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Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze
functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract sets of mutually
correlated brain regions without prior information on the time course of these regions. Some of these sets of
regions, interpreted as functional networks, have recently been used to provide markers of brain diseases
and open the road to paradigm-free population comparisons. Such group studies raise the question of
modeling subject variability within ICA: how can the patterns representative of a group be modeled and
estimated via ICA for reliable inter-group comparisons?
In this paper, we propose a hierarchical model for patterns in multi-subject fMRI datasets, akin to mixed-
effect group models used in linear-model-based analysis. We introduce an estimation procedure, CanICA
(Canonical ICA), based on i) probabilistic dimension reduction of the individual data, ii) canonical correlation
analysis to identify a data subspace common to the group iii) ICA-based pattern extraction. In addition, we
introduce a procedure based on cross-validation to quantify the stability of ICA patterns at the level of the
group. We compare our method with state-of-the-art multi-subject fMRI ICA methods and show that the
features extracted using our procedure are more reproducible at the group level on two datasets of 12
healthy controls: a resting-state and a functional localizer study.
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Introduction

Much of our understanding of brain function gained through
functional Magnetic Resonance Imaging (fMRI) has been derived by
correlating experimental signals of task-driven activation with
external stimuli or events. Yet, the covariance structure of the fMRI
signal holds as much information as the paradigm. Indeed at the scale
of functional neuroimaging, positive correlations between distant
regions induced by the coordination of distributed neuronal activity in
a particular experimental context may provide a fundamental insight
into brain function. Pioneered by Biswal et al. (1995), studies of
paradigm-free functional connectivity investigate correlations in the
BOLD (Blood Oxygen Level Dependent) time series. Such correlation
studies have been decisive in identifying large functional networks of
distant regions (Cordes et al., 2000; Greicius et al., 2003). It has been
established that the functional connectivity signals observed in fMRI
contains neuronal information beyond physiological or scanner noise
(Laufs et al., 2003; Shmuel and Leopold, 2009), so that part of these
signals can be considered a trace of underlying neuronal activity. In
addition, recent work suggests that correlations in the functional
signal are shaped by the anatomical connectivity structure (Greicius
et al., 2009; Honey et al., 2007; Skudlarski et al., 2008; van den Heuvel
et al., 2009).

Analysis of the correlation structure of the BOLD signal reveals
large-scale patterns of correlated activity (Biswal et al., 1995; Lowe
et al., 1998) and is expected to help understand the subdivision of the
brain into cognitive systems that have coherent activity across time.
These systems may be labeled as networks assuming that they result
from underlying brain connections (Bullmore and Sporns, 2009;
Honey et al., 2007) and serve distinct functions (Fox and Raichle,
2007; Smith et al., 2009).

The study of brain function through functional-connectivity
mapping can be carried out without requiring the subject to perform
a specific task. The so-called resting-state protocols can be easily
applied, and are especially useful to include impaired subjects in a
multi-group analysis. The networks identified by such experiments
can give insights into the mechanisms of brain diseases and their
modifications in pathological situation can serve as biomarkers to aid
in clinical diagnosis (Garrity et al., 2007; Greicius, 2008; Greicius et al.,
2004; Mohammadi et al., 2009; Wang et al., 2006). Recently, Seeley
et al. (2009) have shown that large-scale brain networks of co-
activation are adequate neuro-physiological units to study the impact
of neuro-degenerative diseases.
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The study of the correlation structure of brain activity is plagued by
the size of the data: an fMRI dataset comprises more than 10 000 time
series associated with the various voxels, which yield millions of
possible pair-wise correlations. Functional-connectivity analysis has
been pioneered through seed-based studies (Biswal et al., 1995;
Cordes et al., 2000; Fox et al., 2005) that potentially uncover large-
scale networks of brain activity correlated with a user-specified seed
region. This approach, although very successful, is limited by the prior
choice of seed regions of interest. Various clustering techniques
(Cordes et al., 2002; Golland et al., 2007; Thirion et al., 2006) have
been used to automatically define the regions or signals of interest.
However, spatial ICA (Kiviniemi et al., 2003; McKeown et al., 1998) is,
to date, the most popular method for identifying meaningful patterns
in correlation studies without prior definition of any target region. The
patterns extracted by ICA are usually easy to interpret in a cognitive
neuroscience context, as they are most often well-contrasted, indicate
different underlying physiological, physical, and cognitive processes,
and can often be related to networks observed in different contexts,
such as in seed-based analysis, or cognitive networks known from the
literature (Smith et al., 2009).

