right), respectively. Asterisks indicate regions with significant effects after correction for multiple comparisons. White arrows indicate Heschl’s gyri. Signal time courses over the full peristimulus
window are shown in Figures 3 and 4 for largely corresponding but independently defined ROIs and rs-fc networks.

13414 • J. Neurosci., October 21, 2009 • 29(42):13410 –13417 Sadaghiani et al. • Baseline Activity and Auditory Stimulus Detection



3.88, p � 0.001; left: 347 voxels, (�27, �45, 54), z � 3.82, p �
0.001] and posterior occipital cortex [left: 386 voxels, (�27, �93,
�18), z � 3.49, p � 0.001; right: 367 voxels, (15, �90, 21), z �
3.34, p � 0.001] showed higher prestimulus signal for misses than
hits. The latter significant effects in the visual system extended
beyond MT� to further regions of the dorsal visual system sim-
ilar to descriptions of the dorsal attention system based on rs-fc
(Fox et al., 2006).

Discussion
One popular and informative approach in studying the neural
correlates of consciousness has been to compare evoked neural
responses to perceived and nonperceived stimuli. As neural re-
sponses in themselves are sensitive to changes in stimulus prop-
erties, it is important that the correlation with conscious
perception be assessed for identical stimuli. Several studies have
evoked human brain responses and determined when and where
stimulus-locked signal time courses show significant signal dif-
ferences as a function of perceptual outcome (Ress et al., 2000;
Pessoa and Padmala, 2005; Sergent et al., 2005; Pourtois et al.,
2006). Instead of following the stimulus-evoked neural activity
trace, however, one can ask what in turn may provide a neural
source for this variability in neural responses to identical stimuli.
Previous work has linked response variability to fluctuations in
ongoing activity immediately before stimulation (Arieli et al.,
1996).

Functional significance of prestimulus activity variations has
been found in cued perceptual paradigms in nonhuman and hu-
man primates. In animal studies, effects on evoked responses
(Arieli et al., 1996) and perceptual performance (Supèr et al.,
2003) have been confined to a very short prestimulus time win-
dow, but the fMRI work in humans that relies on hemodynamic
signals has uncovered effects with slower time constants (Sapir et
al., 2005). While prestimulus effects in cued paradigms can be
thought of as the variability in response to a cue the functional
importance of slow spontaneous variations of ongoing activity
has been shown in other studies. A prominent feature in ongoing
electrical brain activity is the prevalence of oscillations that occur
in various frequency bands. Over time, these different frequency
bands display flexible adjustments in their phase synchrony as
well as slow modulations in their overall power (Palva et al., 2005;
Schroeder and Lakatos, 2009). Recordings of such modulations
of large-scale oscillatory signals have been found to affect percep-
tual performance (Linkenkaer-Hansen et al., 2001; Monto et al.,
2008). The precise relationship between the brain oscillations as
well as slow cortical potentials and hemodynamic signals used in
fMRI is not yet fully understood (He and Raichle, 2009), but the
existing data suggest that the dynamics of ongoing activity are
critical for the fate of incoming sensory information and include
low frequency components (Buzsáki, 2006).

Following this line of thought, we have recently shown a biasing
effect of fairly slow prestimulus activity variations onto subsequent
perception of faces from an ambiguous figure (Hesselmann et al.,
2008b) and of coherent motion in a moving dot kinematogram at
threshold coherence (Hesselmann et al., 2008a). These effects
were specific to the relevant sensory regions, namely the fusiform
face area and the visual motion complex (hMT�), respectively.
Here, we report a generalization of this finding beyond the visual
domain to audition. In the auditory area responsive to our near-
threshold stimulus, we found that higher prestimulus activity
biased toward detecting the stimulus, whereas low activity levels
more likely yielded misses. This observation confirms our previ-
ous findings that ongoing activity levels in sensory areas impact

on how several seconds later specifically related input will be
perceived. As in our previous studies, this effect was rather weak
potentially reflecting a truly small neuronal effect or alternatively
sensitivity limitations of the neuroimaging technique. However,
and different from our previous findings, the present study dis-
closed much stronger effects from ongoing activity in distributed
functional networks that we had defined in an independent
resting-state session.

We had anticipated such a difference because our present
study involved detection of near-threshold stimuli in a free-
response setting instead of two alternative forced choice decisions
on ambiguous but clearly notable stimulation as in our earlier
work. In accord with this view, evoked responses differed be-
tween hits and misses not only in auditory cortex but also in many
other brain regions, likely reflecting all those processes that come
into play once a stimulus will drive a behavioral response. De-
tailed discussion of these rather trivial effects is beyond the scope
of our interest. One aspect of evoked responses, however, is rele-
vant for our question. Peristimulus time courses of hit trials
showed task-positive behavior in all three resting-state networks
that we studied, including parts of the default mode network
where the majority of paradigms elicit deactivation (Shulman et
al., 1997; Binder et al., 1999; McKiernan et al., 2003). The latter
network also showed the strongest inter-regional variation in that
only the precuneus displayed a clear task-positive response that
was followed by the same delayed deactivation as in the other
constituent regions. Such a biphasic response pattern has previ-
ously been demonstrated in the precuneus in a memory-
dependent “transverse-patterning task” and related to associative
memory processes (Meltzer et al., 2008).

The key issue of our study was to detect if and how baseline
fluctuations in these resting-state networks bias detection of
near-threshold auditory stimuli. Extending the observation of
task-positive behavior in the precuneus, we found significantly
higher activity in hit trials already before the evoked response.
This observation may appear surprising, because previous work
has associated activity levels in the precuneus with introspective,
retrospective, or prospective mental processes (Buckner and
Carroll, 2007; Mason et al., 2007; Botzung et al., 2008) and ac-
cordingly with deteriorated perceptual performance (Weissman
et al., 2006; Boly et al., 2007; Eichele et al., 2008). It is important to
note that those latter observations were made in paradigms in the
somatosensory and visual modality that inevitably imposed a
strong load on spatially selective attention. Conversely, in our
study, discriminating a meaning-free broadband diotic stimulus
from the continuous and qualitatively similar background (scan-
ner) noise cannot be linked to fluctuations in spatial attention but
rather to variations in the degree to which the mnemonic trace of
this previously presented target stimulus was available to the sub-
jects. As activity in the precuneus and adjacent retrosplenial and
posterior cingulate cortex has been linked to retrieval success
(Shannon and Buckner, 2004), we interpret our findings in the
precuneus to indicate a facilitating effect of mnemonic mecha-
nisms on recognition of the target stimulus. This interpretation is
grounded in a view on ongoing activity as a carrier of dynamic
predictions about future events (Fox and Raichle, 2007) and in
line with our previous observations (Hesselmann et al., 2008a,b).
A more general conclusion is that—as in other studies—the na-
ture of ongoing activity is likely to reflect contextual effects, even
a sparse paradigm being one of several relevant factors.

Further support for this interpretation comes from the find-
ings we obtained in the dorsal spatial attention network and as-
sociated areas of the dorsal visual stream [even though the latter
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could also reflect intrinsic mechanisms of low-level cross-modal
competition, see Laurienti et al. (2002)]. While generally associ-
ated with improved perceptual performance in paradigms re-
quiring selective spatial attention (Burton and Sinclair, 2000;
Corbetta and Shulman, 2002), activity in the dorsal attention
system proved detrimental to stimulus detection in our para-
digm, again presumably expressing the lack of spatial connota-
tion in our stimulus and task. Our findings suggest that higher
ongoing activity in the dorsal attention network favors the pro-
cessing of spatial information and that this might compete with
nonspatial attention for similar central resources. Interestingly,
however, the dorsal attention system did show clear-cut task-
positive behavior in hit trials, i.e., evoked responses when stimuli
were detected, which may reflect an automatic recruitment of
spatial mechanisms by behaviorally relevant stimuli.

In the third resting-state network that we assessed and that we
refer to as intrinsic alertness system, higher prestimulus activity
level facilitated subsequent stimulus detection. Functionally, this
effect in a paradigm which instructed subjects to continuously
monitor auditory input for potential target occurrence, is readily
related to mechanisms proposed in previous studies emphasizing
task set maintenance (Dosenbach et al., 2007) or “salience” (or
arousal) (Seeley et al., 2007). And similar to the network in those
studies the one defined here also includes the anterior cingulate,
anterior insula, and thalamic components. Together with the
dorsal attention system and more ventral frontal and parietal
regions, this network has been associated with “task-positive”
behavior (Fox et al., 2005; Fransson, 2006). In our study, how-
ever, the effect of prestimulus signal in the intrinsic alertness
network on stimulus detection was opposite in sign to that in the
dorsal attention system and identical in sign to that from the
default mode system. It hence appears likely that instead of a
hard-wired generic relationship between these three networks,
genuine and distinct effects of activity in all of them contributed
independently to perceptual performance.

Conclusion
Together, our data contribute to a growing body of evidence that
converges across species and signal modalities in linking variabil-
ity of neural responses and behavioral performance to low fre-
quency dynamics of ongoing brain activity. Our experiment
illustrates that site and sign of these interactions depend on func-
tional context. Beyond an expected local effect in accordingly
specialized sensory cortex, we found performance in a free-
response detection setting to be differentially affected by pre-
stimulus activity levels in distributed functional networks. In
contrast to previous related studies, higher prestimulus signal not
only in the cingulo-insular intrinsic alertness system but also in
the default mode network facilitated stimulus detection, whereas
higher activity in the dorsal attention system was detrimental to
perceptual performance. We hence conclude that the actual ef-
fects of ongoing activity fluctuations on processing subsequent
stimuli do not only depend on the brain network where they
occur but also on the functional context that is defined by the
paradigm one uses to probe these effects. These findings speak
against a simple dichotomic account of activity in these dis-
tributed networks and underline the flexibility with which
their cooperation can change as a function of variable func-
tional demands.
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von Békésy G (1960) Experiments in hearing. New York: McGraw-Hill.
Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural

bases of momentary lapses in attention. Nat Neurosci 9:971–978.

Sadaghiani et al. • Baseline Activity and Auditory Stimulus Detection J. Neurosci., October 21, 2009 • 29(42):13410 –13417 • 13417



Supplementary table 1 
Evoked responses during successful stimulus detection. 
 
 Talairach 

coordinates 
z voxel p 

corrected 
Hit > baseline 
Angular/supramarginal gyri right   54  -48   27 

left    -60  -51   30 
5.57 
4.54 

464 
55 

<0.001 
0.001 

Superior temporal sulcus right   51  -27   -9 
 

4.43 55 0.001 

Auditory cortex right   42   -6  -15 
left    -39  -18   -9 

4.34 
5.32 

29 
99 

0.009 
<0.001 

Striatum 
 
 
Insula 
 
 
Thalamus 
 
 
Dorsolateral prefrontal cortex 
 
 
 
Inferior frontal cortex 

right   18   15   -9  
left    -18     6    9 
 
right   30   15   -9 
left    -27   15   -9  
 
right    6    -9   -6  
left     -9  -15   12 
 
right  36   39   36 
          45   45   15 
          39   24   21 
 
right  57   15   15 
left   -48     3     3 

4.86 
4.11 

 
4.54 
4.46 

 
4.09 
4.19 

 
4.20 
4.17 
4.15 

 
4.60 
4.19 

1963 
 
 
 
 
 
 
 
 
 
 
 
 
 

30 

<0.001 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.008 
Frontal pole right  24   57   -9 

 
4.56 101 <0.001 

Middle cingulate cortex 
 

bilateral  3  -15  39 5.00 183 <0.001 

Anterior superior frontal sulc. 
 
Anterior cingulate cortex 
 
Medial superior frontal gyrus 

left   -18   42    4 
 
bilateral  9  39  18 
 
bilateral  0  21  54 

4.70 
 
4.69 

 
4.67 

976 <0.001 

 
Hit > Miss 
Insula 
 
 
Striatum 
 
 
Thalamus 
 
 
Anterior cingulate cortex 
 
Middle cingulate cortex 
 
Medial superior frontal gyrus 
 

right   24   21   -6 
left    -24   15   -6 
 
right   15   15    3 
left    -21    3   15 
 
right   15   -6   15 
left    -12  -15  12 
 
bilateral  6   36   15 
 
bilateral -6  -18   27 
 
bilateral  0   27   48 
 

5.61 
5.61 

 
4.99 
4.84 

 
5.20 
5.12 

 
5.16 

 
4.92 

 
4.76 

 

3469 <0.001 



Frontal pole 
 
Dorsolateral prefrontal cortex 
 
 
Inferior frontal cortex 

right   24   54   -9 
 
right   42   27   18 
          57   15   12 
 
right   48   18    6 

4.93 
 

4.47 
4.32 

 
4.41 

Angular/supramarginal gyri 
 

right   57  -48   33 4.91 192 <0.001 

Superior temporal sulcus 
 

right   48  -27  -12 4.89 36 0.004 

Cerebellum 
 

bilateral  -6  -69  -18 4.42 92 <0.001 

Middle frontal gyrus 
 

right   42   12   54 4.24 31 0.007 

 
p<0.05 corrected at the cluster level using an auxiliary [uncorrected] voxel threshold of 
p<0.0001 
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Sepideh Sadaghiani,1,2,3,5 René Scheeringa,1,2,3 Katia Lehongre,4 Benjamin Morillon,4 Anne-Lise Giraud,4

and Andreas Kleinschmidt1,2,3
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Trial-by-trial variability in perceptual performance on identical stimuli has been related to spontaneous fluctuations in ongoing activity
of intrinsic functional connectivity networks (ICNs). In a paradigm requiring sustained vigilance for instance, we previously observed
that higher prestimulus activity in a cingulo-insular-thalamic network facilitated subsequent perception. Here, we test our proposed
interpretation that this network underpins maintenance of tonic alertness. We used simultaneous acquisition of functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG) in the absence of any paradigm to test an ensuing hypothesis, namely that
spontaneous fluctuations in this ICN�s activity (as measured by fMRI) should show a positive correlation with the electrical signatures of
tonic alertness (as recorded by concurrent EEG). We found in human subjects (19 male, 7 female) that activity in a network comprising
dorsal anterior cingulate cortex, anterior insula, anterior prefrontal cortex and thalamus is positively correlated with global field power
(GFP) of upper alpha band (10 –12 Hz) oscillations, the most consistent electrical index of tonic alertness. Conversely, and in line with
earlier findings, alpha band power was negatively correlated with activity in another ICN, the so-called dorsal attention network which is
most prominently involved in selective spatial attention. We propose that the cingulo-insular-thalamic network serves maintaining tonic
alertness through generalized expression of cortical alpha oscillations. Attention is mediated by activity in other systems, e.g., the dorsal
attention network for space, selectively disrupts alertness-related suppression and hence manifests as local attenuation of alpha activity.

Introduction
Recent functional neuroimaging studies have shown that evoked
response variability correlates with ongoing activity fluctuations
and that this variability transpires into perceptual variability (for
review, see Sadaghiani et al., 2010). As a function of the paradigm,
effects of ongoing activity on perceptual performance have been
observed both locally in accordingly specialized areas (Hesselmann
et al., 2008a,b; Sadaghiani et al., 2009) and in distributed spatial
patterns that resemble resting-state or intrinsic connectivity net-
works (ICNs) (Boly et al., 2007; Sadaghiani et al., 2009). In some
ICNs higher prestimulus activity facilitates and in others it dete-
riorates perceptual performance on upcoming stimuli. In a re-
cent study using near-threshold acoustic stimuli (Sadaghiani et
al., 2009), we found that prestimulus signal in frontoparietal re-
gions including the intraparietal sulcus (IPS) and frontal eye

fields biased toward missing subsequent stimuli whereas signal in
auditory cortex but also in a network comprising dorsal anterior
cingulate cortex (dACC), anterior insula and thalamus facilitated
their detection. The former network is well characterized but the
latter has remained more elusive both in terms of topography and
function. Several studies have defined largely similar networks
with slightly varying numbers and locations of constituent ele-
ments (Vincent et al., 2008). And others have attempted to dissect
it into subnetworks linked to executive control, task-set mainte-
nance, or salience (Dosenbach et al., 2006, 2007; Seeley et al.,
2007). Yet, our paradigm with simple detection of meaning-free
sparse stimuli only required maintaining tonic alertness. In ac-
cord with this interpretation, several studies that explicitly
probed tonic alertness found effects in similar brain structures as
we did (Sturm and Willmes, 2001; Sturm et al., 2004).

