
Finger Tracking Reveals the Covert Stages of
Mental Arithmetic

Pedro Pinheiro-Chagas1,2,3, Dror Dotan1,4, Manuela Piazza5, and Stanislas Dehaene1,3

1 Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay,
NeuroSpin center, France

2École Doctorale Cerveau-Cognition-Comportement, Université Pierre et Marie Curie, France

3Collège de France

4Language and Brain Lab, School of Education and the Sagol School of Neuroscience, Tel Aviv University

5Center for Mind/Brain Sciences University of Trento

Keywords: arithmetic, finger tracking, serial processing, problem-size effect, operational
momentum effect

ABSTRACT

We introduce a novel method capable of dissecting the succession of processing stages
underlying mental arithmetic, thus revealing how two numbers are transformed into a third.
We asked adults to point to the result of single-digit additions and subtractions on a number
line, while their finger trajectory was constantly monitored. We found that the two operands
are processed serially: the finger first points toward the larger operand, then slowly veers
toward the correct result. This slow deviation unfolds proportionally to the size of the smaller
operand, in both additions and subtractions. We also observed a transient operator effect: a
plus sign attracted the finger to the right and a minus sign to the left and a transient activation
of the absolute value of the subtrahend. These findings support a model whereby addition
and subtraction are computed by a stepwise displacement on the mental number line,
starting with the larger number and incrementally adding or subtracting the smaller number.

INTRODUCTION

Despite decades of research in cognitive arithmetic, how the brain performs elementary arith-
metic calculations remains largely unknown. The widely replicable problem-size effect is
the finding that response times (RTs) and error rates increase as a function of the size of
the operands to be added or subtracted. By investigating the properties of the problem-size
effect across operations and during development, researchers have proposed different cogni-
tive models of arithmetic (Zbrodoff & Logan, 2005).

In their seminal study, Groen and Parkman (1972) found that the best predictor of single-
digit addition RTs in first graders was the size of the smaller operand (min). They proposed that
children use a counting strategy to solve additions by starting from the larger operand and then
incrementing it with the min, with a slope of about 410 ms per unit. A much smaller slope,
however, was found in adults (20 ms/unit). This seemed too fast for a counting strategy, and
the authors proposed that adults directly retrieve the results from long-term memory.

Fact retrieval is thought to be a dominant strategy in adults, but some data show that
it is also supplemented by other strategies (Lefevre & Kulak, 1994; Siegler, 1987; Zbrodoff &
Logan, 2005). For instance, Butterworth, Zorzi, Girelli, and Jonckheere (2001) proposed that,
given the commutativity of addition, only half of the table may be stored in long-term memory
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(problems in which the first operand is larger than the second, which could be progressively
committed to memory as a result using the min counting strategy at a younger age). To solve
problems presented in the opposite order (e.g., 2+ 7), participants would reorder the operands
prior to retrieval. Adults’ RTs for additions were indeed found to be higher when the first
operand was smaller, presumably due to this additional reordering stage.

Some models propose that arithmetic problems are solved by quantity manipulation,
possibly relying on a “mental number line” (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin,
1999). Considerable research indicates that children and adults possess such a space-like
left-to-right numerical representation, and that arithmetic may involve internal movements on
this representation (Barrouillet & Thevenot, 2013; Dehaene & Changeux, 1993; Fayol &
Thevenot, 2012; Knops, Thirion, Hubbard, Michel, & Dehaene, 2009; Knops, Viarouge, &
Dehaene, 2009; Mathieu, Gourjon, Couderc, Thevenot, & Prado, 2016; McCrink, Dehaene,
& Dehaene-Lambertz, 2007; Restle, 1970; Uittenhove, Thevenot, & Barrouillet, 2016).
Accordingly, mental arithmetic causes spatial biases similar to the SNARC (spatial-numerical
association of response codes) effect with single numbers (Dehaene, Bossini, & Giraux, 1993):
addition draws attention and eye movements toward the right side of space, and subtraction
toward the left (Knops, Viarouge, et al., 2009; Mathieu et al., 2016; Pinhas, Shaki, & Fischer,
2014). There is also a tendency to overestimate the results of addition and to underestimate
the results of subtraction, which can be interpreted as an excessive motion on the number line
and has therefore been termed the “operational momentum” (OM) effect (Knops, Viarouge,
et al., 2009; McCrink et al., 2007). However, it is still unknown whether those effects betray
a genuine use of the number line during calculation, or are merely an automatic attraction to
the result after it has been calculated.