ICA extracts salient patterns that are embedded in the data, and are
thus considered as important to describe it. It is a purely data-driven
method based on a loosely constrained data model; as a consequence,
statistical significance of the extracted patterns remains unclear. In
particular, there is no simple way to extrapolate from findings
obtained in one dataset to other datasets, even if these are sampled
from the same population. In the context of group analysis,
statistically well-controlled seed-based studies have shown that the
BOLD signal contains patterns of correlation that are highly repro-
ducible across subjects, including in resting-state experiments
(Shehzad et al., 2009). Similarly, some patterns extracted from
resting-state fMRI datasets by an exploratory ICA approach are
consistent at the group level (Damoiseaux et al., 2006) and have
been used as biomarkers for population comparison (Garrity et al.,
2007; Sorg et al., 2007).

However, ICA patterns can be relatively sensitive to mild data
variation. Various, often non-overlapping, ICA patterns of group-level
coherent activity have been reported, from resting-state data
(Beckmann et al., 2005; Damoiseaux et al., 2006; Kiviniemi et al.,
2003; Perlbarg et al., 2008), and in task-based experiments
(Beckmann and Smith, 2005; Calhoun et al., 2001). Probabilistic
models have been used to provide pattern-level noise-rejection
criteria (Beckmann and Smith, 2004) or goodness-of-fit measures of
the model (Guo and Pagnoni, 2008), but still they do not provide
pattern-level significance testing. The uncontrolled variability of the
individual patterns is detrimental to population studies: there is no
established framework for between-group comparison or inference
on ICA maps.

ICA being an exploratory analysis technique that estimates a
mixing model specific to the data, it is not meaningful to compare
directly patterns estimated on different individual subjects. On the
contrary, group-level patterns can be specialized to each subject
(Calhoun et al., 2001; Filippini et al., 2009). Different strategies have
been adopted for group-level extraction of ICA patterns. Patterns
estimated at the subject level can be merged to form group maps
(Esposito et al., 2005; Perlbarg et al., 2008) although this is a
challenging task because the correspondence of individual maps may
be hard to assess and the merging operation is difficult to model from
a statistical point of view. Individual-subject volumes can be
concatenated along the time axis to apply the ICA algorithm on the
group data (Calhoun et al., 2001). Finally, Beckmann and Smith
(2005) have developed a tensorial extension of ICA that estimates
patterns across subjects sharing the same time course throughout the
experiment.

In this paper, we present a novel group model for multivariate
patterns in fMRI volumes and an associated estimation procedure to
extract group-level ICA maps modeling subject variability. The
strength of this method called CanICA lies in the identification of a
subspace of reproducible components across subjects using general-
ized canonical correlation analysis (CCA). Combined with an explicit
noise model and resampling procedure, this enables automatic
selection of the number of components. In addition, we introduce a
cross-validation procedure andmetrics to compare the stability of a set
of multi-subject patterns across different sub-populations. We
compare our method to state-of-the-art fMRI group ICA methods
with different group models: concatenation and tensorial group ICA
approaches. We do not compare to merging procedures since they do
not rely on a linear model between individual subject-level datasets
and group-level Independent Components (ICs) and thus cannot be
formulated with a spatially resolved between-subject variability of
group-level ICs.We showwith cross-validation that features extracted
by our method are more stable on a group of 12 controls, both in a
resting-state experiment and in a traditional activation detection
experiment with a known paradigm.