Here, we sought to further corroborate this functional inter-
pretation. We based our investigation on results from related
settings used to characterize the electroencephalographic signa-
tures of tonic alertness in ongoing activity (Gath et al., 1983;
Makeig and Inlow, 1993; Haig and Gordon, 1998). We reasoned
that if our functional interpretation was correct, in the absence of
any paradigm fluctuations in vigilance as indicated in the electro-
encephalogram should be associated with fluctuations in activity
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of this putative alertness network and vice versa. To test this
hypothesis, we analyzed findings from simultaneous EEG and
fMRI recordings during prolonged task-free resting state ses-
sions. Previous studies have established correlations between on-
going activity in resting state networks and the expression of
oscillatory EEG activity in different frequency bands (Laufs et al.,
2003, 2006; Scheeringa et al., 2008). Remarkably, however, not
even the most comprehensive attempt so far (Mantini et al.,
2007) has reported findings for the network that we postulate to
be involved in maintaining tonic alertness. Here, we fill this gap
by showing that activity in a cingulo-insular-thalamic network is
positively correlated with the GFP of oscillations in the alpha
(and to some extent beta) band of the simultaneously recorded
EEG. This finding matches EEG signatures of tonic alertness
(Gath et al., 1983; Makeig and Inlow, 1993; Makeig and Jung,
1995; Haig and Gordon, 1998; Lockley et al., 2006; Dockree et al.,
2007) and hence corroborates our previous functional interpre-
tation of at least one functional role of this brain network.

Materials and Methods
Subjects and data acquisition. Twenty-seven healthy volunteers (ages: 19 –
29; 8 females; 5 left-handed; written informed consent) underwent si-
multaneous EEG and blood oxygen level-dependent (BOLD) fMRI. Data
from one subject (female, right-handed) were excluded from analysis
due to strong head motion. Subjects were requested to rest with eyes
closed, stay awake, and avoid movement.

Three 10 min sessions yielded 300 echoplanar fMRI image volumes
each (Tim-Trio; Siemens, 40 transverse slices, voxel size � 3 � 3 � 3
mm 3; repetition time � 2000 ms; echo time � 50 ms, field of view � 192)
and continuous EEG data recorded at 5 kHz from 62 scalp sites (Easycap
electrode cap) using MR-compatible amplifiers (BrainAmp MR and Brain
Vision Recorder software; Brain Products). Two additional electrodes (EOG
and ECG) were placed under the right eye and on the collarbone. Imped-
ances were kept under 10 k� and EEG was time-locked with the scanner
clock. A 7 min anatomical T1-weighted magnetization-prepared rapid ac-
quisition gradient echo sequence (176 slices, field of view � 256, voxel size �
1 � 1 � 1 mm) was acquired at the end of scanning.

fMRI preprocessing. We used statistical parametric mapping (SPM5,
Wellcome Department of Imaging Neuroscience, London, UK; www.fil.
ion.ucl.ac.uk) for image preprocessing (realignment, coregistration with
the structural image, segmentation and normalization to Montreal Neu-
rological Institute stereotactic space and reslicing to 2 � 2 � 2 mm,
spatial smoothing with a 6 mm full-width half-maximum isotropic
Gaussian kernel for single subject as well as group analyses) and estima-
tion of general linear models (GLMs).

fMRI intrinsic functional connectivity. For calculation of ICNs seed
regions were defined as the (subject-specific) gray-matter voxels in a
sphere of 10 mm radius around peaks extracted from previous studies;
right intraparietal sulcus [27 �58 49] for the dorsal attention system (Fox
et al., 2006) and dACC [0 15 40] for the intrinsic alertness system �cen-
tered between [6 15 42] and [�6 15 39] as found in intrinsic connectivity
analysis by Sadaghiani et al. (2009)]. For each seed region the high-pass
filtered (1/128 Hz) signal time course was averaged across all respective
voxels and used as a regressor of interest in a separate GLM. Nuisance
covariates of no interest included the global signal of three separate brain
compartments (all white-matter voxels, all gray-matter voxels and all
CSF voxels), all out-of-brain voxels as well as 6 head-motion parameters.
Contrast images corresponding to the seed regressor were created for
each subject and entered into a second level one-sample t test. Maps were
rendered onto an inflated canonical average brain (FreeSurfer, CorTech,
http://surfer.nmr.mgh.harvard.edu).

For the tonic alertness and dorsal attention ICNs as well as their individual
constituent regions, BOLD time courses were extracted (group-level con-
trast, p � 0.01 family-wise error (FWE)-corrected, extent �150 vox-
els) for regression analysis with spectrally resolved EEG power time
courses (see below). Insula, thalamus and basal ganglia constituted a
large cluster and were thus separated by masking with corresponding

anatomical masks generated by PickAtlas (Wake Forest University
School of Medicine, http://www.fmri.wfubmc.edu/cms/software). Cor-
tical regions were further restricted to the subject-specific intrinsic con-
nectivity maps (first-level, p � 0.005 uncorrected, extent �50 voxels)
and gray-matter mask.

EEG preprocessing. We used EEGlab v.7 (http://sccn.ucsd.edu/eeglab)
and the FMRIB plug-in (http://users.fmrib.ox.ac.uk/	rami/fmribplugin)
for gradient and pulse artifact subtraction. In two subjects, one of three
rest sessions each was excluded due to insufficient EEG quality. The data
were subsequently downsampled to 250 Hz and re-referenced to a com-
mon average reference. The original reference electrode was recalculated
as FCz, yielding a total of 63 EEG channels.

Network-based correlation analysis with the EEG power spectrum. Time-
frequency analysis was computed in Fieldtrip (Donders Institute for
Brain Cognition and Behavior; http://www.ru.nl/fcdonders/fieldtrip).
The time-frequency analysis of power for the regression of regional fMRI
signal onto EEG was performed for all the frequencies up to 30 Hz in
steps of 0.5 Hz. For this we used a multitaper approach (Mitra and
Pesaran, 1999) integrating the power between 1 Hz below and 1 Hz above
the center frequency, and over a 2 s time-interval. This estimate was
repeated for every 0.4 s. The power time courses were converted to
z-scores. As artifact rejection strategy, z-scores larger than 4 were removed
from the time-series. The remaining values were again z-transformed.

For each channel-frequency combination a separate design matrix was
constructed, that included the hemodynamic response function (HRF)-
convolved power time course for that specific channel-frequency com-
bination. We included signal of three separate brain compartments (all
white-matter voxels, all gray-matter voxels and all CSF voxels), of all
out-of-brain voxels and of the motion parameters as nuisance covariates.
This yielded for each frequency channel point a beta value for the EEG power
regressor, which was tested at group level using a single sample t test against
zero. This analysis was repeated for the fMRI time course of the tonic alert-
ness and dorsal attention ICNs as well as each constituent region.

For the signals extracted from the entire ICNs, multiple-comparison
correction was performed using a cluster-based randomization proce-
dure (Maris and Oostenveld, 2007). This effectively controls the Type-1
error rate in a situation involving multiple comparisons. The procedure
allows for the use of user defined test statistics tailored to the effect of
interest within the framework of a cluster-based randomization test.
Here, we used a single sample t test against zero, giving uncorrected
p-values. All data points that did not exceed the preset significance level
of p � 0.05 were zeroed. Clusters of adjacent non-zero channel-
frequency points were computed, and for each cluster a cluster-level test
statistic was calculated by taking the sum of all the individual t-statistics
within that cluster. This statistic was entered in the cluster-based ran-
domization procedure. For each randomization the lowest negative and
highest positive cluster-sum entered a reference distribution. Clusters
that fell within the extreme 2.5% of the negative and positive random-
ization distribution were labeled as significant. In this case, 1000 ran-
domizations were used to compute the reference distribution. Channels
separated by �4 cm were labeled as being adjacent channels. Channel
positions were recorded for each subject. From these data the average
distances over subjects between channel pairs were computed.

Whole-brain fMRI analysis using band-limited EEG-regressors. Power
estimation for the fMRI whole-brain analysis probing BOLD signal cor-
relation with band-specific EEG power fluctuations was based on a Han-
ning tapered FFT on 2 s windows, resulting in a 0.5 Hz resolution in the
power spectrum. Power for each time-point was subsequently averaged
over all channels. Upper alpha band was defined using the physiological
criterion of individual alpha peak frequency as an anchor and 2 Hz width
as suggested by Klimesch (1999). The peak was determined as the peak
power value between 8 and 12 Hz after removing a 1/frequency trend
from the spectrum. The global power time course of upper alpha (from
individual peak bin included to 1.5 Hz above peak) and beta (15–25 Hz
excluding the main residual gradient artifact frequency of 20 Hz 
 0.5
Hz) were used for regression analyses.

The power time courses were converted to z-scores. As artifact rejec-
tion strategy, z-scores larger than 4 were removed from the time-series.
The remaining values were again z-transformed.
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The GFP time courses of upper alpha and beta bands were entered each
into a separate GLM as a parametrically modulated regressor with stick
functions modeling the event duration. Hereby, the power time courses
were convolved with the canonical HRF function. Again, signal of three
separate brain compartments (all white-matter voxels, all gray-matter
voxels and all CSF voxels), of all out-of-brain voxels and of the motion
parameters served as nuisance covariates. Contrast images correspond-
ing to the parametric regressor were created for each subject and entered
into a second level one-sample t test. An auxiliary uncorrected threshold
of p � 0.005 and extent �100 voxels was used. Exceptions where a higher
threshold was used for more fine-grained analysis are stated explic-
itly. Cluster-level corrected results are reported at p � 0.05 corrected
threshold.

Results
To define the intrinsic connectivity network putatively related to
tonic alertness we applied a seed region in the dACC. As in earlier
studies (Dosenbach et al., 2007; Seeley et al., 2007; Sadaghiani et
al., 2009) this resting state functional connectivity network con-
tained bilateral insula, dACC, anterior prefrontal cortex (aPFC),
thalamus and basal ganglia. We extracted the fMRI signal time
course of this network as well as of its individual constituent
regions and performed regression onto EEG power fluctuations
across the spectrum of 1–30 Hz (Fig. 1). Positive correlations with
the BOLD time course occurred rather selectively in the high
alpha band (	10 Hz and above; cf. individual alpha peak fre-
quency �10 Hz) and more broadly in the beta band (	17–24
Hz). This effect was expressed in the spectral patterns of all con-
stituent regions (Fig. 1A) and was significant in the network (Fig.
1B). Conversely, these correlations did not appear to be con-
strained to subsets of electrodes but occurred rather globally

across the majority of EEG-channels. This global character was
further confirmed in distributed effects on topography maps
(Fig. 1B). The channel-frequency spectra for the network are
presented in supplemental Figure 1 (available at www.jneurosci.
org as supplemental material) for all 26 individual subjects. The
spectral distribution of correlation of ICN activity with EEG os-
cillations is in accord with previously described EEG signatures of
alertness in the alpha and beta range (Townsend and Johnson,
1979; Gath et al., 1983; Belyavin and Wright, 1987; Makeig and
Inlow, 1993; Makeig and Jung, 1995; Haig and Gordon, 1998;
Lockley et al., 2006).

For comparison, we next mapped in our data set a different
ICN, the dorsal attention system, by applying a seed in right IPS
and confirmed it to contain bilateral IPS, frontal eye fields and
middle temporal motion-sensitive cortex (MT�) (Fig. 2A).
Again, the equivalent analysis was conducted by performing re-
gression analyses with the spectral EEG data and the BOLD time
course of the dorsal attention network and its individual constit-
uent regions. This analysis revealed a selective negative correla-
tion in the alpha and beta bands in all constituent regions (Fig.
2A) as well as the network (Fig. 2B). The negative correlations
occurred in a broader frequency range and with a lower center
frequency (	7–10 Hz) compared with the positive correlations
of high alpha observed in the intrinsic alertness network. The
negative beta correlations occurred in a more confined and lower
frequency band (	15–18 Hz) compared with the broad positive
beta correlations of the tonic alertness network.

To address the topographic specificity of our network-based
correlations with the EEG spectrum, we next used band-specific

Figure 1. Channel-frequency spectra for the tonic alertness network. The tonic alertness ICN was defined by applying a seed in dACC (A). fMRI signal time courses extracted from this network were
used for regression analyses with EEG power fluctuations across the spectrum of 1–30 Hz. For all spectra, the x-axis represents EEG frequency, and EEG-channels are organized on the y-axis from top
to bottom in a posterior-to-anterior order. Consistent across all individual regions (A) and for the entire network (B), positive correlations arise rather selectively in the high alpha band and more
broadly in the beta band. Effects occur rather globally across the majority of EEG-channels and are furthermore characterized by distributed topographies for the network (B). A, The ICN is defined
at p � 0.01 FWE-corrected, extent �150 voxels, mapped on a canonical average inflated cortical surface and a coronal section [y ��12]. The individual cortical regions’ spectra are numbered as
depicted on the rendered ICN. Spectra for subcortical areas are titled respectively. B, The translucent mask represents significance after correction. Bold closed channels in the topographies are part
of the significant cluster.
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EEG regressors to map correlations with lo-
cal fMRI signal across the whole-brain vol-
ume. The previously described spectral
correlation with the tonic alertness system
highlighted an effect in the so-called upper
alpha band, a range that has also been linked
to cognitive control and performance in
previous EEG studies (Klimesch, 1999; Kli-
mesch et al., 2007). We targeted for EEG-
correlated fMRI analyses an upper 2 Hz
band of alpha frequency with a lower-
bound anchor on individually determined
peak frequency (on average 9.77 Hz
0.74).
We tested where in the brain GFP fluctua-
tions in the upper alpha frequency correlate
positively with neural activity fluctuations as
measured by BOLD signal.

The results of the whole-brain correla-
tion with GFP of upper alpha are shown in
Figure 3A. Positive correlations with the BOLD signal displayed a
spatial pattern that strongly overlaps with the separately defined
tonic alertness network (cf. Fig. 1A). These effects reached signif-
icance (cluster-level corrected, auxiliary uncorrected p � 0.001)
in dACC ([2, 22, 40], p � 0.001, z-score 3.96, 801 voxels), a
subcortical cluster bilaterally including thalamus and caudate
nucleus ( p � 0.001, z-score up to 4.69, 1531 voxels; caudate: [6,
24, 4], [�20 �22 24]; thalamus: [�2 �8 12], [2 �14 12]), right
anterior insula ([42, 8, 6], p � 0.003, z-score 4.36, 243 voxels) and
right aPFC ([34, 42, 22], p � 0.004, z-score 4.09, 228 voxels).
Further correlation with upper alpha band activity was observed
in the cerebellum ([26, �38, �30], p � 0.028, z-score 4.58, 150
voxels; and [�24, �74, �24], p � 0.001, z-score 4.37, 2096
voxels). Given previous concurrent EEG and fMRI studies in-

cluding our own that have emphasized interindividual variabil-
ity (Gonçalves et al., 2006; Laufs et al., 2006), we illustrate the
homogeneity of the established effect across subjects in supple-
mental Figure 2 (available at www.jneurosci.org as supplemental
material).