Progress in understanding mental arithmetic is impeded by the fact that RTs and error
rates provide only a single summary measure of the entire calculation process, blind to the
succession of intermediate stages. Here, we introduce an online measurement method that
addresses this temporal dissection problem: continuous finger tracking (Dotan & Dehaene,
2013, 2016; Song & Nakayama, 2009; see also Freeman & Ambady, 2010, for a similar
approach with mouse tracking). Participants solved single-digit additions and subtractions on
a tablet computer, and responded by pointing to the position of the result on a horizontal
number line ranging from 0 to 10, while their finger trajectory was continuously monitored.
By identifying which cognitive factors affect finger location at each time point, we aimed to
answer several questions: Are the two operands processed serially or in parallel? Is there
a stage whose duration increases linearly with the size of the numerical quantities, as
implied by models of counting (min) or motion on the number line? Can we visualize a re-
ordering of the two operands when solving additions, as predicted by the comparison model?
And can we determine the moment when the visuo-spatial biases underlying addition and
subtraction occur?

METHOD

Thirty right-handed French adults aged between 20 and 45 (M = 24, SD = 5) participated
in the study. The participants saw a series of single-digit addition and subtraction problems
on a tablet computer and were instructed to point at the position of the result on a horizontal
number line marked with 0 and 10 at its extremities (see Figure 1). On each trial, participants
first touched an initiation rectangle, which made a fixation cross appear above the middle of
the number line. When participants started moving their finger toward the number line, an
arithmetic operation appeared at fixation for 250 ms. Participants then continued moving their
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Figure 1. Task and screen layout.

finger to what they judged to be the position of the result. When the finger reached the number
line, a feedback arrow indicated the location where the finger landed.

Using an Apple iPad 2 in landscape orientation, finger position was sampled at 60 Hz
(1 ms accuracy), resampled at exactly 100 Hz using cubic spline interpolation, and smoothed
(Gaussian, σ = 20 ms). For each time point, we calculated the instantaneous direction as
the vector difference between the finger coordinates at times t� 10 ms and t, and the implied
endpoint (iEP) as the position on the number line that the finger would reach if it kept moving
straight in this direction.

The experiment included two blocks, presented in random order, both mixing single-digit
additions and subtractions (individual digits were also presented, but are not reported here).
The blocks were designed to control for possible confounds in the analyses of the OM effect.
Block 1 included all single-digit addition and subtraction problems with matched operands
between 1 and 9 (e.g., 4 + 3 and 4 � 3), resulting in 25 additions with larger-first operands
(denoted L + S, where L is the larger and S the smaller number) and 25 subtractions (L � S).
Each problem was repeated six times, for a total of 300 trials. In this block, addition results are
generally larger than subtraction results, and, thus, the presence of an OM effect could be due
to this bias. As a control, we therefore used matched results in block 2. We started from the
54 additions and 45 subtractions with operands ranging from 0 to 9 and results ranging from 1
to 9 (thus including L+ S, S+ L, and L � S problems). If each problem appeared exactly once,
the distribution of addition and subtraction results would again be asymmetrical. Therefore,
we overrepeated some problems to obtain exactly 20 addition and 20 subtraction trials for
each of the results 1–9 (total of 360 trials). By construction, block 2 contained all the problems
presented in block 1. Therefore, the OM effect could be investigated in a most unbiased
manner by restricting the analysis to addition and subtraction problems from block 1 (with
identical operands) that were presented in block 2 (with equalized distributions of response
locations). The two blocks also allowed us to test the stability of our findings.