Theory

Spatial ICA model for fMRI data

ICA assumes that the observed data is the linear mixture of
unknown base signals that are recovered based on measures of
statistical independence. The underlying model is that of blind
separation of independent sources:

B¼MA; ð1Þ

where the rows of thematrix B are the observed patterns, and those of
A form the patterns corresponding to the estimated independent
sources, and M is a mixing matrix estimated by ICA. To set the
notations, when considering spatial patterns or components, such as
A or B, in this article, we will use npatterns×nvoxels-shaped matrices;
npatterns is a number that corresponds to the model order, or possibly
the number of observations, depending on the context. Note however
that the independence of the patterns extracted by ICA algorithms is
not guaranteed in theory and rarely checked in practice, and that the
independence criterion used to identify the components often boils
down to sparse component extraction (Daubechies et al., 2009). There
is no theoretical basis to consider that a pattern is representative of
solely one independent process, for instance movement, although in
practice ICA is so far one of the of factor analytic transformations
(Langers, 2009) most suited to blind pattern extractions from fMRI
data. In addition, it is not clear that, from a neuroscientific point of
view, independence is the right concept to isolate brain networks, as
no functional system is fully segregated.

The patterns B present in the acquired fMRI volumes are
confounded by observation noise. As a result, the ICA mixing model
is most often applied on a subset of the acquired signal, after an initial
data-reduction step. In most ICA methods, this step is carried out
using a Principal Components Analysis (PCA), the order of which thus
determines the dimension of the signal subspace and thus the number
of sources extracted by ICA. In the context of fMRI data analysis, a
probabilistic PCA model can be used to introduce a noise model as the
basis for this subspace selection (Beckmann and Smith, 2004).

Existing group models for ICA on multi-subject fMRI data

ICA is a multivariate analysis technique: voxel-based time courses
are not characterized as such, but as part of signal fluctuations in the
entire brain. As a consequence, the voxel-level group models used in
standard mass-univariate analysis—random effects or mixed effects—
cannot be applied directly to ICA patterns. Two main strategies have
been used so far to extract group-level patterns for fMRI images.
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A first approach, introduced by Calhoun et al. (2001), concatenates
individual subject data and performs data reduction and ICA on the
resulting dataset. Data reduction is done by PCA. Subject maps are
obtained by applying the mixing model learned on the group to the
data specific to a subject. The group model underlying the estimation
procedure is that the images observed Y in the individual datasets are
generated by a mixture of the group-level ICA patterns A with
additional noise E:

P¼MA ð2Þ

Y¼WPþE ð3Þ

with Y=[Y1
T,…,YS

T]T the observed individual subjects images con-
catenated along the time axis, and E the noise. W gives a subject-
specific set of loadings and P are the principal components spanning
the inter-subject signal subspace. Thismodel consists in the addition of
a subject-dependent observation noise in Eq. (3) to the ICAmodel (Eq.
(2) or Eq. (1)). The GIFT toolbox (Calhoun et al., 2001) (http://icatb.
sourceforge.net/) and the MELODIC software used in ConcatICA mode
(Smith et al., 2004) implement variations on this model. They differ in
the way to represent the group-level patterns: GIFT uses a T-statistics-
based thresholding on a random-effects analysis of the individually
reconstructed maps {M−1Wi

−1Yi, i=1…S}. This amounts to building a
posteriori a hierarchical model with two levels of variance. ConcatICA,
on the other hand, directly thresholds the groups patterns (see
further). In either case, the model is estimated in two steps, using
principal component analysis (PCA) to solve Eq. (3), followed by a
noiseless ICA algorithm to identify the independent components in Eq.
(2). In the actual implementations of the estimation of the groupmodel
in Eq. (3), the generative model differs slightly from the model on an
implementation basis, as data reduction stepsmay be implemented via
successive PCAs to limit the numerical size of each step.