Given the aforementioned EEG studies also linking beta band
oscillations to sustained performance (Townsend and Johnson,
1979; Belyavin and Wright, 1987) we next performed analogous
analyses with EEG time courses from that frequency band. Global
beta power (15–25 Hz) positively correlated with some areas of
the intrinsic alertness network (Fig. 3B). These effects were
weaker in size and extent than those observed for the correlations
with upper alpha and achieved significance only in dACC ([�12,
22, 34], p � 0.001, z-score 3.68, 804 voxels) and a large bilateral
subcortical cluster including thalamus and caudate ( p � 0.001,

Figure 2. Channel-frequency spectra for the dorsal attention network. Dorsal attention ICN was defined by applying a seed in right IPS (A). fMRI signal time courses extracted from this network
were used for regression analyses with EEG power fluctuations across the spectrum of 1–30 Hz. Correlations arise exclusively negatively in lower alpha and beta bands consistently across all regions
of the network (A) and for BOLD signal averaged across the entire network (B). Thresholding and visualization equivalent to Figure 1.

Figure 3. Positive correlation of activity with the global field power of oscillations in the alpha and beta bands. A, Positive
correlations with upper alpha band power arise selectively within regions of the tonic alertness network including dACC, right
anterior insula, right aPFC, thalamus and basal ganglia. B, Positive correlations with beta band power occur in some regions of the
intrinsic alertness network, notably dACC and subcortical areas. p � 0.005 uncorrected, extent �100 voxels, mapped on a
canonical average inflated cortical surface and a coronal section [y � �12].
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z-score up to 4.05, 3342 voxels; caudate: [�20, �46, 18], [26 6
12]; thalamus [0 �16 16], [�2 �6 10]) as well as in the cerebel-
lum ( p � 0.001, z-score up to 4.97, 7340 voxels).

We also probed negative correlations with upper alpha band
activity and obtained a spatial pattern of fMRI signal fluctuations
that includes the dorsal attention system but also areas belonging
to the visual system, especially dorsal areas (Fig. 4A). In accord
with previous related studies (Goldman et al., 2002; Moosmann
et al., 2003; Laufs et al., 2006), these effects reached significance
(cluster-level corrected, auxiliary uncorrected p � 0.001) in right
and left dorsal visual cortex ([38, �82, 16], p � 0.001, z-score
4.15, 752 voxels; and [�30, �88, 18], p � 0.02, z-score 3.54, 165
voxels), right superior parietal lobe ([46, �28, 58], p � 0.001,
z-score 4.03, 409 voxels), left intraparietal sulcus (IPS; [�28,
�64, 62], p � 0.02, z-score 3.67, 156 voxels) and extrastriate
visual areas of bilateral lingual gyri ([22, �50, 0], p � 0.005,
z-score 3.61, 218 voxels; and [�14, �62, 6], p � 0.037, z-score

3.44, 141 voxels). For the beta band, neg-
ative correlations were found in right,
most dominantly dorsal, visual cortex
([36, �82, 14], p � 0.001, z-score 3.92,
2509 voxels), as well as in sensorimotor
areas (Yuan et al., 2010) including bilat-
eral mesial motor area ([�12, �10, 48],
p � 0.001, z-score 4.19, 933 voxels) and
right and left sensorimotor cortex ([50,
�32, 58], p � 0.001, z-score 3.71, 2500
voxels; and [�46, �36, 62], p � 0.001,
z-score 3.76, 864 voxels).

A comprehensive illustration of the ef-
fects in an individual representative sub-
ject is provided in Figure 5 by plotting for
a single session time courses of upper
alpha GFP and BOLD signal from differ-
ent networks and regions. The HRF-
convolved GFP time course in the upper
alpha band shows similar fluctuations as
the raw BOLD signal time course of the
tonic alertness ICN as well as two of its
constituent regions. Conversely, the
BOLD signal time course of the dorsal at-
tention ICN displays negative correspon-
dence to the alpha GFP fluctuations (Fig.
5A). The first-level voxelwise mapping of
the correlation between BOLD signal and
upper alpha GFP delineates the anatomical
pattern corresponding to the tonic alertness
network (Fig. 5B).

In summary, GFP in the alpha and beta
EEG frequency bands showed anatomi-
cally selective correlation with fMRI sig-
nal fluctuations in the tonic alertness
system. Finally, we sought to corroborate
our functional interpretation of the cingulo-
insular-thalamic network in a dataset
acquired in an earlier paradigm setting
(Sadaghiani et al., 2009). We used the net-
work defined through positive correlation
with alpha power (Fig. 3A) as a spatial mask
to extract peristimulus time courses of the
previous activation study. We hypothesized
that if the system as defined here by EEG
correlation underpinned tonic alertness

then it should show the same prestimulus effects as previously found
for the cingulo-insular-thalamic ICN. Indeed, successful detection
of the auditory stimulus compared with misses was preceded by
significantly higher prestimulus activity levels in those areas where
activity correlates with upper alpha band power (Fig. 6A; at t � 0 s,
t(10) � 3.37, p � 0.007, paired 2-tailed t test) and hence closely
matched previous results for the related ICN (Fig. 6B, t(10) � 3.86,
p � 0.005).

Discussion
Spontaneous fluctuations of ongoing brain activity can be ob-
served across a wide range of states, from sleep and even sedation,
anesthesia, and coma over resting wakefulness all the way to ef-
fortful mental activity (Fox and Raichle, 2007). The fluctuations
are spatially organized into ICNs. Their spatial patterns remain
qualitatively robust across the different states but show fine-
grained quantitative changes of connectivity (Horovitz et al.,

Figure 4. Negative correlation of activity with the global field power of oscillations in the alpha and beta bands. A, Negative
correlations with upper alpha band power occur in the dorsal attention network and visual cortex, especially dorsal visual areas. B,
Negative correlations with beta band power are observed in right extrafoveal and dorsal visual cortex as well as sensorimotor areas.
Thresholding and visualization equivalent to Figure 3.

Figure 5. Signal time courses and voxelwise mapping of the correlation to upper alpha power for an individual subject. A,
Concurrent EEG and BOLD signal time courses for a session of 10 min. Red: The GFP time course of the individual upper alpha band
after convolution with the canonical HRF. Black/gray, Raw BOLD signal time course for the tonic alertness ICN and two of its
individual regions (aPFC and dACC) as well as the dorsal attention ICN as labeled. The global gray-matter BOLD signal was
subtracted from these traces. The regions correspond to those visualized on the cortical surface in Figure 1 A and Figure 2 A,
respectively. B, Voxelwise mapping of the correlation to upper alpha visualized on the subject’s structural image. Positive corre-
lations with upper alpha band power arise among others in dACC, right and left anterior insula, right and left aPFC, thalamus and
caudate. This first-level effect corresponds to the group-level analysis in Figure 3A. White lines on the sagittal view indicate the
position of the three coronal slices ( y � �10, 16 and 56, respectively). p � 0.005 uncorrected, extent �100 voxels.

Sadaghiani et al. • Alpha Oscillations and Tonic Alertness J. Neurosci., July 28, 2010 • 30(30):10243–10250 • 10247

balt6/zns-neusci/zns-neusci/zns03010/zns8580-10a haquer S�7 7/21/10 6:31 4/Color Figure(s): F1-F6 Art: 1004-10 Input-JO

F4

F5

F6



2009; Vanhaudenhuyse et al., 2010). EEG has a longstanding tra-
dition in monitoring and actually defining different brain states
but it has also recently been shown to reflect activity fluctuations
occurring within a given state as resting wakefulness. Activity in
different ICNs, as recorded for instance in resting state fMRI
studies, has been tied to power in different EEG frequency bands
or even patterns of power across the EEG spectrum (Mantini et
al., 2007). Here, we have pursued a hypothesis derived from pre-
vious work and focused on slow activity fluctuations in an as of
yet anatomically and functionally insufficiently characterized
ICN comprising dACC, anterior insula, thalamus and aPFC
(Dosenbach et al., 2007; Seeley et al., 2007). Due to typical coac-
tivation of this network with lateral parietal and prefrontal con-
trol regions during paradigm settings, it has stayed elusive
whether or not these systems form a unitary or rather two distinct
functional networks (cf. Dosenbach et al., 2008 vs Vincent et al.,
2008). We show that fluctuations in concurrently recorded elec-
troencephalographic indices of tonic alertness are associated with
slow activity fluctuations in the cingulo-insular-thalamic net-
work. This result hence further supports a functional distinction
of this network from other control regions.

The most consistent previously reported EEG-hallmark of
sustained alertness is the power of alpha oscillations. In a series of
experiments, Makeig and colleagues found that lapses in behav-
ioral performance were accompanied by decreases in near 10 Hz
ongoing alpha power (Makeig and Inlow, 1993; Makeig and Jung,
1995). Similarly, Dockree et al. (2007) found sustained levels of
near 10 Hz alpha to reflect tonic maintenance of attentional re-
sources associated with enhancement of phasic goal-directed
processing. Likewise, increased alpha phase synchrony (Haig and
Gordon, 1998) and power (Gath et al., 1983) have been associated
with shorter reaction times in oddball tasks. And sustained in-
creases in upper alpha power correlate with shorter reaction
times, less lapses in stimulus detection, and negatively with sub-
jective sleepiness ratings (Lockley et al., 2006). While some of the
above findings were obtained in eyes open condition, others were
established with closed eyes, indicating that the positive relation
between enhanced alpha oscillations and performance is consis-
tent across both conditions. In the present study, we found a

positive correlation of GFP in the upper alpha (and to some
extent beta) band with activity in the cingulo-insular-thalamic
network.

Our findings are overall in accord with results across several
previous studies although no single study has so far established
the correlation that we show here, namely between alpha band
power and an ICN. Positive correlation with alpha band activity
has previously been reported for the thalamus (Goldman et al.,
2002; Moosmann et al., 2003; de Munck et al., 2007; Ben-Simon
et al., 2008; Difrancesco et al., 2008), insula (Goldman et al.,
2002) and dACC (Difrancesco et al., 2008). Apart from higher
power in our study due to a large study group, differences in the
findings may be due to the fact that previous work focused on
posterior rather than global alpha and collapsed over lower and
upper alpha frequencies.

The correlation of activity in the cingulo-insular-thalamic sys-
tem with upper alpha band oscillations as the most robust elec-
troencephalographic marker of vigilance fluctuations suggests
that this system could serve a role in maintaining tonic alertness.
We found similar albeit weaker evidence for beta oscillations that
have also been linked to performance in settings requiring sus-
tained alertness (Townsend and Johnson, 1979; Belyavin and
Wright, 1987).

As previous related studies discussed above, our analyses were
conducted on data recorded during rest where no stimuli or task
requirements interfere with the ongoing activity fluctuations that
manifest in EEG and fMRI. This advantage for the purpose of our
study comes at the price of including no direct measure of per-
ceptual performance in the same dataset. However, the func-
tional interpretation of our findings is supported by previous
functional imaging studies that explicitly manipulated tonic
alertness and found associated effects in an anatomically very
similar network (Sturm and Willmes, 2001; Sturm et al., 2004).
Despite qualitative similarity of those latter findings, the present
ICN mapping and the network defined by alpha power correlation,
this evidence remains indirect. To further validate our conclusions,
we hence analyzed fMRI signal time courses in the EEG-defined
network but in another subject group previously performing a per-
ceptual experiment requiring tonic alertness (Sadaghiani et al.,
2009). Notwithstanding structural intersubject variability between
the two study groups, we found that activity in the network linked to
upper alpha band power improved perceptual performance with
higher prestimulus signal preceding hits compared with misses. This
observation further corroborates a close functional correspondence
between the cingulo-insular-thalamic ICN, upper alpha band power
and tonic alertness.

Tonic alertness refers to a sustained function that is distinct
from arousal on the one hand and selective attention on the other
hand (Posner, 2008). While arousal (in the sense of wakefulness
and responsiveness) is subject to very slow (e.g., circadian) and
constitutive modulations and is controlled by the brainstem
(Jones, 2008), attention transiently ensures selective local pro-
cessing of specific features and is tightly linked to activity in dor-
solateral parietofrontal cortices (Driver and Frackowiak, 2001).
In contradistinction to these cognitive functions, tonic alertness
refers to an intermediate capacity that expresses nonselective
readiness for perception and action implemented by a cortico-
subcortical system (Sturm and Willmes, 2001). The anatomy and
function of the cingulo-insular-thalamic network is well suited to
underpin this control process. The nonspecific thalamic nuclei
project very broadly throughout the cortex, qualifying for general
functions such as alerting (Scheibel and Scheibel, 1967). Among
these, the anterior thalamic nucleus projects massively to the

Figure 6. BOLD signal time courses of the tonic alertness system during an auditory detec-
tion task. Time courses correspond to successful detection (hit) or miss of repeated identical,
near-threshold auditory stimuli (earlier study by Sadaghiani et al., 2009). A, B, Time courses
were extracted from the network as defined by positive correlation to upper alpha band power
in the current study (A) (cf. Fig. 3A) or by resting state functional connectivity in the subject
group of the auditory experiment (B). The network defined by positive correlations to alpha
shows the same effect as previously observed for the tonic alertness ICN; hits are preceded by
significantly higher prestimulus baseline activity compared with miss trials. Note that the spa-
tial pattern of the network as defined by positive alpha correlations was sufficiently robust to be
applied as a mask in a different subject group. *p � 0.01; dashed line indicates stimulus onset.

10248 • J. Neurosci., July 28, 2010 • 30(30):10243–10250 Sadaghiani et al. • Alpha Oscillations and Tonic Alertness

balt6/zns-neusci/zns-neusci/zns03010/zns8580-10a haquer S�7 7/21/10 6:31 4/Color Figure(s): F1-F6 Art: 1004-10 Input-JO



dACC, a major cognitive control region implementing perfor-
mance monitoring and adaptive top-down control (MacDonald
et al., 2000; Kerns et al., 2004). Anterior insula with its reciprocal
connections to the limbic system and ACC constitutes an ana-
tomical and functional connection hub between extended net-
works (Sporns et al., 2007; Sterzer and Kleinschmidt, 2010), and
has been suggested to dynamically control the switching between
internally and externally oriented mental activity (Sridharan et
al., 2008).

But apart from the shared correlation with tonic alertness
what is the relation between this network and global alpha band
power? Note that our findings do not imply the cingulo-insular-
thalamic network as a generator but rather as a modulator of
power in alpha oscillations across the cortex such that this tran-
spires into a GFP signal. Anatomically, thalamo-cortico-thalamic
feedback connections are the basis by which the thalamic com-
ponent of this network might provide an efficient way for con-
trolling global cortical expression of alpha oscillations (Lopes da
Silva et al., 1980). Alpha oscillations were the first distinct pattern
of ongoing brain activity described in human EEG but their func-
tional significance remains debated. Historically, the Berger ef-
fect of alpha disruption by eye opening (Berger, 1929) was taken
as indication that this was an “idling” rhythm of the awake but
unoccupied resting brain (Pfurtscheller et al., 1996). Apparently
in line with this notion, the allocation of selective spatial attention
is associated with reductions in alpha activity spatiotopically
corresponding to attended locations and enhanced stimulus
processing (Rihs et al., 2007). Indeed, we confirmed negative
correlations of alpha power with activity in regions related to the
control of selective attention, conforming to earlier studies (Laufs
et al., 2003).

