
study also provides a window into how the

possibly innate distinction (26) between quan-

tifying small versus large sets of objects is

relatively unelaborated in a life without num-

ber words to capture those exact magnitudes

(32).
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Exact and Approximate Arithmetic
in an Amazonian Indigene Group

Pierre Pica,1 Cathy Lemer,2 Véronique Izard,2 Stanislas Dehaene2*

Is calculation possible without language? Or is the human ability for
arithmetic dependent on the language faculty? To clarify the relation
between language and arithmetic, we studied numerical cognition in speakers
of Mundurukú, an Amazonian language with a very small lexicon of number
words. Although the Mundurukú lack words for numbers beyond 5, they are
able to compare and add large approximate numbers that are far beyond their
naming range. However, they fail in exact arithmetic with numbers larger
than 4 or 5. Our results imply a distinction between a nonverbal system of
number approximation and a language-based counting system for exact
number and arithmetic.

All science requires mathematics. The

knowledge of mathematical things is

almost innate in usI . This is the

easiest of sciences, a fact which is

obvious in that no one_s brain rejects

it; for laymen and people who are

utterly illiterate know how to count

and reckon.

Roger Bacon (1214–1294),

English philosopher and scientist

Where does arithmetic come from? For some

theorists, the origins of human competence in

arithmetic lie in the recursive character of the

language faculty (1). Chomsky, for instance,

stated that Bwe might think of the human

number faculty as essentially an Fabstraction_
from human language, preserving the mech-

anisms of discrete infinity and eliminating

the other special features of language[ (2).

Other theorists believe that language is not

essential—that humans, like many animals,

have a nonverbal Bnumber sense[ (3), an

evolutionarily ancient capacity to process

approximate numbers without symbols or

language (4–6) that provides the conceptual

foundation of arithmetic. A third class of

theories, while acknowledging the existence

of nonverbal representations of numbers,

postulates that arithmetic competence is

deeply transformed once children acquire a

system of number symbols (7–9). Language

would play an essential role in linking up the

various nonverbal representations to create a

concept of large exact number (10–12).

To elucidate the relations between language

and arithmetic, it is necessary to study numer-

ical competence in situations in which the

language of numbers is either absent or

reduced. In many animal species, as well as

in young infants before they acquire number

words, behavioral and neurophysiological

experiments have revealed the rudiments of

arithmetic (6, 13–16). Infants and animals

appear to represent only the first three

numbers exactly. Beyond this range, they

can approximate Bnumerosity,[ with a fuzzi-

ness that increases linearly with the size of the

numbers involved (Weber_s law). This finding

and the results of other neuroimaging and

neuropsychological experiments have yielded

a tentative reconciliation of the above theo-

ries: Exact arithmetic would require language,

whereas approximation would not (12, 17–21).

This conclusion, however, has been chal-

lenged by a few case studies of adult brain-

lesioned or autistic patients in whom language

dysfunction did not abolish exact arithmetic;

such a finding suggests that in some rare cases,

even complex calculation may be performed

without words (22).

In the final analysis, the debate cannot be

settled by studying people who are raised in

a culture teeming with spoken and written

symbols for numbers. What is needed is a

language deprivation experiment, in which

neurologically normal adults would be raised

1Unité Mixte de Recherche 7023 ‘‘Formal Structures
of Language,’’ CNRS and Paris VIII University, Paris,
France. 2Unité INSERM 562 ‘‘Cognitive Neuroimag-
ing,’’ Service Hospitalier Frédéric Joliot, CEA/DSV,
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without number words or symbols. Although

such an experiment is ethically impossible in

our Western culture, some languages are

intrinsically limited in their ability to express

number, sometimes using a very narrow set

of number words (Bone, two, many[) (23).

These often endangered languages present a

rare opportunity to establish the extent and

limits of nonverbal arithmetic abilities.

Here, we studied numerical cognition in

native speakers of MundurukU, a language that

has number words only for the numbers 1

through 5 (24, 25). MundurukU is a language

of the Tupi family, spoken by about 7000

people living in an autonomous territory in the

Par" state of Brazil (Fig. 1). Following regular

research stays since 1998, and two pilot

studies in 2001 and 2002, one of us (P.P.)

traveled through several villages during 2003

and was able to collect data from 55 speakers

of MundurukU in a computerized battery of

numerical tests. Ten native speakers of French

(mean age 50) served as controls.