The tensorial extension to ICA developed by Beckmann and Smith
(2005) uses a model inspired from PARAFAC (Harshman, 1970): the
observed images Y are modeled as a trilinear combination of group-
level independent patterns A, common time courses, and subject-
specific loadings, with additional observation noise E:

Y¼ M j � jNð ÞAþE: ð4Þ

Matrices M and N give the mixing of independent patterns across
subjects and components. (.|⊗|.) is the Khatri-Rao product, which
imposes a triple-outer-product relationship between subject compo-
nents and group-level independent components: subject components
share the same set of independent spatial patterns and time courses for
each spatial map, but the contribution of each independent pattern
varies from subject to subject. The hypothesis guiding the tensor ICA
model is that, in amulti-subject experimentwithexternal correlates, the
time course corresponding to activation of cognitive networks is set by
the experiment, and thus shared between subjects. On the other hand,
tensor ICAmay implyonly a lowdegreeof prevalenceof the components
with respect to the dataset at hand, because it allows arbitrary subject-
level loadings on each of the independent components.

Guo and Pagnoni (2008) have described both approaches as special
cases of a general decompositionmodel inwhich subject-specific images
are a linear combination of group-level independent components:

Y¼MAþE ð5Þ

with Y=[Y1
T,…YS

T]T the group data matrix made of the time-wise
concatenation of observed individual subjects data. The Group-ICA
model and the Tensor-ICA model can be seen as putting restrictions
on the structure of the mixing matrix M. Guo and Pagnoni (2008)
propose a more general estimation algorithm of an unconstrained
mixing matrix with an expectation maximization (EM) algorithm, to
learn the group structure associated via the data. The limitation of this
EM approach is that it is based on modeling the histogram of the
independent components with a mixture of an arbitrary number of
Gaussian components.

Group comparison with ICA

While ICA is often used to compare functional connectivity
between groups, the mixing model of ICA does not provide a natural
statistical framework for comparing patterns estimated from different
datasets, unlike the GLM framework. Two recent contributions have
laid out statistical group-comparison procedures.

Guo and Pagnoni (2008) propose a goodness-of-fit measure for
their mixture-of-Gaussian-based ICA generative model using an
approximate likelihood ratio test to compare different mixing models
and discriminate if a group is better modeled as a homogeneous
population or as a set of different subgroups. However, this approach
essentially assesses the amount of data variance fit by the model
(which is measured by the likelihood ratio test) so that it may be
systematically affected by dimension selection issues, while it
assumes that the unmodeled variance is independent across voxels
to allow tractable computations.

Rombouts et al. (2009) use Tensor-ICA and a two sample t-test on
the loadings of the different group patterns between healthy controls
and patients with dementia to identify the patterns represented
unevenly in the two populations.

The above procedures provide important indications on data
structure, but they do not directly highlight the difference between
groups in the individual ICs. Some of these individual patterns
represent biologically meaningful components and are used in
cognitive studies and as biomarkers. There is thus a strong interest
in basing group comparisons on the patterns themselves, rather than
the completemixingmodel, such as performed in Garrity et al. (2007),
Greicius et al. (2004), and Mohammadi et al. (2009). The difficulty in
comparing these patterns stems from the fact that the estimation
performed by the ICA algorithm is not robust against mild data
variation: some global differences may exist between two decom-
positions of datasets that resemble each other; for instance, an IC
present in one dataset can show salient features that are separated
into two components in another dataset, so that we may consider the
IC as split into two in the other dataset.

Materials and methods

A multivariate extension of mixed-effects models

To achieve a better control on variability of the ICs due to individual
difference between subjects, we introduce a generative model of the
signal making the separation between subject-to-subject variability,
and observation noise specific to a subject or a session. At the group
level, we describe the BOLD signal by a set of patterns A corresponding
to different independent components. These different components are
extracted in a signal space common to the group and spanned by
principal components B. The generative model relates these group-
level patterns to the observed signal via different noise terms.