If interpreted in terms of tonic alertness, our data are none-
theless congruent with an active role for alpha oscillations. We
propose that alertness involves a generalized ‘windshield wiper’
mechanism and that alpha oscillations serve this purpose by
rhythmically and synchronously clearing the flood of sensory
information on a rapid time scale to reduce distraction and hence
enhance detection of novel and relevant sensory information.
This proposed mechanism is compatible with evidence of alpha
synchronization as an active mechanism for inhibitory top-down
control (Klimesch et al., 2007). Enhanced alpha synchronization
has been reported in active suppression of task-irrelevant cortical
regions in diverse contexts including intermodal selective atten-
tion tasks (Foxe et al., 1998), retinotopically specific distractor
suppression (Worden et al., 2000; Kelly et al., 2006), feature-
selective visual working memory tasks (Jokisch and Jensen, 2007),
lateralized somatosensory working memory tasks (Haegens et al.,
2010) and go/no-go suppression of learned motor sequences
(Hummel et al., 2002). In a hierarchical view of attentional function
we therefore suggest that both alertness and selective attention serve
increased sensitivity but deploy antagonistic mechanisms: Due to its
nonselectivity alertness involves what amounts to a suppression and
selective attention a specific and focal disruption of this global effect.
This view is in accord with the interpretation of alpha desynchroni-
zation as a gradual release of inhibition (Klimesch et al., 2007).

The majority of experimental paradigms require the conjunc-
tion of alertness and selective attention due to the use of prespeci-
fied targets. These settings therefore do not permit to clearly
disentangle the contributions from these two attentional func-
tions. For instance, it is not clear whether the expression of alpha
oscillations could also be selective and specifically target pro-
cesses with a high potential for distracting from the task at hand.
We propose that a global mechanism is ecologically more useful

because not all functional contexts will permit to sharply tune
prior assumptions in terms of what to expect as relevant and what
as distracting. This question, however, will require future dedi-
cated experiments that orthogonalize the requirements for alert-
ness and selective attention. Some preliminary evidence can be
seen in the fact that in our previous study with a nonspatial au-
ditory detection task, there was an antagonistic influence of two
usually conjointly task-positive systems on perceptual perfor-
mance, facilitation by alertness and deterioration by selective spa-
tial attention (Sadaghiani et al., 2009).
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Supplementary material 
 
Figure S1 
 
Channel-frequency spectra for the tonic alertness network for all individual subjects. 
The 26 spectra constitute the parameter estimates that entered the group-level t-test presented 
in Figure 1B. For each subject, the parameter estimates were z-transformed across the 
channel-frequency spectrum and the color scale corresponds to z-score = -1.3 to 1.3. The x-
axis represents EEG frequency (1-30 Hz), and EEG-channels are organized on the y-axis from 
top to bottom in a posterior-to-anterior order. Given the relatively homogeneous effect 
across the majority of channels, we also provide the across-channel average of the (non-z-
transformed) parameter estimates on top of each subject’s spectrum. The large, upper right 
plot shows the corresponding result pooled across all subjects; the grey zone corresponds to 
SEM across subjects. Note the clear peak in the upper alpha band in the group result. 
 
 
 
Figure S2 
 
Upper alpha global field power correlation with the tonic alertness network. For all 
individual subjects the plot shows the parameter estimates averaged across all voxels of the 
alertness network as defined by correlation with upper alpha band global field power. This 
network corresponds to Figure 3A with the general procedure and thresholding specified in 
the methods section except that so as to avoid any bias from partial circularity, we determined 
each individual’s score in a network that was defined by a second level analysis on the other 
25 subjects (by estimating 26 random effects models in a rotating leave-one-out procedure). 
We then computed the average parameter estimate for the network in the 26th subject we had 
left out in that analysis. The plot shows the parameter estimates for individual subjects 
reordered by magnitude. The effect shows a fairly homogenous unimodal distribution across 
subjects that is clearly distinct from zero. 
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Abstract

Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we
report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging
(fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination
of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second
experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We
analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas
(extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a
specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of
identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with
predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas
reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se.
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Introduction

The notion that perception involves inference dates back for

centuries and has been refined using mathematical models,

grounded mostly in a Bayesian framework [1]. Yet, contemporary

models of perceptual decisions differ in terms of neuronal

implementation, and the neurophysiological evidence garnered

in their support [2,3]. In some accounts, cortical activity reflects

sensory evidence that is accumulated to a critical level to yield a

perceptual decision. This family of diffusion or race models can be

regarded as dynamic extensions of signal detection theory [4]. In

these models, the implicit neuronal code is a log-probability or

likelihood-ratio code. In other hierarchical models, cortical activity

encodes top-down predictions and bottom-up prediction error

[5,6]. The error signal is accumulated and used to optimise

predictions and suppress prediction error or free-energy. In this

case, inference rests on predictions that serve to explain away the

difference between predicted and incoming sensory information.

Both views are supported by studies of evoked cortical responses

during perceptual decisions [7,8,9]. However, it is difficult to say

which model better explains empirical observations, because both

can be formulated to give similar predictions. Recently, it has been

shown that ongoing cortical activity, prior to sensory stimulation,

can predict subsequent perceptual decisions [10,11,12,13]. As

ongoing activity fluctuates between trials, so does the perception of

identical stimuli. Critically, the two theoretical accounts make

qualitatively different predictions about the relationship between

ongoing activity and perception. Put simply, under evidence

accumulation models, activity increases with the evidence for a

stimulus, whereas under predictive coding it reflects the precision

of the prediction error [14]. Therefore, in evidence accumulation

models, high ongoing activity will bias inference to detection with

(true hits) or without (false alarms) an appropriate stimulus.

Conversely, under predictive coding, ongoing activity levels in

sensory cortex reflect the precision (inverse variance) of sensory

noise. When sensory noise is low prediction errors are amplified. If

sensory noise is high, this induces self-inhibition among units

coding prediction error and leads to a relative increase in the

influence of top-down predictions [14]. In this setting, false alarms

are emitted when the precision is too low to counter top-down

predictions for which there is no sensory evidence.

In short, accumulation models suggest high ongoing activity will

bias towards stimulus detection (true hits or false alarms). Conversely,

the predictive coding or free-energy formulation suggests that high

ongoing activity (i.e., precise prediction errors) will bias towards

correct inference (hits or correct rejections). This means we can

adjudicate between the two models by examining pre-stimulus

activity for hits, correct rejections, false alarms and misses.
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Here, we report functional magnetic resonance imaging findings

related to false alarms in two perceptual paradigms. Findings from

both experiments have been reported previously but only with

respect to hits and misses (where we had greater trial numbers)

[12,13]. However, these two conditions alone do not permit any

conclusion regarding the nature of the signal, prediction error or

sensory evidence. We therefore conducted a new analysis that

included those subjects in the two experiments with a sufficient

number of false alarms for statistical analysis. We obtained small

but significant effects that were consistent across both experiments

and that suggest that neural activity in sensory areas codes the

precision of prediction error.

Results

The first experiment involved detecting motion coherence in

random dot kinematograms with coherent motion at threshold

(periliminal) in most trials and above or below threshold (supra-

and subliminal) in a smaller number of trials [12]. We measured

cortical activity, prior to evoked responses (grey ellipse in Fig. 1), in

the human visual motion complex V5/hMT+. According to

accumulation models we should observe pre-stimulus activity

levels for: hits and false alarms . misses and correct rejections.

And, according to predictive coding: correct rejections and hits .

misses and false alarms. Our empirical observations confirmed the

latter (Fig. 1).

The greatest difference in pre-stimulus activity was between the

correct rejections and false alarms (solid blue and red lines,

respectively). This is clear evidence that pre-stimulus activity

reflects the precision (predictive coding) of the subsequent percept

not its content (evidence accumulation). More formally, an

ANOVA of the differences across activity at time points 0 and

1.5 s showed a main effect of accuracy, correct vs. incorrect

(p,.022, consistent with predictive coding), but no main effect of

percept, coherent vs. incoherent (predicted by accumulation). In

post-hoc t-tests, pre-stimulus activity in subsequent hit-trials

was significantly greater than misses; and activity in false alarms

were significantly less than in correct rejects (p = .048 and p = .031,

respectively, unpaired one-sided t-tests; on a qualitative level,

‘‘hit.miss’’ in 8/9 subjects and ‘‘correct rejection.false alarm’’ in

6/9). The use of one-sided post-hoc t-tests was justified by the

directed assumptions of the two models that we considered;

accumulation vs. prediction. It should be pointed out that these

effects were not significant when just testing activity in a single

epoch (0 or 1.5 s) as in our previous analyses of hits and misses

alone. This observation indicates a loss of statistical power

relative to previous analyses that included a greater number of

subjects [12].

To determine the topographic specificity of the observed effects,

we analyzed BOLD time courses in a set of control regions that

were robustly activated or deactivated by the motion task. These

regions included areas involved in early visual motion processing

(V1/V2), as well as attention and perceptual decision making

(right IPL, right and left FEF, right IFG, and ACC). No region

showed the ‘‘hit.miss’’ or ‘‘correct rejection.false alarm’’ effects

in the pre-stimulus baseline, and subsequent voxel-based whole

brain analyses were also negative.

In the second experiment, we studied detection of auditory

signals presented at threshold against ongoing scanner noise [13].

This detection paradigm can be reconciled with the form of the

previous experiment by regarding it as a continuous discrimina-

tion, with two alternatives of stimulus ‘present’ or ‘absent’.

However, this free-response paradigm does not furnish correct

rejection trials (i.e., subjects are not required to indicate the

stimulus is absent). We expected the difference between hits and

false alarms to be even more pronounced than in the first

experiment. This is because in the auditory fMRI experiment

ongoing sensory noise levels were higher due to scanner noise than

in the visual experiment, where inter-stimulus intervals contained

a stationary dot pattern. Under predictive coding, this higher

sensory noise should suppress the gain of error units and reduce

activity levels, accentuating the effect of endogenous fluctuations.

As before, the predictions of the two theoretical accounts differ:

Evidence accumulation would expect hits and false alarms (i.e., an

auditory percept) to follow higher baseline levels, relative to misses

(no percept). Conversely, the predictive coding account suggests

that (incorrect) misses and false alarms are foreshadowed by

significantly lower activity than (correct) hits. Our findings in this

experiment supported the latter prediction (Fig. 2). False inference

(false alarms - red solid lines, and misses - blue dashed lines) were

preceded by significantly lower levels of activity in auditory cortex

than veridical hits (red dashed line, p = .021 and p = .018,

respectively, in unpaired one-sided t-tests; on a qualitative level,

‘‘hit.miss’’ in 7/9 subjects and ‘‘hit.false alarm’’ in 7/9). There

was no significant difference in activity preceding misses vs. false

alarms. This low activity prior to false alarms is consistent with a

scheme that under-weights sensory evidence via an inhibition of

error units and thus fails to constrain top-down predictions. The

profound activity dip in the 3 s preceding a false alarm could

indicate a critical level of ongoing activity that is necessary for the

endogenous generation of a percept, in the absence of the stimulus.

Conversely, in the case of misses, it is the dwindling of a prediction

(or the toggling to the alternative prediction) and the associated

Figure 1. Peristimulus fMRI signal time-courses from the visual
motion experiment. Data were normalized to grand mean and
averaged across 9 subjects (bars represent standard error of the mean)
performing a motion coherence judgment task. The insert specifies the
conditions as a function of stimulus and percept. The inflated right
hemisphere rendering of the group result shows the right hMT+ region
of interest, which was identified subject by subject in a localizer
procedure employing coherent motion stimuli vs. static displays. The
grey ellipse covers the pre-stimulus period submitted to statistical
testing (see main text).
doi:10.1371/journal.pone.0009926.g001
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increase in the noise estimation for top down influences that via

self-inhibition down-regulates the local fMRI signal such that

despite sensory input no percept is reported.

In contrast to our local findings in the motion experiment, the pre-

stimulus effects in the auditory experiment appeared to be much less

spatially confined. Similar to the original publication–where we

report distributed ‘‘hit.miss’’ and ‘‘miss.hit’’ effects -, maps (at

t = 0 s) of ‘‘hit.false alarm’’ show a number of regions outside of

auditory cortex, including mid-cingulate cortex, polar and ventro-

medial prefrontal cortex and early visual cortex (cluster-level

p,0.05, corrected, after auxiliary p,0.005, uncorrected). The

reverse contrast ‘‘false alarm.hit’’ yielded no significant foci

(p,0.05, uncorrected). Note that such a difference between the

experiments was to be expected because the auditory paradigm

involved detection of near-threshold stimuli in a free-response setting

instead of two-alternative forced choice decisions on ambiguous but

clearly notable stimulation in the motion experiment.

In both experiments, we found no relationship between the

duration of the prior SOA and behavioural outcome. In the motion

experiment, the SOAs were 29.260.8 s for hits, 30.360.9 s for

misses, 29.661.3 s for correct rejections, and 30.163.2 s for false

alarms (mean 6 sd). In the auditory experiment, the SOAs were

30.660.2 s for hits, and 30.460.4 s for misses. False alarms

occurred 17.861.1 s after the preceding stimulus, i.e. approximate-

ly in the middle between two auditory stimuli.

Discussion

Both experiments support an interpretation of neural activity

(indexed by fMRI signal) in specialized sensory cortical regions as

coding prediction error and not evidence or log-probability (cf.

classical signal detection theory). Our analyses were conducted

using the responses of brain regions that are specialised for the

sensory information required for the subjects’ perceptual decisions.

Our findings therefore cannot be compared with those obtained in

higher order (polymodal) cortex like the lateral intra-parietal and

premotor areas. However, our findings can be compared to studies

of sensory cortex, where baseline variations were removed [7].

In terms of neuronal computation, the free-energy principle

encompasses evidence accumulation schemes as a special case that

is manifest at higher levels in the sensory hierarchies, as prediction

error is accumulated to optimise high-level representations and the

ensuing top-down predictions of sensory input [15]. The evidence

we present here in favour of the free-energy principle comes from

sensory regions and from the analysis of perceptual outcome as a

function of activity prior to stimulation. Our analysis was

constrained to pre-stimulus windows, because this avoids the

confounding effect of evoked signal changes (e.g., differences in

sensory stimulus properties and their frequency as well as their

perception and behavioural consequences). Yet, the same principle

is likely to hold throughout the entire time series of neural activity.

For instance, the evoked responses in the first experiment show a

main effect of stimulus type with greater responses to incoherent

motion stimuli. Again, this argues against a coding of sensory

evidence and in favour of a coding of the greater ‘‘surprise’’

associated with the less frequent incoherent motion stimuli,

compared to the more frequent periliminal coherent motion

stimuli. It is also obvious from our findings that widely applied

analysis features such as baseline normalisation to pre-stimulus

signal may distort effects observed in the evoked responses.

Our study departs from usual treatments of neuroimaging

results in terms of predictive coding [16] because we did not look

for the correlates of prediction error; we tried to disambiguate

between evidence accumulation and predictive coding schemes.

This means we had to dissociate the effects of precision and

prediction error per se (which are conflated during the expression of

precision-weighted prediction error). We therefore focussed on

pre-stimulus activity levels, which can only reflect putative changes

in the precision that is conferred on prediction errors, when they

are later induced by a stimulus.

An important limitation of our analyses is that functional

neuroimaging, while useful in recording population synaptic activity,

does not resolve the fast dynamics underpinning perceptual decisions.