The MundurukU have some contact with

nonindigenous culture and individuals, mainly

through government institutions and mission-

aries. Thus, several of them speak some

Portuguese, and a few, especially the children,

receive some instruction in basic school topics

(26). To evaluate the potential impact of

these variables, we formed two groups of

strictly monolingual adults and children

without instruction, and we compared their

performance with that of more bilingual and

educated participants (Fig. 1). Using a solar-

powered laptop computer, we collected a

large amount of trials in classical arithmetical

tasks, including a chronometric comparison

test. This allowed us to test whether compe-

tence for numbers is present in the absence of

a well-developed language for number.

A first task explored the verbal expres-

sions for numbers in MundurukU (26).

Participants were presented with displays of

1 to 15 dots in randomized order, and were

asked in their native language to say how

many dots were present. This task permitted

an objective analysis of the conditions of use

of number words. No systematic variation

across groups was identified, except for lack

of use of the word for B5[ in the younger

children, and the results were therefore

pooled across all groups (Fig. 2). The results

confirm that MundurukU has frozen expres-

sions only for numbers 1 to 5. These

expressions are long, often having as many

syllables as the corresponding quantity. The

words for 3 and 4 are polymorphemic:

ebap±g 0 2 þ 1, ebadipdip 0 2 þ 1 þ 1,

where Beba[ means Byour (two) arms.[ This

possibly reflects an earlier base-2 system

common in Tupi languages, but the system is

not productive in MundurukU (expressions

such as Beba eba dip[ or Beba eba ebap±g[
are not used and are judged meaningless).

Above 5, there was little consistency in

language use, with no word or expression

representing more than 30% of productions to

a given target number. Participants relied on

approximate quantifiers such as Bsome[
(ades±), Bmany[ (ade), or Ba small quantity[
(b±r±maku). They also used a broad variety of

expressions varying in attempted precision,

such as Bmore than one hand,[ Btwo hands,[
Bsome toes,[ all the way up to long phrases

such as Ball the fingers of the hands and then

some more[ (in response to 13 dots).

The MundurukU did not use their numer-

als in a counting sequence, nor to refer to

precise quantities. They usually uttered a

numeral without counting, although (if asked

to do so) some of them could count very

slowly and nonverbally by matching their

fingers and toes to the set of dots. Our

measures confirm that they selected their

verbal response on the basis of an apprehen-

sion of approximate number rather than on

an exact count. With the exception of the

words for 1 and 2, all numerals were used in

relation to a range of approximate quantities

rather than to a precise number (Fig. 2). For

instance, the word for 5, which can be

translated as Bone hand[ or Ba handful,[
was used for 5 but also 6, 7, 8, or 9 dots.

Conversely, when five dots were presented,

the word for 5 was uttered on only 28% of

trials, whereas the words for 4 and Bfew[
were each used on about 15% of trials. This

response pattern is comparable to the use of

Fig. 1. Location of indigene territories
of Brazil (top) and of the main
Mundurukú territory where our re-
search was conducted (bottom). Col-
ored dots indicate the villages where
participants were tested. The legend
at bottom gives the sizes of the six
groups of participants and their aver-
age age. [Maps adapted with permis-
sion from R. Beto, Ed., Povos indı́genas
no Brasil (Instituto Socioambiental,
São Paulo, Brazil, 2000), pp. 161, 461].
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round numbers in Western languages, for

instance when we say B10 people[ when

there are actually 8 or 12. We also noted the

occasional use of two-word constructions

(e.g., Btwo-three seeds[), analogous to refer-

ences to approximate quantities in Western

languages (27). Thus, the MundurukU are

different from us only in failing to count and

in allowing approximate use of number

words in the range 3 to 5, where Western

numerals usually refer to precise quantities.

If the MundurukU have a sense of approx-

imate number, they should succeed in approx-

imation tasks with quantities beyond the range

for which they have number words. If,

however, concepts of numbers emerge only

when number words are available, then the

MundurukU would be expected to experience

severe difficulties with large numbers. We

tested this alternative with the use of two

estimation tasks. First, we probed number

comparison. Participants were presented with

two sets of 20 to 80 dots, controlled for various

non-numerical variables (26), and were asked

to point to the more numerous set (Fig. 3A).

MundurukU participants responded far above

chance level in all groups (the minimum was

70.5% correct in the youngest group; all P G
0.0001). There was no significant difference

among the six MundurukU groups (F
5,46

0
1.50, P 9 0.20), which suggests that the small

level of bilingualism and instruction achieved

by some of the participants did not modify

performance. However, average MundurukU
performance was slightly worse than the

French controls, thus creating a difference

between groups (F
6,55

0 2.58, P G 0.028),

perhaps due to distraction in some MundurukU
participants (this was the first test that they

took).