Generative model

Group-variability model. The activity recorded on each subject s can
be described by a set of subject-specific spatial patterns Ps, which are a
combination of the group-level patterns B and additional subject-
variability:

for each subject s; Ps¼Λ sBþRs; ð6Þ

with Λs a loadingmatrix giving howmuch each pattern is represented
in subject s, and Rs a residual matrix giving the deviation from the

http://icatb.sourceforge.net/
http://icatb.sourceforge.net/


Fig. 1. Diagram of the estimation procedure: successive estimation steps are applied from left to right, starting from individual datasets, to end with group-level independent
components.
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group patterns. In other words, a group description can be written
considering the group of patterns (vertically concatenated matrices)
P={Ps}, R={Rs}, and Λ={Λs}, s=1 … S,

P¼ΛBþR: ð7Þ

Λ is a loading matrix relating the subject-level components for
each subject to the group-level components. If there are ngrp
components generating the signal at the group level, and each of
the S individual datasets are described by nsbj, the shape of the
loading matrix Λ is (S·nsbj, ngrp) (see Fig. 1 for a diagram).

Observation model. For each acquisition-frame time point the
observed data is a combination of different subject-specific patterns
Ps confounded by observation noise: let Ys be the resulting spatial
images in BOLD MRI sequences for subject s (an nframes×nvoxels
matrix), Es the observation noise, and Ws a loading matrix such that:

Ys¼WsPsþEs: ð8Þ

Parallel to mixed-effect models
The generative model can be written in a non-hierarchical form as:
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In the group ICA framework of Guo and Pagnoni (2008),

Y = M̃A + Ẽ ð10Þ

with M̃=
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In other words, the mixing matrix can be factored out in a subject-
specific matrix and group-level matrix, and the rejected noise is the
addition of two terms, a subject-specific one and a group-level one,
that explain different components of the signal. If we compare the ICA
analysis with a GLM analysis, as suggested in McKeown et al. (1998),
in Eq. (10), M̃ corresponds to the designmatrix, and Ẽ to the residuals.
We can see that the decomposition of these matrices in Eqs. (11) and
(12) can also be identified as the non-hierarchical expression of
corresponding terms in a mixed-effect model (see for instance Friston
et al., 2005).
Thus, the two-level group model exposed above can be seen as a
multivariate formulation of mixed-effects models, often used in a
standard univariate GLM-based analysis, as it models two sources of
variance. However, it is not hypothesis-driven and does not rely on
the knowledge of external correlates.

Estimation procedure

In this section, we describe the estimation procedure used to
extract the patterns of interest from the data. The different variables
estimated corresponding to the generative model are noted with a
hat: if A is the population set of patterns introduced in the model, Â
denotes the corresponding patterns estimated from the data. Fig. 1
gives a diagram summarizing themodel and the successive estimation
steps.

Noise rejection using the generative model
We start from fMRI image sequences, for each subject, corrected

for delay in slice acquisition and for motion, then registered to a
common template space. We extract the time series corresponding to
a mask of the brain, center and variance-normalize them, resulting in
pattern matrices {Ys, s=1…S}, with s corresponding to the subject
index. We separate reproducible group-level patterns from noise by
estimating successively each step of the above hierarchical model.

Subject-level identification of observation noise. First, we separate
observation noise Es from subject-specific patterns Ps as in Eq. (8),
through principal component analysis (PCA). The principal compo-
nents explaining most of the variance for a given subject's data set
form the patterns of interest, while the tail of the spectrum is
considered as observation noise.

Specifically, for each subject, we use a singular value decomposi-
tion (SVD) of the individual data matrix,

Ys¼UsΣsVs: ð13Þ

We retain the first nsbj (s) rows of Vs to constitute the patterns P̂s

and the first nsbj(s) columns of (Us Σs) give their loadings Ŵs in the
subject's data, that can be interpreted as time courses of the
components. The residual constitutes the observation noise, Ês:

P̂s = Vsð Þ1 N nsbj
; ð14Þ

Ŵs = UsΣsð Þ1 N nsbj
; ð15Þ

Ês = Ys − ŴsP̂s; ð16Þ

where nsbj(s) is the number of extracted components describing the
signal at the subject level for the subject s.
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Setting the number nsbj(s) of principal components to retain at the
subject level is a difficult question and not the main focus of this
article. In general, this number can be selected by analyzing the
individual datasets. We have found that with information-theoretic
criteria initially used for model-order selection in PCA algorithms
(Beckmann and Smith, 2004; Calhoun et al., 2001; Minka, 2001), the
number of identified sources is overestimated for long fMRI time
series and many non-meaningful ICA components are extracted.
Various studies have been conducted of the influence of PCA-model-
order choice in fMRI ICA methods (Himberg et al., 2004; Kiviniemi
et al., 2009; Li et al., 2007). The optimal number of ICs has been
empirically found to lie between 20 and 60 components depending on
the dataset.