This limitation is tempered by previous functional neuroimaging

studies, where fluctuations in ongoing activity can predict subsequent

percepts on a trial by trial basis [11,12,13]. In other words, we can

exploit fluctuations in neuronal activity and subsequent perceptual

processing to establish causal relationships through temporal

precedence, even with slow hemodynamic signals. As in previous

studies, we analysed time segments of the signal that are as close to the

upcoming stimulus as possible without including stimulus-driven

responses We refer to the peri-stimulus fMRI responses until stimulus

onset as ‘pre-stimulus’. However, because the hemodynamic response

delays and disperses underlying neuronal activity, some ‘pre-stimulus’

neuronal activity will actually appear after stimulus onset in the fMRI

time-series. Happily, the converse situation (post-stimulus neuronal

activity confounding pre-stimulus fMRI data) cannot occur. We

suppose that the fluctuations in baseline activity we recorded with

fMRI reflect endogenous (ongoing) fluctuations in fast neuronal

activity. Indeed, computational studies suggest that fast synchronised

activity fluctuates in power with the characteristic ultra-slow

frequencies seen in fMRI [17]. Furthermore, the general picture

from combined EEG and fMRI studies [18] suggests that increases in

fast oscillatory activity elevate BOLD signals. These slow modulations

Figure 2. Peristimulus fMRI signal time-courses from the
auditory experiment. Data were estimated under a finite response
model and averaged across 9 subjects (bars represent standard error of
the mean) performing an auditory stimulus detection task. Data are
plotted for conditions specified by an insert. The inflated right hemisphere
rendering of the group result shows the location of the region of interest,
which includes early auditory cortex with parts of Heschl’s gyrus
(identified bilaterally subject by subject). The grey ellipse covers the
pre-stimulus period submitted to statistical testing (see main text).
doi:10.1371/journal.pone.0009926.g002
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of fast activity are, we presume, mediated by neuromodulatory effects

at a synaptic level. These effects underlie changes in post-synaptic gain

of the sort associated with attention [19] and perceptual precision (i.e.,

signal to noise) [20].

Our findings illustrate that pre-stimulus fMRI signals cannot be

interpreted as encoding sensory evidence but are consistent with

an alternative explanation that it reflects the level of attention.

Indeed, attention modulates cortical activity in sensory areas even

in the absence of input [21]. This interpretation is not at odds with

an account grounded in the free-energy principle, because the

increased precision that may be reflected in higher levels of

endogenous activity is thought to mediate the effects of directed

attention [15]. This means that the optimization of precision in

predictive coding and attention become the same thing. Whether

this necessarily applies to our observations is a complicated issue.

An effect of fluctuations on directed (endogenous) attention should

fulfil more criteria than mere modulation of local signal in a

sensory area. Among these are associated effects in higher order

attentional control centres, increased sensory response amplitudes

and shortened reaction times. No such evidence was found in our

first experiment [12] and only partial support in the second

experiment, where attention and awareness are not easily

dissociated in response amplitudes and where reaction times are

only available for hits [13]. Conversely, the insufficient evidence

for an attention account does not invalidate the interpretation

along the lines of the more general free-energy principle. In short,

whatever the neural or cognitive origin of endogenous fluctuations,

their impact on perceptual performance is captured by predictive

coding models. This is an important conclusion because the

functional role of such ongoing or endogenous activity fluctua-

tions, which have traditionally been neglected in many neuro-

physiological and theoretical investigations of perceptual inference

and decisions, is becoming increasingly evident [22,23,24,25].

Materials and Methods

Ethics Statement
Both studies received ethics committee approval by the

authorities responsible for our institution (INSERM-CEA, Neu-

roSpin). All subjects gave written informed consent.

Data acquisition and pre-processing
Details of both experiments have been published previously

[12,13]. Imaging data for both studies were acquired on a 3T MRI

scanner (Tim Trio, Siemens, Erlangen). Functional imaging used a

T2*-weighted gradient-echo, echo-planar imaging sequence (25

slices, TR = 1500 ms, TE = 30 ms, FOV 192, voxel size

36363 mm, inter-slice gap 20%). Anatomical imaging used a

T1-weighted MPRAGE sequence (160 slices, TR = 2300 ms,

TE = 2.98 ms, FOV 256, voxel size 1.061.061.1 mm for the

motion experiment, and 176 slices, TR = 2300 ms, TE = 4.18 ms,

FOV 256, voxel size 16161 mm for the auditory experiment). We

used SPM5 (http://www.fil.ion.ucl.ac.uk, Wellcome Trust Centre

for Neuroimaging, London, UK) for image pre-processing that

involved realignment, coregistration, normalization to MNI

stereotactic space, spatial smoothing with an isotropic Gaussian

kernel of 6 and 12 mm (motion experiment) or 5 and 6 mm

(auditory experiment) full-width-half-maximum for single subject

and group analyses, respectively and estimation of general linear

models.

Motion experiment
Twelve right-handed subjects with normal or corrected-to-

normal visual acuity (6 female, ages 19–30) participated in the

motion experiment. Stimuli were dynamic dot displays of 500

white squares (size 0.2u) randomly distributed on a dark grey

annulus (23u). Subjects were instructed to maintain gaze within a

central blue rectangle (1u) surrounded by a light grey circular

patch (3u) throughout the experimental sessions. For 355 ms

intervals, stimuli moved up- or downwards, at 14u/s and with

variable motion coherence. Subjects were asked to report as

quickly and accurately as possible by button presses after each

stimulus whether they had perceived coherent or random motion.

Prior to scanning we determined individual motion coherence

thresholds based on the method of constant stimuli (average

motion coherence threshold across subjects 13%, range 8 to 20%).

During fMRI scanning, three motion coherence levels were used:

subliminal (1% coherence, 20 trials), periliminal (individual

threshold, 60 trials), and supraliminal (30% coherence, 20 trials).

Stimuli were presented in two 25 minute runs with 50 trials each.

Between stimuli, the display was static for inter-stimulus intervals

(ISI) of 20 to 40 s that were randomly selected from a uniform

distribution.

Functional images for two 1000 volume experimental runs and

one 208 volume localizer run were acquired. Localizer fMRI runs

identified cortical regions sensitive to two types of coherent visual

motion, up- or downwards motion and an expanding ‘starfield’.

Continuous 16 s motion blocks were separated by 10 s stationary

periods, and each condition was repeated over 6 blocks in counter-

balanced order. Motion-sensitive areas were identified by mapping

for each subject the contrast ‘motion . stationary’ at p,0.001,

uncorrected. A local maximum near the ascending limb of the

inferior temporal sulcus was defined as hMT+ (see original

publication for coordinates). After removing session effects and

linear trends from the BOLD signal time series of the main

experiment, we extracted the percent signal change time courses of

all periliminal and subliminal trials from 4 scans (6 s) before to 12

scans (18 s) after target onset and sorted them according to hits

(perceiving periliminal stimuli as coherent), misses (periliminal

stimuli as random), correct rejections (subliminal stimuli as

random), and false alarms (subliminal stimuli as coherent). Here,

we only report data from those subjects who generated a sufficient

number of false alarms (n = 9 out of 12 subjects). Across subjects,

near-threshold stimuli generated 57% hits and 43% misses, and

subliminal stimuli 74% correct rejects and 26% false alarms.

Auditory experiment
Twelve right-handed normal hearing subjects (2 female; ages

19–30) participated in the auditory experiment. One subject

reported to have fallen asleep in one session and was thus excluded

from analysis. Subjects were exposed to sparse near-threshold

auditory stimuli and performed an auditory detection task. The

stimulus was a 500 ms noise burst with its frequency band

modulated at 2 Hz (from white noise to a narrower band of 0–

5 kHz and back to white noise). Subjects were blindfolded and

instructed to report as quickly and accurately as possible by a right

hand key press whenever they heard the target sound despite

scanner’s background noise. In a first 6.5 min fMRI run, which

was not analyzed, we determined each subject’s auditory threshold

using a simple staircase procedure with 25 trials and inter-stimulus

intervals randomized between 2.5 and 5 s. Next, each subject

performed 2 and some subjects 3 experimental runs of 20 min

duration. In each run, target stimuli were presented at individual

threshold (periliminal stimuli) on 36 trials and at a fixed supra-

threshold level on 4 ‘catch’ trials. ISIs ranged unpredictably from

20 to 40 s, with each specific ISI used only once. Before each run,

the target stimulus was played a few times at supra-threshold

volume for (re)memorization and subjects were informed that in

Neuronal Fluctuations
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most of the trials the target sound would be played at a barely

perceptible level. If within 1.5 s of stimulus onset a key was pressed

this trial was counted as a hit, if not as a miss. All other key presses

were classified as false alarms. Here, we restricted our analysis to

those subjects who generated at least 5 false alarms (n = 9 out of

11). These subjects detected 59617% of the near-threshold

stimuli.

Experimental runs consisted of 820 volumes. An additional

passive localizer run for defining auditory responsive brain regions

was acquired after the main experiment. This 81 volume run

consisted of three 20 s-blocks of repetitive stimulus presentation

with 0.5 s inter-stimulus intervals (ISI) at clearly audible volume

separated by 15 s baseline epochs. Voxels responding to the

auditory stimulus were defined on a subject-by subject basis in two

steps. First, at the group level the contrast periliminal stimuli (i.e.

hits and misses) . baseline (p,0.001) was masked by the passive

auditory localizer contrast at p,0.001. A spherical search space of

10 mm was defined around the peak of the peri-Heschl clusters

with the highest z-score. Next, for each subject’s corresponding

first-level contrast all voxels within this search space were selected

that passed a lenient threshold (p,0.05, uncorrected).

As false alarms occurred at unpredictable times and sometimes

prior to hemodynamic relaxation, we could not directly analyze

fMRI signal time courses as in the motion experiment. We hence

used a finite impulse response (FIR) model on the high-pass

filtered data with very low cutoff (1/1000 Hz) and no pre-

whitening to ensure linear drift removal while minimizing

interference with low frequency brain activity fluctuations. The

FIR model used 24 peristimulus stick functions (x 1.5 s bins) for

each of the four conditions, hits, misses, false alarms and catch

trials. For near-threshold stimuli (hits and misses) time-locking was

based on stimulus presentation; for false alarms it was based on

behavioural reports minus the subject’s average reaction time in

hit trials (7946109 ms).
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brain and functional MRI. The latter has been informative due to 
its superb localizing power and its exquisite capability to record the 
dynamics of neuronal population activity across the entire brain 
and to hence capture large-scale functional connectivity patterns. 
Yet, for instance when addressing temporal properties as below, 
limitations of hemodynamic signals will lead us to also discuss elec-
trophysiological findings as well as observations relying on invasive 
procedures that cannot usually be applied in human subjects.

The Temporal sTrucTure of ongoing brain acTiviTy
One of the most prominent features of ongoing activity is the fact 
that it fluctuates over time. This in itself can give rise to interest-
ing speculations regarding function. If one thinks of a car engine, 
where such behavior would be functionally deleterious, one might 
wonder whether, and if so how, such fluctuations can be associated 
with a functional benefit (McDonnell and Abbott, 2009). Let us first 
consider the formal properties of these temporal fluctuations.

Ongoing human brain activity recorded by local electrocorti-
cography (Freeman et al., 2000) shows a power law scaling but also 
an embedding of discrete peaks reflecting band-limited oscillatory 
activity. Interestingly, power in these distinct frequency bands is in 
turn also modulated over time with a predominance of very slow 

inTroducTion
Our review is based on the premise that – just as man-made architec-
tures (and probably even more so) – the nature of biological systems 
is best understood by jointly considering their form and function. 
We will attempt to apply this view to ongoing brain activity. Our 
review of the form of ongoing or “spontaneous” brain activity will 
cover its temporal and spatial structure. Instead of attempting to 
be exhaustive in this respect, we will selectively emphasize some 
aspects mainly for two reasons; first, because we feel they may be 
under-represented in a field that is currently dominated by the 
notion of “resting state networks”; second, because we feel that 
these aspects are helpful when pondering the function of ongoing 
activity. In the second part of our review, function will then be the 
theme developed in more detail. We will focus on cognitive conse-
quences of ongoing activity fluctuations, for the simple reason that 
they permit the most direct probes of functional significance for 
a phenomenon that is no longer fully “spontaneous” when bound 
into a context so as to measure function. Across this analysis of form 
and function we will then discuss how one theoretical framework, 
that of “free energy” introduced by one of us (Friston, 2005), may 
provide important clues for understanding the nature of ongoing 
brain activity. Our review will mainly concentrate on the human 
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also focused on the only paradigm which permits an apparently 
unambiguous assignment of signal variations to ongoing brain activ-
ity; namely, the “resting state”. Despite concerns about contributions 
from technical and physiological noise, the rationale of these so-
called resting-state functional connectivity studies has been validated 
by concurrent electrophysiological recordings. In particular, it has 
been established that slow fluctuations in power of band-limited 
oscillations can be directly linked to the ongoing activity fluctuations 
observed with fMRI (Shmuel and Leopold, 2008) and involve similar 
distributed spatial structures (Laufs et al., 2003).

With this functional imaging approach, it is now well established 
that spontaneous brain activity fluctuations are spatially organized 
into a largely reproducible structure. The emphasis in a (large) lit-
erature, whose review is beyond the scope of this article, has been 
to define anatomically such resting-state or intrinsic functional 
connectivity networks (ICNs). We will adopt the latter terminology 
because there is reason to believe that similar correlational structures 
persist even when subjects are exposed to vivid sensory stimulation 
(Golland et al., 2007). The definition of ICNs revolves essentially 
around two issues, that of constituent regions and that of boundaries. 
And this definition has relied on two approaches, one hypothesis-
driven as exemplified in analysis of functional connectivity with a 
so-called seed region (e.g., Biswal et al., 1997; Greicius et al., 2003), 
the other data-driven as exemplified by independent component 
analyses (e.g., Beckmann et al., 2005). The ultimate goal of these 
analyses is to derive an anatomical segregation from the recordings of 
ongoing brain activity fluctuations. Notwithstanding a great degree 
of convergence and robustness across many different laboratories, 
both of these approaches have proven to be heavily influenced by 
user-dependent settings. What such settings usually express is the 
user’s expectation regarding the degree of modularity in ongoing 
brain activity. While some laboratories emphasize big dichotomies 
(e.g., Fox et al., 2006b; Golland et al., 2008), others seek to establish 
a fine-grained differentiation (e.g., Margulies et al., 2007).

In this context, we would like to emphasize that the actual data 
structure does not suggest clear-cut modularity but only a gradual 
differentiation. The reason for such graded modularity is that the 
correlational structure of ongoing activity is bound together in a 
hierarchy. This structure is probably best thought of as a tree with 
the underlying activity correlations displaying a hierarchy from glo-
bal to local levels (Ferrarini et al., 2009). These levels of organization 
range from the entirety of gray matter as the trunk, over systems 
of regions as the branches to within-region correlations as the foli-
age (Marrelec et al., 2008; Meunier et al., 2009). In fact, the strong 
presence of variance shared across all local levels and reflected in 
global gray matter (Schölvinck et al., 2010) correlation has led to 
considerable confusion regarding the degree of diversification or 
antagonism that can be observed across different ICNs (Fox et al., 
2009; Murphy et al., 2009). ICNs can be considered a mid-level 
cross-section of this hierarchical tree where regions within an ICN 
share a lot of variance and where this variance is sufficiently distinct 
from that expressed in other ICNs to draw a separating line. As 
a function of whether one emphasizes similarity or distinctness 
of local variations in ongoing activity, data-driven analyses will 
produce quite different numbers of ICNs (e.g., Varoquaux et al., 
2010). In our metaphor, this corresponds to the distance of the 
cross-section from the ground.

frequencies (Leopold et al., 2003; Nir et al., 2008). Descriptively, it 
has been shown that there is a coupling or nesting of the higher-
frequency electrical activity into the infra-slow (usually defined as 
<0.1 Hz) fluctuations (Vanhatalo et al., 2004; He et al., 2010) but 
the  mechanisms and directionality of this relation are not yet fully 
understood. Studies comparing invasive electrophysiological record-
ings with functional neuroimaging results have obtained evidence 
of coupling between hemodynamic signals and both slow cortical 
potentials (He et al., 2008) as well as power of high-frequency band-
limited activity, both evoked and spontaneous (Nir et al., 2007; Shmuel 
and Leopold, 2008).