In literate cultures, number comparison

performance is subject to a distance effect:

Performance improves as the ratio between the

numbers to be compared increases, whether the

targets are presented as sets of objects or

symbolically as Arabic digits (28, 29). This

classical distance effect was also observed in

MundurukU participants: Performance de-

creased as the ratio varied from 2 to 1.5,

1.3, or 1.2 (F
3,138

0 43.2, P G 0.0001). This

effect was identical in all groups, including

the French controls (group � distance

interaction, F G 1; see Fig. 3A). Response

times were also faster for more distant

numbers, in both MundurukU (F
3,90

0 12.9,

P G 0.0001) and French participants (F
3,26

0
4.93, P G 0.008). Again, although the French

controls were globally faster, thus creating a

main effect of group (F
6,37

0 4.59, P G
0.002), the distance effect was parallel in all

groups (interaction F G 1). Fitting the per-

formance curve suggested that the Weber

fraction, which quantifies the amount of

imprecision in number representation (16),

was 0.17 in MundurukU, only marginally

larger than the value of 0.12 observed in the

controls. Thus, the MundurukU clearly can

represent large numbers and understand the

concept of relative magnitude (30).

We then investigated whether the

MundurukU can perform approximate opera-

tions with large numbers. We used a nonsym-

bolic version of the approximate addition task,

which is thought to be independent of language

in Western participants (12, 17, 18). Partic-

ipants were presented with simple animations

illustrating a physical addition of two large

sets of dots into a can (Fig. 3B). They had to

approximate the result and compare it to a

third set. All groups of participants, including

monolingual adults and children, performed

considerably above chance (minimum 80.7%

correct, P G 0.0001). Performance was again

solely affected by distance (F
3,152

0 78.2, P G
0.0001); there was no difference between

groups, nor a group � distance interaction

(31). If anything, performance was higher in

this addition þ comparison task than in the

previous comparison task, perhaps because

the operation was represented more concrete-

ly by object movement and occlusion. In

brief, MundurukU participants had no diffi-

culty in adding and comparing approximate

numbers, with a precision identical to that of

the French controls.

Finally, we investigated whether the

MundurukU can manipulate exact numbers.

The number sense view predicts that in the

absence of spoken or written symbols, number

can only be represented approximately, with an

internal uncertainty that increases with number

(Weber_s law). Beyond the range of 3 or 4, this

system cannot reliably distinguish an exact

number n from its successor n þ 1. Thus, the

MundurukU should fail with tasks that require

manipulation of exact numbers such as

Bexactly six.[ To assess this predicted limita-

tion of MundurukU arithmetic, we used an

exact subtraction task. Participants were asked

to predict the outcome of a subtraction of a set

of dots from an initial set comprising one to

eight items (Fig. 3, C and D). The result was

always small enough to be named, but the

operands could be larger (e.g., 6–4). In the

main experiment, for which we report statis-

tics below, participants responded by pointing

to the correct result among three alternatives

(0, 1, or 2 objects left). The results were also

replicated in a second version in which

participants named the subtraction result

aloud (Fig. 3D).

In both tasks, we observed a fast decrease

of performance with the size of the initial

number (F
7,336

0 44.9, P G 0.0001). This

decrease was significant in all MundurukU
groups, although a significant group effect

(F
5,48

0 3.81, P 0 0.005) and a marginal

group � size interaction (F
35,336

0 1.40, P 0
0.07) indicated that performance was slightly

better in the more bilingual and educated

group, especially when fewer than five dots

were present (see Fig. 3D). However, all

MundurukU groups performed much worse
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Fig. 2. Number naming in Mundurukú. Participants were shown sets of 1 to 15 dots in random
order and were asked to name the quantity. For each quantity on the x axis, the graph shows the
fraction of times that it was named with a given word or locution. We only present the data for
words or locutions produced on more than 2.5% of all trials. For numbers above 5, frequencies do
not add up to 100%, because many participants produced rare or idiosyncratic locutions or
phrases such as ‘‘all of my toes’’ (a complete list is available from the authors).
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than the French controls, in whom perfor-

mance was only slightly affected by number

size (F
7,63

0 2.36, P G 0.033). Thus, we

observed a highly significant effect of

language group (French versus MundurukU,

F
1,62

0 25.7, P G 0.0001) and a language �
size interaction (F

7,434
0 6.80, P G 0.0001).