Trajectory analysis followed the method introduced in Dotan and Dehaene (2013). First,
for each participant, one regression was run per time point in 30-ms intervals. The dependent
variable was the iEP. Predictors were the two operands, the operator (� or +, coded as � 1
and 1), the spatial-reference-points-based bias function (SRP; see Supplementary Materials),
and the result of the previous trial. The latter two predictors were added in all regressions
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in order to capture maximal variance, as they were significant in previous studies (Dotan &
Dehaene 2013). As their effect was virtually identical in all conditions, they are only reported
in Supplemental Materials (Pinheiro-Chagas, Dotan, Piazza, & Dehaene, 2017).

At a second stage, we compared the b values of the different predictors (paired t test or
repeated-measures ANOVA). To examine whether a given predictor has a significant group-
level effect in each time point, we compared the participant’s b values to zero using one-sample
t test. Each b value (also called regression weight) provides a quantitative measure of the extent
to which each element of the operation influences the finger trajectory at each time point. The
reported p values are one-tailed, since we assumed that all effects of all predictors included
would be positive.

RESULTS

Movement Time

We first analyzed the overall movement time (MT) from stimulus presentation to number-line
touch (equivalent to RT in oral calculation tasks). In both blocks, MT was longer for subtractions
compared to additions L + S (block 1: additions L + S: M = 966 ms, SD = 118 ms; subtrac-
tions: M = 1040 ms, SD = 138 ms; t(29) = � 14.72; p < .001; d = � .58. Block 2: additions:
mean = 982 ms, SD = 127 ms; subtractions: M = 1072 ms, SD = 156 ms; t(29) = � 12.55;
p < .001; d = � .64). In agreement with the COMP model of Butterworth et al. (2001), ad-
ditions L + S were solved 14 ms faster than additions S + L (block 2: additions L + S: M =

976 ms, SD = 128 ms; additions S + L: mean = 990 ms, SD = 125 ms; t(29) = � 5.23;
p < .001; d = � .11). To investigate the problem-size effect, we performed a stepwise mul-
tiple regression with MT as the dependent variable and the Min operand, Max operand, and
Result as predictors, separately for additions and subtractions in each experimental block. The
best predictor of MT was always the Min operand (insets in Figure 2). For additions, the Min
operand had a b value of 26 ms per unit (p < .001) in block 1 and of 21 ms per unit (p < .001)
in block 2. The Max operand had a small but significant negative effect in block 1 (b = 8 ms;
p < .001), but a null effect in block 2 (p = .895). Finally, the Result had a null effect in both
blocks (p > .8). For subtractions, the Min operand had a b value of 62 ms per unit (p < .001)
in block 1 and of 44 ms per unit (p < .001) in block 2. The Max operand had a null effect
(p > 1) in both blocks. Finally, the Result had a small but significant effect in both blocks
(b = � 4.53 ms; p = .002 in block 1 and b = � 7.07 ms; p < .001 in block 2). Overall, the
dominant effect of the Min operand is therefore consistent across both blocks and operations.

Figure 2. Reconstructed trajectories per result and per operation, averaged across subjects.
Insets show how movement time increases as a function of the Min operand.
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Accuracy

Next we analyzed response accuracy, that is, the location where participants landed their
finger (endpoint) in relation to the ideal location. The endpoint error is the absolute differ-
ence between the endpoint and the correct result (in numerical units). The endpoint bias is
the difference between the endpoint and the correct result, with positive values indicating
rightward bias. Subtractions produced larger endpoint errors, but this difference only reached
statistical significance in block 1 (block 1: additions L+S: M = .43, SD = .13; subtractions:
M = .47, SD = .180; t(29) = � 2.47; p = .019; d = � .26; block 2: additions L+S: M = .47,
SD = .150; subtractions: M = .48, SD = .180; t(29) = � 0.20; p = .841, d = � .06). Addi-
tions L+S produced a slight greater leftward endpoint bias compared to subtractions, but this
difference was only significant in block 2 (block 1: additions L + S: M = � .12, SD = .16;
subtractions: M = � .06, SD = .170; t(29) = � 1.24; p = .226; d = � .37; block 2: additions
L+S: M = � .22, SD = .14; subtractions: M = .02, SD = .160; t(29) = � 6.92; p < .001,
d = � 1.63). Note that this effect is the opposite of the OM effect. A comprehensive analysis
of the full time course of the OM effect is presented further below (see Figure 5), but here
we simply note that in block 2 subtractions had overall larger first operands as compared to
additions (in order to yield matched results), which may have dragged responses further to
the right for subtractions. No significant differences in endpoint error or endpoint bias were
found between additions L + S and additions S + L (block 2, endpoint error: additions L + S:
M = .45, SD = .15; additions S+L: M = .47, SD = .160; t(29) = � 1.95, p < .061; d = � .13;
endpoint bias: additions L+S: M = � .19, SD = .13; additions S+L: M = � .20, SD = .16;
t(29) = 0.59; p = .553; d = .07). Finally, with respect to the problem-size effect, the Min
operand, which was the best predictor of movement times, was also a significant predictor of
endpoint error in both additions and subtractions in both blocks (block 1: additions: b = .41,
p < .001, subtractions: b = .43, p < .001; block 2: additions: b = .44, p < .001, subtractions:
b = .42, p < .001).