We conclude from these observations that the temporal proper-
ties of ongoing activity can serve to warn us against a preoccupa-
tion with the “millisecond range” when studying brain function. 
Yet, assuming a conservative stance, we also conclude that there 
is currently no reason for a rebound into a view where infra-slow 
fluctuations in a specific frequency range could be considered a 
distinct entity of neural processes, other than those active in the 
processing of, for instance, sensory events. Studies using fMRI 
have established an apparent predominance of slow fluctuations 
in ongoing brain activity but there are several caveats to be borne in 
mind. First, the issue of whether the actual neural activity reflected 
in the hemodynamic signals shows power law scaling as in electri-
cal recordings is still being debated (Cole et al., 2010). It is certain 
that the low pass filter characteristics of hemodynamic signals only 
permit tracking of slow neural activity modulations, cutting off 
little above the range of the infra-slow frequencies. And there are 
additional concerns related to the fact that – in spite of quantitative 
differences – even “BOLD signal” variations from a water phantom 
can readily manifest power law scaling due to properties of the 
MRI scanner (Zarahn et al., 1997; but see also Fox et al., 2007). It 
has also not been established that the spatial pattern of functional 
connectivity depends on the temporal scale under consideration, 
other than obvious effects related to signal power.

Together, we suggest thinking of the presently available evidence 
as an indication that brain activity over time may display at least 
partially scale-invariant characteristics. Such pink noise or power 
law scaling is not a privilege of the brain or even of biological systems 
but a feature of many if not all complex systems (Mandelbrot, 1998). 
Its ubiquitous presence does not denigrate its importance though. 
Regarding the brain, several researchers have emphasized the impor-
tance of this temporal structure for endowing neural processes with 
an inherent long-term memory (Linkenkaer-Hansen et al., 2001; 
Buzsáki, 2006). The memory function in this view does not reside in 
a specific frequency range but merely has a holistic pattern. However, 
for an alternative opinion and a more differentiated discussion of 
these issues we refer readers to a recent review by Raichle (2010).

The spaTial sTrucTure of ongoing brain acTiviTy
Our main point in the previous section was to review the literature 
that safeguards us against a temporal “segregationist” view. We believe 
that there is a similar danger in the spatial domain. The reason why 
many laboratories have focused on infra-slow fluctuations is that 
due to their power and their at least partial distinctness from other, 
namely “noise” signal sources in functional neuroimaging, these 
fluctuations have proven useful for studying the spatial structure 
of ongoing brain activity. Such functional connectivity studies have 
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similar to what we emphasized in the temporal domain, ongoing 
activity variations also show a nested structure in the spatial domain 
that expresses an embedding of modularity into a hierarchy.

The funcTion of ongoing brain acTiviTy
funcTional connecTiviTy, sTrucTural connecTiviTy and 
cogniTive conTexT
The difficulties in adequately capturing the spatiotemporal form 
of intrinsic brain activity that we have discussed in the previous 
section should not be thought of as mere empty battles of nomen-
clature. This form is important when pondering the function of 
intrinsic activity, and any proposal with respect to this function 
will be benchmarked against its potential for accounting for this 
spatiotemporal structure. The perspective that we have proposed 
in the previous section for functional connectivity is reminiscent 
of descriptions of structural brain connectivity and we have already 
appealed to these similarities in the tree metaphor (Bullmore and 
Sporns, 2009). A hypothesis about what determines the form of 
ongoing brain activity that ensues is that intrinsic functional con-
nectivity simply reflects some neural “noise” that plays out on a 
non-random structural connectivity; and therefore takes on the 
shape of a limited set of spatial patterns (i.e., dynamics on struc-
ture). Indeed, computational simulations of functional connec-
tivity using noisy input generate functional covariance patterns 
that reflect underlying structural circuitry (Sporns et al., 2000). 
And empirical evidence has been reported showing strong cor-
respondence of intrinsic functional and anatomical connectivity 
(Skudlarski et al., 2008; Greicius et al., 2009). In more comprehen-
sive investigations, at the level of the entire brain, this match has 
been confirmed but systematic quantitative analysis also revealed 
that it is not perfect. In other words, structural connectivity permit-
ted only a partial prediction of the empirically observed functional 
connectivity (Honey et al., 2009). Of course, the imperfection in 
predicting functional from structural connectivity could simply 
reflect limitations in the methods applied for data acquisition and 
analysis. Yet, an important alternative hypothesis is that with under-
lying structural connectivity as a backbone functional connectivity 
is shaped by additional context-dependent modulation.

At first glance, this hypothesis seems to be at odds with the per-
sistence of spatial ICN patterns across different levels of context and 
consciousness, from task- and stimulus-induced active states (Fair 
et al., 2007; Golland et al., 2007; Eckert et al., 2008), over resting wake-
fulness (Greicius et al., 2003; Fox et al., 2005; Fransson, 2005), light 
and deep sleep (Horovitz et al., 2007, 2009; Nir et al., 2008), light seda-
tion (Greicius et al., 2008), to deep anesthesia in monkeys (Vincent 
et al., 2007) and severe disorders of consciousness as in vegetative state 
patients (Boly et al., 2009). Furthermore, the finding of robust intrinsic 
activity patterns in the absence of consciousness also suggests that 
intrinsic activity fluctuations cannot be considered merely or entirely 
the neural correlates of conscious, mentation or mind-wandering that 
in the absence of an explicit task paradigm simply remains experi-
mentally uncontrolled (Buckner and Vincent, 2007).

However, evidence in favor of the hypothesis that ongoing brain 
activity is in fact context-sensitive has now been accumulated by a 
range of studies. Although functional connectivity patterns persist 
qualitatively across wide ranges of different functional contexts, 
as mentioned above, they do nonetheless express quantitative 

As a consequence of the hierarchical organization of ongoing 
activity, raising the level of cross-section higher from the ground 
will yield more fine-grained subdivisions of networks both at 
anatomical and functional connectivity levels. As an example, 
the postero-medial part of the most extensively studied ICN, the 
default-mode network, has recently been subdivided into three pre-
cuneus parts and a posterior cingulate part on the basis of distinct 
large-scale intrinsic connectivity patterns, each of which suggest 
different functional roles (Margulies et al., 2009). Another example 
involves the difficulty in anatomical and functional definition of 
the so-called “task-positive” system. An initially useful step was 
to distinguish the “task-negative” default-mode ICN from “task-
positive” regions, the latter referring to a large set of regions showing 
activation in most types of cognitive paradigms (Fox et al., 2005). 
Using seed regions in the dorsal attention network, the resulting 
intrinsic connectivity system was not confined to the dorsal atten-
tion system as defined in paradigm-based studies (Corbetta and 
Shulman, 2002) but due to shared variance also included anterior 
insula/frontal operculum, anterior prefrontal cortex, and infero-
lateral parietal and frontal areas. These additional areas partially 
overlap with an added ICN, termed the fronto-parietal control 
system conceptualized to serve cognitive control (Vincent et al., 
2008). Conversely, other studies dissected cognitive control func-
tions into two distinct ICNs, a cingulo-insular-thalamic and a lat-
eral parieto-frontal network for sustained vs. adaptive/executive 
cognitive control, respectively (Dosenbach et al., 2006, 2007; Seeley 
et al., 2007). These findings clarify that the hierarchically embedded 
levels of spatial structure in intrinsic connectivity range down to 
sub-network and ultimately sub-region correlations. In fact, albeit 
on a different temporal scale, such patterns can even be recovered 
within single areas, and align with their mesoscopic functional 
architecture (Kenet et al., 2003).

Over and above the issue of modularity, defining ICNs in terms 
of anatomical boundaries has also proven difficult. This difficulty 
is largely due to the fact that “networks” are not clear-cut and rigid 
sets of constituent regions. Rather, the term “network” should be 
thought of as a gradual clustering according to a similar activity 
profile. As such, this term can of course help to interpret, commu-
nicate and compare experimental results but should not mislead 
to consider networks as strictly segregated. The spatial patterns 
are susceptible to precise positioning of seed regions and it has for 
instance been demonstrated that there are fairly smooth transi-
tional zones between ICNs (Cohen et al., 2008). Even though some 
of these difficulties may be due to the intrinsic spatial smoothness 
of hemodynamic signals rather than underlying neural architecture, 
such observations may account for observed discrepancies. With 
respect to the task-positive regions however, these difficulties also 
stem from the existence of an ensemble of several interconnected 
task-positive ICNs. Accordingly, the labeling issue becomes most 
critical for connection hubs such as the anterior insula (Sterzer and 
Kleinschmidt, 2010) which has been suggested to orchestrate activ-
ity across different ICNs (Sridharan et al., 2008). In addition to the 
ICNs discussed above, the anterior insula has also been character-
ized as a major node in a right-lateralized ventral attention system 
(Eckert et al., 2008). This latter system (Fox et al., 2006b) in turn 
widely overlaps with the aforementioned control systems, especially 
the lateral fronto-parietal subsystem. Together, we conclude that 
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in ongoing activity can account for behavioral variability. From the 
previous sections we can derive the following predictions for such 
an account: (1) ongoing activity should affect behavior with a time 
constant that is sufficiently slow to be captured by  hemodynamic 
signals. (2) The spatial pattern within which ongoing activity affects 
behavior should be context-dependent and should be detectable 
precisely at that position within a hierarchical structure that best 
matches the functional demands of a given context. In the fol-
lowing, we review evidence for both predictions from recent neu-
roimaging studies.

Two lines of earlier research suggested that there might indeed 
be a link between ongoing activity fluctuations and behavioral vari-
ability. One is that behavioral performance when repeating the same 
task over and over again shows fluctuations with a qualitatively 
similar temporal profile as ongoing activity, i.e., high power at 
low frequencies (Gilden, 2001). The other is that neural responses 
evoked by identical stimuli fluctuate over time. The latter effect 
has been very explicitly tied to ongoing activity fluctuations by 
examining the dependence of evoked response variations on trial-
by-trial fluctuations of pre-stimulus activity levels. In an influential 
study, Arieli et al. (1996) investigated ongoing and stimulus-evoked 
activity with concurrent optical and electrophysiological methods 
in anesthetized cats. They found that variability of evoked responses 
could be largely accounted for by the initial level of ongoing activ-
ity just prior to stimulus onset. Their data show a linear relation-
ship between ongoing activity immediately before stimulation 
and evoked activity levels. Simply adding the averaged stimulus-
related activity increment to the pattern of ongoing activity in an 
individual trial provided an excellent prediction of the actually 
measured activity level during the evoked response in that trial. 
Recently, several functional neuroimaging studies have not only 
revisited this issue but also established links between neural and 
behavioral variability.

Functional imaging findings
At a very different spatial and temporal resolution than Arieli 
et al., Fox et al. (2006a) made a similar observation using fMRI. 
They found that trial-to-trial variability of finger movement-
related activity in motor cortex could be largely accounted for 
by ongoing activity fluctuations measured in the contralateral 
motor cortex, the one ipsilateral to the finger that was moved 
(Figure 1). Their clever approach tackled the problem that the 
relative contribution of ongoing and task-related activity can-
not be separated by analyzing activity in the task-relevant region 
during the evoked response. By removing trial by trial the simul-
taneously recorded activity level in a region that belongs to the 
same ICN but was not engaged by the task from the signal in the 
task-relevant region they “cleaned away” the ongoing and retained 
the evoked component.

From the perspective of data analysis in functional imaging, 
this procedure is very attractive. It suggests that averaging across 
trials provides a good way for estimating a veridical evoked activity 
change, the response, and that the latter shows little if any variability. 
And removing the variability related to ongoing activity and hence 
tightening the residual variability of the evoked response estimate 
yields a clear-cut gain in statistical sensitivity. Yet, the same group 
established in a subsequent study that the trial-by-trial variability 

changes. They differ for instance quantitatively between the healthy 
awake brain and the brain in a state of pathological unconscious-
ness, where functional connectivity within the so-called default-
mode network decreases with the degree of consciousness; across 
minimally  conscious state, vegetative state and ultimately coma 
(Vanhaudenhuyse et al., 2010). They also differ quantitatively in 
the healthy brain between wakefulness and deep (slow-wave) sleep, 
a state of physiological unconsciousness (Horovitz et al., 2009). It 
is noteworthy that the reduction in connectivity between posterior 
and frontal areas of the default-mode network during sleep is ana-
tomically selective, and that fluctuation amplitudes within regions 
remain unchanged. This result makes it unlikely that modulations 
in intrinsic connectivity simply reflect a change of noise levels 
propagating through an anatomically connected system.

And even during the state of wakefulness (and on a shorter time 
scale) intrinsic connectivity patterns express differences that can 
be related to recent cognitive experience. Over the course of one 
scanning session, i.e., a time span that in all likelihood does not 
involve gross structural connectivity changes, adaptive modulation 
of intrinsic functional connectivity has been reported after visuo-
motor learning (Albert et al., 2009), episodic memory (Tambini 
et al., 2010) and language tasks (Waites et al., 2005; Hasson et al., 
2009). These findings show that functional context interacts 
with the expression of intrinsic activity and thus motivates fur-
ther experimental investigation of the functional significance of 
 intrinsic activity.

A common critique of these latter studies is that they might 
collapse “true intrinsic” activity with reverberating traces of previ-
ous cognitive experience. Of course, the same critique holds for 
“pure” resting-state studies during wakefulness, because they at 
least include task-unrelated mind-wandering that constitutes an 
ongoing cognitive content (Mason et al., 2007; Christoff et al., 
2009) and by its very nature cannot be considered to lack context. 
The only way to dissociate “true intrinsic” activity from more spe-
cifically context-related neural processes would be if there were 
spatiotemporal hallmarks selectively tagging intrinsic activity. Our 
review of its temporal and spatial form, however, suggests, at least 
to us, that no such properties can currently be identified with 
confidence. Alternatively, one may question whether such disso-
ciation is inevitably justified and necessary and this leads one to 
consider the actual function of ongoing activity. We propose that 
its function is intimately related to cognition, and this relation is 
inherent to the brain, be it in a “resting” or active state. This pro-
posal could seem at odds with the studies that we have discussed 
above and that show qualitative spatial correspondence between 
ICNs across very different functional brain states. But it is as true 
that ICNs strongly resemble spatial patterns with sets of regions 
that typically co-activate (or deactivate) in cognitive activation 
studies as a function of the paradigm (Smith et al., 2009). We 
therefore argue that function cannot be assigned purely on the 
basis of spatial patterns.

cogniTive consequences of sponTaneous acTiviTy 
flucTuaTions
In this section, we review a different way of addressing the function 
of ongoing activity. In this approach, the functional consequences 
of ongoing activity are assessed by studying whether fluctuations 
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“task-positive” behavior in a wide range of cognitive task settings 
(Corbetta et al., 2002; Smith et al., 2009). Conversely, on trials 
where subjects missed the threshold stimulus, pre-stimulus activity 
levels were higher in posterior cingulate (PCC), parahippocampal 
and lateral parietal components of the default-mode network. This 
latter network is known to show deactivation or “task-negative” 
behavior in most task settings (Gusnard and Raichle, 2001).