The MundurukU_s failure in exact subtrac-

tion was not due to misunderstanding of the

instructions, because they performed better

than chance (indeed, close to 100% correct)

when the initial number was below 4. Success

within this range might reflect exact verbal

coding, or it might reflect a nonverbal parallel

individuation of small sets, as also found in

preverbal infants (13) and nonhuman primates

(14). Performance also remained above

chance for higher values of the initial number

(e.g., 49.6% correct for 8 – n problems,

chance 0 33.3%, P G 0.0001). The entire

performance curve over the range 1 to 8 could

be fitted by a simple psychophysical equation

that supposes an approximate Gaussian

encoding of the initial and subtracted quanti-

ties, followed by subtraction of those internal

magnitudes and classification of the fuzzy

outcome into the required response categories

(0, 1, or 2). Thus, the MundurukU still

deployed approximate representations, sub-

ject to Weber_s law, in a task that the French

controls easily resolved by exact calculation.

Together, our results shed some light on the

issue of the relation between language and

arithmetic. They suggest that a basic distinc-

tion must be introduced between approximate

and exact mental representations of number, as

also suggested by earlier behavioral and brain-

imaging evidence (12, 18) and by recent

research in another Amazon group, the Pirah,
(23). With approximate quantities, the

MundurukU do not behave qualitatively dif-

ferently from the French controls. They can

mentally represent very large numbers of up

to 80 dots, far beyond their naming range, and

do not confuse number with other variables

such as size and density. They also spontane-

ously apply concepts of addition, subtraction,

Fig. 3. Performance in four tasks of elementary
arithmetic. In each case, the left column
illustrates a sample trial (see movie S1). The
graphs at right show the fraction of correct
trials, in each group separately (M, monolin-
guals; B, bilinguals; NI, no instruction; I,
instruction) as well as averaged across all the
Mundurukú and French participants (right
graphs). The lowest level on the scale always
corresponds to chance performance. For num-
ber comparison (A and B), the relevant variable
that determines performance is the distance
between the numbers, as measured by the
ratio of the larger to the smaller number (e.g.,
n1/n2 if n1 9 n2, n2/n1 otherwise). For exact
subtraction (C and D), the relevant variable is
the size of the initial number n1. The fits are
based on mathematical equations described in
(26).
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and comparison to these approximate repre-

sentations. This is true even for monolingual

adults and young children who never learned

any formal arithmetic. These data add to

previous evidence that numerical approxima-

tion is a basic competence, independent of

language, and available even to preverbal

infants and many animal species (6, 13–16).

We conclude that sophisticated numerical

competence can be present in the absence of

a well-developed lexicon of number words.

This provides an important qualification of

Gordon_s (23) version of Whorf_s hypothesis

according to which the lexicon of number

words drastically limits the ability to entertain

abstract number concepts.

What the MundurukU appear to lack,

however, is a procedure for fast apprehension

of exact numbers beyond 3 or 4. Our results

thus support the hypothesis that language plays

a special role in the emergence of exact

arithmetic during child development (9–11).

What is the mechanism for this developmental

change? It is noteworthy that the MundurukU
have number names up to 5, and yet use them

approximately in naming. Thus, the availabil-

ity of number names, in itself, may not suffice

to promote a mental representation of exact

number. More crucial, perhaps, is that the

MundurukU do not have a counting routine.

Although some have a rudimentary ability to

count on their fingers, it is rarely used. By

requiring an exact one-to-one pairing of

objects with the sequence of numerals,

counting may promote a conceptual integra-

tion of approximate number representations,

discrete object representations, and the verbal

code (10, 11). Around the age of 3, Western

children exhibit an abrupt change in number

processing as they suddenly realize that each

count word refers to a precise quantity (9).

This Bcrystallization[ of discrete numbers out

of an initially approximate continuum of

numerical magnitudes does not seem to

occur in the MundurukU.
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Separate Neural Systems
Value Immediate and Delayed

Monetary Rewards
Samuel M. McClure,1* David I. Laibson,2 George Loewenstein,3

Jonathan D. Cohen1,4

When humans are offered the choice between rewards available at different
points in time, the relative values of the options are discounted according to
their expected delays until delivery. Using functional magnetic resonance
imaging, we examined the neural correlates of time discounting while subjects
made a series of choices between monetary reward options that varied by
delay to delivery. We demonstrate that two separate systems are involved in
such decisions. Parts of the limbic system associated with the midbrain do-
pamine system, including paralimbic cortex, are preferentially activated by
decisions involving immediately available rewards. In contrast, regions of the
lateral prefrontal cortex and posterior parietal cortex are engaged uniformly
by intertemporal choices irrespective of delay. Furthermore, the relative en-
gagement of the two systems is directly associated with subjects’ choices,
with greater relative fronto-parietal activity when subjects choose longer term
options.

In Aesop_s classic fable, the ant and the

grasshopper are used to illustrate two famil-

iar, but disparate, approaches to human inter-

temporal decision making. The grasshopper

luxuriates during a warm summer day, in-

attentive to the future. The ant, in contrast,
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