Trajectory Dynamics

Next, we analyzed the full trajectories (Figure 3). The first question we considered was whether
the operands are processed in parallel or serially. In additions with larger operand first (L+ S),
regressions indicated that the finger first moved according to the first operand, and only then a
significant effect of the second operand emerged. The first operand has a significantly higher
effect compared to the second starting at 420 ms (p = .017) in block 1 and at 450 ms in
block 2 (p < .001) and this difference remained significant until the end of the trajectory.

Remarkably, for additions with smaller operand first (S + L), the order was reversed: the
second operand (larger number) had a higher weight compared to the first operand (smaller
number) from 390 ms on (p < .047), compatible with the assumption that the two operands
are reordered prior to effecting the finger movement. This pattern remained stable until
the end of the trajectory. In fact, the second operand (larger) deviated from zero at 390 ms
(b[signed_op2] > .057, R2 > 0.036, t(29) > 2.998, p < .034), 120 ms before the effect of the
first operand at 510 ms (b[op1] > .064, R2 > .020, t(29) > 1.943, p < .030).

In subtractions, a serial effect was again observed. The first operand had a higher
effect than the second during almost the entire trajectory (from 390 ms on in block 1 and
from 360 ms on in block 2). Both operations therefore indicate that the operands are pro-
cessed serially: participants start processing the larger operand followed by the smaller, regard-
less of the order in which they appeared. Additional analyses (see Supplemental Materials,
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Figure 3. Time course of the regression effects in block 1 (a, b) and in block 2 (c, d, e) per
condition. The b values were averaged over participants and plotted as a function of time. The
b values were compared to zero (t test), black dots denote p < .05. Error bars represent 95%
confidence intervals.

Pinheiro-Chagas et al., 2017) revealed that the finger first moved according to the larger
operand L at the same time in all arithmetic operations, and then a correction was introduced
for the smaller operand S at different delays (L + S < S + L < L � S).

To directly visualize this serial processing pattern, we returned to the individual trajecto-
ries for specific problems. Figure 4a shows the example of subtraction problems “9 - S” (where
S ranges from 0 to 8), in which we could investigate the full spectrum of results 1–9. The plot
shows that the finger first deviates toward the right (i.e., in the direction of the larger operand
9) and then to the correct result. Additionally, the latter correction seems to be progressive, as
if the finger goes through intermediate stages. This is most clearly seen for the problem 9 - 8:
the trajectory first coincides with that for 9 - 0, then 9 - 1, 9 - 2, and so on.
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subjects would first identify the larger number (6), then list all 6 + x problems, and finally
search serially among them (6 + 1 = 7, 6 + 2 = 8, 6 + 3 = 9). Such a model is functionally
equivalent to the above proposal, the only difference being that the movement occurs on a
memorized table rather than a number line.

Overall, our findings highlight how a precisely timed series of operations underlies sim-
ple arithmetic. They also demonstrate that even complex mental operations can be contin-
uously reflected in finger-pointing movements, as previously demonstrated in simpler cases
(Song & Nakayama, 2009). Within the existing methods for investigating covert serial pro-
cesses (King & Dehaene, 2014; Resulaj, Kiani, Wolpert, & Shadlen, 2009; Sternberg, 1969;
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995), finger tracking may play a special
role as a simple and powerful behavioral method.
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