Taken together, these observations could further support a sim-
ple dichotomy in which higher ongoing activity in “task-positive” 
brain networks would facilitate perceptual performance whereas 
higher activity levels in the default-mode network would degrade 
performance. A recent study speaks against the generality of this 
scenario by showing that functional context determines in which 
brain regions ongoing activity will affect perceptual perform-
ance and whether this will be a facilitating or detrimental effect 
(Sadaghiani et al., 2009). In a free-response, auditory detection task, 
we presented broad-band noise stimuli in unpredictable intervals 
of 20–40 s and at individual detection threshold. Subjects pressed a 
button whenever they perceived the target sound. Successful detec-
tion as compared to misses was preceded by significantly higher 
pre-stimulus activity in early auditory cortex (Figure 3A) as well 
as in two ICNs. Perceptual performance was better with higher 
pre-stimulus activity in a network comprising thalamus, anterior 
insula and dACC, which suggests a role for this ICN in maintain-
ing alertness and task-set (Figure 2A). Conversely, and counter 
to common intuition, higher baseline activity in the dorsal atten-
tion system of parietal and frontal areas biased towards misses 
(Figure 2B) presumably expressing the lack of spatial connotation 
in our stimulus and task. The observation of opposite effects in 
these two task-positive ICNs shows that in spite of shared variance, 
the networks are sufficiently segregated to exert independent influ-
ences on perceptual outcome. And finally, higher baseline activity in 

in task-related motor cortex activation was functionally meaningful 
and translated into behavioral variability as measured by the force 
that subjects applied in different trials when pressing a response 
button (Fox et al., 2007). In other words, the aforementioned 
 procedure of removing inter-trial variability, albeit attractive from 
a signal processing perspective, is far less tempting for that line of 
research which seeks to establish neural correlates of behavior.

From a methodological point of view, a limitation of the afore-
mentioned approach is that it is grounded in the assumption that 
motor cortex ipsilateral to the moving finger is silent in this para-
digm. Indeed, distal upper limb movements are represented almost 
exclusively contralaterally but with greater force they involve co-
innervation of more proximal musculature, which in turn is repre-
sented more bilaterally in motor cortex (reviewed in Kleinschmidt 
and Toni, 2004). Other groups have therefore explored alternative 
approaches to the issue of whether ongoing activity fluctuations 
are functionally relevant. Instead of using simultaneously recorded 
signal in a region that belongs to the same ICN but is silent in a 
task context, several groups have taken pre-stimulus signal in the 
same region that will subsequently respond to a given stimulus as a 
measure of ongoing activity. This approach is hence similar to the 
one adopted by Arieli et al. (1996) but on a different time scale.

Boly et al. (2007) investigated the perceptual impact of pre-
stimulus activity fluctuations in a somatosensory detection task. For 
somatosensory stimuli close to perceptual threshold pre-stimulus 
activity levels in large distributed systems resembling ICNs indicated 
whether or not a stimulus was perceived on a given trial. The system 
biasing towards perceiving the stimulus comprised the thalamus, 
dorsal anterior cingulate cortex (dACC) and anterior insula/infe-
rior frontal gyrus, as well as parieto-frontal areas including intra-
parietal sulcus and dorso-lateral prefrontal cortex. As discussed 
in the previous section, these areas commonly show activation or 

FIguRe 1 | Ongoing activity fluctuations account for variability in 
trial-to-trial evoked responses. Subjects pressed a response button with their 
right hand at long intervals (>14 s) in response to visual indication. (A) Left, i.e., 
task-invoked motor cortex; (B) right motor cortex; (C) left motor cortex after 
removal of activity from right motor cortex. Each curve corresponds to the raw 
time course of one trial for the same individual subject. The thick orange line 

represents the respective best-fit gamma function. The event-related activity in 
left motor cortex showed high trial-to-trial variability. Strong variability was 
likewise observed in the spontaneous activity in the other, i.e., right hemisphere 
and could account for a major portion of variance of the left hemispheric evoked 
responses on a trial-by-trial basis. Reprinted from Fox et al. (2006a) with 
permission from Nature Publishing Group.
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between two closely matched alternatives, generic contributions 
from ICNs become less important and that a pre-stimulus effect 
might only be detectable in a single task-relevant region (rather 
than throughout the entire network to which this region belongs). 
In this case, it would be purely local variations in activity and not 
those throughout a distributed system that would exert an influence 
(cf. previous section on hierarchical structure of ongoing activity). 
Such a mechanism would make it mandatory to estimate ongoing 
activity from pre-stimulus signal in the task-relevant region instead 
of from simultaneous signal in a reference region of the same ICN. 
Evidence for such a scenario has been provided by two separate but 
closely related experiments.

In a perceptual decision task on Rubin’s ambiguous vase-faces 
figure, subjects had to report on each trial whether they perceived 
the vase or the two faces in profile. The presentation of the stimuli 
was sparse at long and variable intervals (range 20–50 s), and the 
stimuli were presented only briefly (Hesselmann et al., 2008b). 
Subjects reported face percepts on approximately half of the trials 
and vase percepts on the other trials. Higher pre-stimulus activ-
ity levels in the right fusiform face area (FFA), a region special-
ized for face processing, were found to bias towards the percept 
of faces rather than a vase (Figure 3B). This finding was later rep-
licated in the domain of visual motion perception (Hesselmann 
et al., 2008a). In this study, short events of random dot motion 
with near-threshold coherence levels were presented, and subjects 
indicated on each trial whether they perceived coherent or ran-
dom motion. Here, subjects’ perceptual decisions were biased by 

the precuneus/PCC region of the default-mode network preceded 
hits, which in turn yielded a biphasic response with a “task-positive” 
activation component preceding the typical but delayed deactiva-
tion (Figure 2C). At first glance, this finding might appear at odds 
with the existing literature but it probably reflects the importance 
of retrieving a memory template of the target for successful per-
formance on the continuous sensory input (Shannon and Buckner, 
2004; Daselaar et al., 2009).

Thus, in the context of a non-localized and non-semantic 
auditory stimulus and a task that depends on recognition mem-
ory but not spatial attention, the usual effects from activity in 
default-mode and dorsal spatial attention systems were reversed. 
Of note, the time courses of pre-stimulus effects in these two 
networks were very distinct, making it unlikely that signal change 
in one was simply (epiphenomenally) mirrored by that in the 
other. In other words, these opposite effects were presumably 
independent of one another rather than reflecting a hard-wired 
antagonism between these two ICNs that others have claimed 
based on the observation of intrinsic anticorrelation (Fox et al., 
2005). These findings highlight that context determines the influ-
ence ongoing fluctuations exert on stimulus processing and ulti-
mately perception.

It seems fair to posit that where and how ongoing activity fluc-
tuations impact on perceptual decisions depends on which sen-
sory features and cognitive faculties are relevant in a given context. 
Accordingly, one might expect that in perceptual decisions, which 
do not involve an all-or-none success of detection but a choice 

FIguRe 2 | Distributed ongoing activity fluctuations in large-scale ICNs 
impact perceptual performance. (A–C) Subjects performed a free-response 
auditory detection task (cf. Figure 3A). The pre-stimulus BOLD signal (dotted 
vertical line marking stimulus onset) from three ICNs (rendered on a canonical 
inflated cortical surface) was examined as a function of perceptual outcome. Hits 
were preceded by significantly higher pre-stimulus activity in the tonic alertness 

ICN (A) as well as the default-mode ICN (C) while higher pre-stimulus activity in 
the dorsal attention ICN (B) foreshadowed misses. Error bars represent standard 
error across subjects. Adapted with permission from Sadaghiani et al. (2009). For 
comparison with a somatosensory threshold detection task please cf. Figure 2 in 
Boly et al. (2008). This figure was not reprinted here due to fees requested by the 
publisher John Wiley and Sons for reprint permission.
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ing such observations in EEG frequency bands to the infra-slow 
frequency range covered by imaging studies comes from work by 
Palva and colleagues. They investigated pre-stimulus power fluc-
tuations using full-band EEG sensitive to infra-slow fluctuations 
(<0.1 Hz) in a somatosensory threshold detection task within a 
free-response setting. They found highest detection rates and short-
est reaction times to be associated with intermediate power levels 
(inverse u-shaped relation) of α, β and γ band oscillations over 
sensorimotor cortices, and with highest power of these bands over 
parietal electrodes (Linkenkaer-Hansen et al., 2004). Interestingly, 
in this task setting the phase of infra-slow fluctuations was found to 
be strongly correlated to the power of higher frequencies (1–40 Hz) 
and to be highly predictive of hits and misses on a trial-by-trial basis 
(Monto et al., 2008). Recently, electrophysiological studies have 
not only shown power but also phase of band-limited oscillatory 
activity to affect perceptual performance. For example, trial-to-trial 
variability in perceptual outcome has been related to the phase of 
EEG α and θ band oscillations in visual threshold detection tasks 
(Busch et al., 2009; Mathewson et al., 2009).

The relaTion of ongoing and evoked neural acTiviTy
The above findings are important because they show that across many 
temporal scales variability in ongoing activity – which is commonly 
obscured by normalization to pre-stimulus baseline – contributes to 
the way in which the brain (and ultimately, the observer) responds 
to sensory stimuli. The imaging studies show that the topography of 

pre-stimulus activity levels in right middle temporal cortex (V5/
hMT+), a region crucially involved in the analysis and perception 
of wide-field coherent motion. Specifically, perception of coherent 
motion was preceded by significantly higher ongoing activity in 
V5/hMT+ (Figure 3C). In both experiments, no other task-related 
cortical regions showed a significant link between pre-stimulus 
activity and perceptual outcome.

Electro- and magnetoencephalographic findings
Electro- (EEG) and magnetoencephalography (MEG) studies 
have also established links between ongoing activity and behav-
ior. While less informative in terms of spatial localization, these 
studies have identified distinct oscillation bands that carry signals, 
which predict perceptual performance. Using MEG, Jensen and col-
leagues observed that visual discriminability of a threshold stimu-
lus decreased with an increase in pre-stimulus occipito-parietal α 
band power (van Dijk et al., 2008). Likewise, they reported that 
in a go no-go task false alarms were preceded by higher levels of 
α band power in the occipital cortex and bilateral somatosensory 
cortices (μ rhythm) as compared to correct withholds on no-go 
trials (Mazaheri et al., 2009). Not only responses to natural stimuli 
but also to artificial direct cortical stimulation are influenced by the 
power of ongoing oscillations: Using transcranial magnetic stimu-
lation, phosphene-perception was only induced following lower 
pre-stimulation α amplitudes (Romei et al., 2008), suggesting that 
occipital alpha power indexes cortical excitability. Evidence link-

FIguRe 3 | Local spontaneous variations in ongoing activity of specialized 
sensory regions impact perception. The upper part illustrates the paradigm: 
(A) auditory detection experiment: in a free-response setting subjects detected 
an auditory target stimulus presented at perceptual threshold. (B) Perceptual 
decision on an ambiguous figure: subjects reported either faces or vase 
perception in response to flashes of the faces-vase ambiguous figure.  
(C) Motion decision experiment: random dot motion was presented at motion 
coherence threshold and subjects decided trial by trial whether motion was 
coherent or random. In all experiments, trials followed at long and unpredictable 

intervals. In each experiment, the pre-stimulus BOLD signal (dotted vertical line 
marking stimulus onset) was examined as a function of perceptual outcome and 
sampled from accordingly specialized sensory areas. The corresponding regions 
of interest (early auditory cortex, FFA and hMT+, respectively) are presented on 
a canonical inflated cortical surface of the right hemisphere. In all experiments, 
higher pre-stimulus time course in the respective sensory region biased towards 
perceiving stimulus properties for which these regions are particularly sensitive. 
Error bars represent standard error across subjects. For more details see 
Hesselmann et al. (2008a,b); Sadaghiani et al. (2009).
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variability of evoked neural and perceptual responses to a single 
stimulus (or a group of equivalent stimuli) (Super et al., 2003; Sapir 
et al., 2005; Thut et al., 2006; Wyart and Tallon-Baudry, 2009). 
Typically, in these paradigms, a cue will appear that can indicate a 
task-relevant location or feature for a stimulus that will be presented 
after a brief but often variable delay. These studies in general try 
to understand which neural mechanisms underpin selective atten-
tion. As behavior and evoked responses are modulated by atten-
tion, variability in a cue-induced anticipatory signal that correlates 
with perceptual performance on the subsequent stimulus can be 
considered a neural signature of preparatory attention. Of course, 
this interpretation does not speak to the mechanism that generates 
this variability in the first place but only suggests that attentional 
preparation is subject to a variability of an unknown origin that is 
behaviorally relevant. The similarity of this conclusion with that 
from the aforementioned studies on spontaneous fluctuations sug-
gests a need for closer examination and comparison.

From our perspective, variability in cortical activity following 
an orientating cue presents a special case and currently remains 
ambiguous. One interpretation could be that this variability is the 
same as that seen in ongoing activity and that the cue will hence be 
more or less efficient, both neurally and perceptually, as a function of 
the state of the system prior to cueing. Another view could be that the 
neural response elicited by the cue could in itself be variable and that 
this variability translates into perceptual performance. As we have 
discussed previously, simply removing the effects of pre-cue baseline 
would not permit arbitrating between these two scenarios, since the 
amplitude of the cue response may be subject to interactions with 
pre-cue activity levels. However, analyses as those reviewed above 
that preserve pre-cue “baseline” signal fluctuations could be used 
to disambiguate the functional nature of cued settings.

Another line of comparison regards the interpretation of 
the cortical signal. If the pre-stimulus signal expresses a level of 
preparatory attention in studies using cues, does this permit the 
conclusion that in studies without cues fluctuations of ongoing 
activity can be thought of as fluctuations in attention? If one were 
to make this claim it would have to survive a couple of benchmark 
checks. The most important one is that evoked responses to tar-
get stimuli should be enhanced by attention. This enhancement 
could reflect anything between a true response gain as implied in 
earlier studies (Chawla et al., 1999) and a simple additive effect of 
fixed stimulus-driven increment in the presence of an increased 
background activity (Sylvester et al., 2009). In both our studies 
addressing signal variations in the absence of cues, however, the 
opposite behavior was found. The higher pre-stimulus signal was, 
the smaller the actual incremental evoked response amplitude in 
regions that were critical to the percept on those trials, i.e., V5/
hMT+ for motion coherence detection (Figures 4A,B) and the 
FFA for face perception (Figures 4C,D).

Predictive coding and free-energy formulations
So how can these observations about intrinsic fluctuations be under-
stood functionally? We will address this under a predictive coding 
account of neuronal activity, given that cues furnish exogenous and 
explicit predictions. In what follows, it is important to realize that 
optimal predictions or expectations rest on two distinct processes. 
The first is predicting the content of a percept (e.g., what caused 

these effects is compatible with a hierarchical view on intrinsic brain 
activity and depends on context. In the two experiments discussed 
above, which involve fairly subtle perceptual decisions, we targeted 
areas that we considered likely to respond more strongly during 
one of the two possible perceptual interpretations of the ambigu-
ous stimuli used. Despite identical sensory input in each experi-
ment, we indeed confirmed that face-percept trials using the Rubin 
stimulus yielded higher evoked FFA responses and coherent-percept 
trials using the dot motion stimulus higher evoked hMT+ responses 
(Figures 3B,C). Together with the aforementioned effects observed 
in pre-stimulus signal these findings could be believed to confirm 
a behavior equivalent to the one in the study by Arieli et al. (1996) 
that we discussed above. In other words, a single stimulus would, 
on each trial, evoke a fixed activity increment which would add to 
the level of ongoing activity encountered on that trial. Variations in 
ongoing activity would then determine perceptual outcome by yield-
ing variations in peak activity that would, or not, pass a threshold 
required for a perceptual decision. By such a mechanism, even a 
simple additive relationship between ongoing and evoked activity 
could become functionally significant (note that we have to call on a 
threshold mechanism – which is by definition non-linear – to make 
a linear effect of ongoing activity functionally interesting).

The important consequence from such a mechanism – that also 
provides an easily testable hypothesis – would be that the relation 
between ongoing and evoked activity should not depend on per-
ceptual outcome because the latter would be determined solely by 
the peak activity of the response. We could reject this hypothesis 
in both experiments by showing a significant interaction between 
evoked and ongoing activity when predicting perceptual outcome. 
Specifically, peak and pre-stimulus activity levels in hMT+ correlated 
less when dot motion was perceived as coherent rather than random 
(Figures 4A,B). Likewise, peak activity levels in FFA were signifi-
cantly less correlated with pre-stimulus signal when subjects per-
ceived faces than when they reported a vase (Figures 4C,D). These 
observations show that the mechanism by which ongoing activity 
affects subsequent perception is independent from the one that can 
be observed during stimulus processing. In other words, the latter 
does not result from a mere passive propagation of effects preceding 
stimulus presentation. The theoretical implications of these findings 
for models of perceptual decision-making have been discussed in 
the respective publications (Hesselmann et al., 2008a,b). Yet, there is 
reason to believe that both linear (e.g., under anesthesia, Arieli et al., 
1996, or in passive viewing, Bianciardi et al., 2009) and non-linear 
interactions can be observed and future work will need to clarify 
which parameters determine the regime under which ongoing and 
evoked activity interact (see Kisley and Gerstein, 1999, for a study 
on changes in linearity as a function of depth of anesthesia).

The naTure of ongoing brain acTiviTy
Comparing spontaneous fluctuations and variability after cueing
We have argued above that ongoing activity is modulated by cog-
nitive context and that spontaneous activity fluctuations can be 
thought of as fluctuations of an internal and predictive contextual 
representation. It therefore appears sensible to compare results from 
such studies with those where context has been explicitly modu-
lated by introducing cues that prepare for an upcoming cognitive 
challenge. Several studies have employed such cues to study the 
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FIguRe 4 | Percept-dependent and non-linear interaction of evoked 
responses with pre-stimulus baseline activity. Percept-dependent linear 
regression was performed between trial-by-trial pre-stimulus activity at −1.5 s 
and peak activity at 6 s relative to stimulus onset. For two independent 
experiments, the regression is illustrated for one representative single subject 
and the regression coefficient is given for the group. (A,B) The motion decision 
experiment (for stimuli cf. Figure 3C): coefficients were significantly larger than 
0 when motion was perceived as coherent (t11 = 3.55, p < 0.01) but not when it 

was perceived as random (t11 = 1.7, n.s.) and significantly different between the 
two perceptual outcomes (t11 = 3.24, p < 0.01, paired). Adapted with permission 
from Hesselmann et al. (2008a). (C,D) The face-vase decision experiment (cf. 
Figure 3B): likewise, coefficients showed a trend >0 when faces were 
perceived (t11 = 1.88, p = 0.087) but not when the vase was perceived 
(t11 = –1.06, n.s.). Importantly, they were significantly different between the two 
perceptual outcomes (t11 = 2.31, p < 0.05, paired). Dataset from Hesselmann et 
al. (2008b). All tests are two-sided t statistics.

the stimulus) and the second is properly inferring the  uncertainty 
or precision of that prediction (e.g., the probabilistic context in 
which a stimulus appears). This difference is illustrated nicely by 
the difference between the effects of cueing and priming.

Cues are usually employed in attentional paradigms to guide 
predictions about task-relevant locations or features (context) but 
not about the actual target (content). In other words, knowing that 
a target will appear at a given location within the next couple of 

seconds does not provide any information about the content of 
the target’s features; e.g., whether a grating will be slanted to the 
left or right. Cues call for allocation of attentional resources to the 
appropriate sensory channels, without biasing to one outcome in 
these channels, or another. In what follows, we consider this in 
terms of optimizing the synaptic gain of selected channels. This may 
also help understand the electrophysiological correlates of non-
spatial attentional or perceptual processes; e.g., related to the feature 
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intrinsic fluctuations have been proposed as mathematical models 
of short-term memory (Bick and Rabinovich, 2009) and have been 
discussed explicitly in terms of free-energy minimization (Kiebel 
et al., 2009b).

It is important to realize that this interpretation does not restrict 
the role of ongoing activity to brain states that are accessible to 
introspection. The most basic version of this mechanism might be 
seen during the perception of music and speech, where, mathemati-
cally, the itinerant dynamics conform to stable heteroclinic channels 
that show winner-less competition (Seliger et al., 2003; Kiebel et al., 
2009a). However, these dynamics also manifest in the absence of 
sensory information – just because sensory inputs are not currently 
available does not mean that the brain models the world as having 
stopped. Important examples here include optimization (consoli-
dation) of synaptic strengths during sleep (Vyazovskiy et al., 2008; 
Diekelmann and Born, 2010). Another example is optimization or 
selection of competing internal models, using itinerant searches 
over different hypotheses (models) about the world. This view links 
itinerant (wandering) dynamics to “mind wandering” often invoked 
to explain resting-state fluctuations. This link provides a formal and 
precise role for ongoing itinerant activity that has been exploited in 
perception (e.g., Kiebel et al., 2009a) and planning (e.g., Namikawa 
and Tani, 2010). In machine learning and robotics, the itinerancy 
mandated by sensitivity to initial conditions and some forms of 
chaotic dynamics is now one of the main candidates for explaining 
how trajectories into the future are explored and selected. This fits 
comfortably with the notion that brain activity can be formulated 
in terms of itinerant dynamics (e.g., Tsuda, 2001). One important 
feature of itinerancy is that it enables ongoing activity to express 
fluctuations that ensure transitions between different (meta)stable 
neuronal states (Deco et al., 2009). Itinerant fluctuations of this 
activity reflect the dynamic nature of the underlying internal model 
that does not remain locked in a stationary mode but remains 
malleable by continuously exploring hypotheses regarding future 
experience and action. It is for this reason that functional connectiv-
ity measures, which describe the extent of wandering activity (and 
not stationary activity levels), provide such an informative descrip-
tion. Similar neural population behavior has also been observed 
on shorter temporal and smaller spatial scales (Wackermann et al., 
1993; Kenet et al., 2003).

Ongoing activity and precision
In free-energy formulations of predictive coding, a major contribu-
tor to measured neuronal activity is precision-weighted prediction 
error. This precision weighting is implemented by increases in syn-
aptic gain (cf. attentional modulation) so that prediction errors are 
boosted selectively according to the context established by predictions 
or cues). This means that fluctuating activity levels may reflect not 
just itinerant optimization of predictions but fluctuations in their 
precision. Evidence for this interpretation of ongoing activity fluc-
tuations (as a modulation in precision or gain afforded to afferent 
information) comes from investigations of false vs. correct perceptual 
inference. Intrinsic brain activity (as indexed by fMRI signal) could be 
interpreted as a correlate of sensory evidence in random walk or race 
models (in essence an extension of signal detection theory over time 
Smith and Ratcliff, 2004; Gold and Shadlen, 2007) or as a proxy for 
precision in free-energy formulations of predictive coding (Friston, 

class, in contrast to spatial attention (Wyart and Tallon-Baudry, 
2009). Conversely, sensory priming induces expectations about 
the content of sensory input, which we will assume is mediated by 
priming–dependent changes in synaptic activity and efficacy. In 
accord with this view, priming effects are associated with reduced 
evoked response amplitudes and are, of course, readily embraced 
by predictive coding accounts (Henson, 2003).

Recently, it has been proposed that a single fundamental prin-
ciple might govern brain activity underlying action, perception, 
attention and learning (Friston, 2005, 2009, 2010). In its most 
simple form, the free-energy principle states that the brain seeks 
to minimize surprise (more formally, the negative log-probability 
of a sensory outcome). This is achieved by continuously updating 
an internal model that generates top-down predictions of sensory 
input. Unexpected sensory inputs that cannot be “explained away” 
by an internal model of the current states of the world emerge 
as bottom-up prediction errors (hence predictive coding). These 
prediction errors are accumulated or assimilated by higher cortical 
areas to update the model and optimize its predictions. Perception 
rests on the optimization of top-down predictions (or, model) to 
best explain away the bottom-up prediction error caused by incom-
ing sensory information, a notion embraced by Bayesian formu-
lations (Kersten et al., 2004; Hohwy et al., 2008). In the present 
context, the free-energy formulation is of interest because it covers 
many observations about evoked responses but it is not confined to 
them. When applied to the specific issue of ongoing cortical activity 
and its relation to evoked responses (and subsequent perception), 
the free-energy principle can account for many reported empirical 
findings and yields further testable predictions.

The free-energy formulation (Friston, 2009) requires the brain 
to represent the causes of sensory input (by optimizing synaptic 
activity; i.e., perceptual inference), and its internal model of con-
textual and causal regularities (by optimizing short and long-term 
changes in synaptic gain and efficacy; i.e, attention and peceptual 
learning). Crucially, all changes in synaptic activity, gain and effi-
cacy minimize the same thing; namely free energy, which under 
some simplifying assumptions is just the amount of prediction 
error. In line with this view, Lewis et al. (2009) observed that inten-
sive training shapes intrinsic connectivity between visual areas and 
higher order frontal and parietal regions that presumably gener-
ate visuospatial top-down predictions. In terms of the distinction 
above, synaptic (neuronal) activity encodes the content percepts, 
while synaptic gain encodes contextual precision (cf. attentional 
gain). In what follows, we will consider ongoing activity as reflect-
ing neuronal activity that predicts the causes of sensory inputs 
and then turn to interpretations that cover fluctuations in synaptic 
gain or precision.

Ongoing activity and predictions
Perceptual inference and learning speaks to a general principle, 
according to which past experiences inform predictions of the 
future to optimize behavior. The idea that ongoing activity patterns 
reflect a historically informed internal model of causal dynamics 
in the world (that serves to generate predictions of future sen-
sory input) fits nicely with the role of neural “replay” in memory 
formation (Jeffery, 2004; Foster and Wilson, 2006). Indeed, the 
itinerant (wandering or searching) dynamics that characterize 
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attractive theoretical framework for a unified approach to a diver-
sity of neurophysiological observations, including those related to 
ongoing activity fluctuations.

summary
In the recent years, intrinsic brain activity has become a new and entic-
ing focus of interest and research into brain function (Fox and Raichle, 
2007). In spite of conceptual concerns about studying unconstrained 
brain activity (Morcom and Fletcher, 2007a,b) studies of intrinsic 
brain activity during rest as well as in paradigm settings have proven 
very fruitful in understanding the functional role of ongoing activity 
and its relation to cognitive processes (Buckner et al., 2008; Greicius, 
2008; Hesselmann et al., 2008b; Sadaghiani et al., 2009).

Ongoing activity is organized in a functional architecture at 
various temporal and spatial scales (Kenet et al., 2003; Bassett 
et al., 2006; Meunier et al., 2009). It has been established that 
evoked neural responses are embedded into this underlying 
functional architecture (Tsodyks et al., 1999) and cannot be fully 
understood in isolation from the context established by ongoing 
activity. Therefore, trial-to-trial variability in evoked responses is 
not just noise but a non-random function of network fluctuations 
(Fontanini and Katz, 2008). For this reason the current review of 
ongoing activity considered its spatiotemporal structure in relation 
to moment-to-moment variability in cognition.

2008). Crucially, these two accounts can be tested against findings in 
threshold detection paradigms discussed above (Hesselmann et al., 
2008a; Sadaghiani et al., 2009). The former (evidence accumulation) 
framework suggests high pre-stimulus activity (i.e., a high starting 
level for the random walk) will bias towards subsequent stimulus 
detection (true hits or false alarms). Conversely, the latter (predictive 
coding) framework suggests that high ongoing activity (i.e., precise 
prediction errors) will bias towards subsequently correct inference 
(hits or correct rejections). In two independent datasets, we recently 
found that pre-stimulus activity levels were associated with the lat-
ter perceptual outcome and hence support the interpretation of 
ongoing activity as reflecting the precision of perceptual inference 
(Hesselmann et al., 2010) (Figure 5).

The implementation of precision in the predictive coding frame-
work is necessitated by the presence of noise in environmental states 
or sensory input and plays a key role in regulating the reliability or 
relative weighting of bottom-up prediction errors against top-down 
predictions. Thus, this gain could represent a mechanism that is 
very suitable for mediating selective attention (Friston, 2009). Of 
note however, a shared final common neural pathway does not 
imply that fluctuations in ongoing activity necessarily reflect fluc-
tuations in attention (cf. the discussion of cueing paradigms in the 
previous section and itinerant optimization of neuronal activity 
above). In conclusion, the free-energy formulation presents an 

FIguRe 5 | Baseline activity levels in false vs. correct inferences are 
captured by the predictive coding framework. (A) Peristimulus fMRI signal 
time courses from the motion decision experiment: for stimuli and region of 
interest cf. Figure 3C. Hits and misses correspond to trials at threshold motion 
coherence level (on average 13%), while correct rejections and false alarms 
correspond to occasional trails with a quasi-random coherence level (1%). 
Pre-stimulus activity showed a main effect of accuracy, correct vs. incorrect 
(consistent with predictive coding), but no main effect of percept, coherent vs. 
incoherent (predicted by evidence accumulation). Pre-stimulus activity prior to 
hits was significantly greater than misses; and pre-stimulus activity in false 
alarms were significantly less than in correct rejects. (B) Peristimulus time 
courses from the auditory detection experiment: for stimuli and region of 

interest cf. Figure 3A. False alarms occurred occasionally when subjects 
reported to hear the target stimulus in the absence of stimulation. As assumed 
by predictive coding, false inference (false alarms and misses) were each 
preceded by significantly lower levels of activity in auditory cortex than 
veridical hits. Note that this free-response paradigm does not furnish correct 
rejection trials (i.e., subjects are not required to indicate the stimulus is 
absent). The gray ellipse covers the pre-stimulus period submitted to statistical 
testing. The time courses for hits and misses correspond to the respective 
time courses in Figure 3. However, note that only a subset of subjects that 
had a sufficient number of wrong inferences was included in this analysis. 
Error bars represent standard error across subjects. Adapted with permission 
from Hesselmann et al. (2010).
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With respect to structure, we emphasized that behaviorally 
relevant ongoing activity is hierarchically organized and does 
not seem restricted to clear-cut temporal or spatial scales. The 
spatial patterns of ICNs and the membership of constituent 
regions are gradual and display a global-to-local connectivity, 
reminiscent of small-world topologies (Bullmore and Sporns, 
2009). We further discussed that the strength of these correla-
tions is constrained by structural connectivity but is modu-
lated by mental states and current context, strongly suggesting 
a functional component to intrinsic activity fluctuations (i.e., 
dynamics on structure).

We have tried to substantiate the role of intrinsic fluctua-
tions in terms of the necessarily itinerant dynamics entailed by 
internal (generative) models of the world the brain might use to 
make predictions about its sensorium. In doing this, we hoped 
to establish a formal link between the notion of mind wandering 
and itinerancy (wandering dynamics) in computational accounts 
of perceptual learning and inference. Furthermore, we extended 
this account to include the modulation of prediction error sig-
nals by their precision and suggested that measured fluctuations 
in neuronal activity may reflect modulations in synaptic gain; 
of the sort seen in fast synchronized neuronal exchanges and 
attentional modulation.
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