Weuse the resamplingmethoddescribedbyMei et al. (2008) in the
context of statistical shape modeling. This method estimates the
number of principal components necessary to model the data in the
presence of Gaussian-distributed noise by assessing the stability of the
subspaces spanned by the first nsbj(s) principal components. Mei et al.
(2008) showed empirically that it does not lead to diverging model
order when new datasets are generated from the selected principal
components with additional Gaussian-distributed noise. For more
details on the model-order selection algorithm and its robustness to
noise, we refer the reader toMei et al. (2008).We apply this algorithm
on the individual subject datasets, Ys after the various preprocessing
steps, as it is input in our group model. For computational reasons, we
estimate the subject-level number of components on only one
subject's data if all the individual datasets share the same acquisition
parameters and length and use this parameter for all individual
datasets: we assume that nsbj(s) is independent of s, and wewrite nsbj.

Canonical correlation analysis to estimate the group-level patterns. At
the group level, we are interested in identifying the sub-space
common to each subject's patterns. For this purpose, we use
generalized Canonical Correlation Analysis (CCA).

CCA is most often used to compare two multivariate datasets by
finding the successive univariate components pairs of each dataset
that maximize cross-correlation. The components pairs are called
canonical variables, and the associated correlation is the canonical
correlation. We use a generalization of CCA to multiple datasets
(Kettenring, 1971;Krzanowski, 1979)—in our case, one dataset per
subject. We start from the different whitened datasets2 P̂s, and
concatenate them to form P̂. We perform an SVD on P ̂:

P̂= ΥZΘ: ð17Þ

where Υ and Θ are rotation matrices, and Z is the diagonal matrix of
singular values. The rows of Θ form the canonical variables, in other
words the inter-subject reproducible components, and the singular
values on the diagonal of the matrix Z form the canonical correlations,
which yield a measure of between-subject reproducibility. We retain
the first ngrp vectors of ϒ, the canonical weights forming the patterns
of interest at the group level:

B̂s = Υsð Þ1 N ngrp
; ð18Þ

We select the dimension ngrp by keeping only the canonical
variables for which the corresponding canonical correlation Z is above
a significance threshold as described below.

The significance threshold on the canonical correlations is set by
sampling a bootstrap distribution of the maximum canonical
correlation using Eŝ, the subject-level observation noise identified
previously, instead of the subject-level components of interest P̂s.
2 The singular value spectrum of P̂s is made only of ones: P̂sP̂s
T = 1. In other words,

the amount of variance each IC which accounts for at the subject level is not modeled
at the group level: only the patterns are retained, Σ̂s is not considered.
Selected canonical variables have a probability pb0.05 of being
generated by data consisting only of observation noise. This procedure
corresponds thus to keeping only the group-level components more
reproducible than observation noise. We give more details on this
procedure in the supplementary materials.

The estimation procedure for the group-level subspace of interest
is thus done by minimizing the amount of unexplained signal in each
subject while using a fixed number of components, and then by
maximizing the subspace stability at the group level. Both optimiza-
tions are performed using SVD. For each step, the unexplained
variance is chosen based on a noise model.

Group-level independent components
The above estimation procedure selects group-level components B

spanning the subspace of common patterns of activation. We apply
FastICA (Hyvärinen and Oja, 2000) on this subspace, to separate
group-level independent sources A, estimating the mixing model 1.

Finally, as the interesting features of the ICA patterns lie in blobs
standing out from the background, it is important to threshold the
resulting map to keep only the tail of the intensity distribution.3 For
this, we use as simple null- hypothesis distribution a normal
distribution of unit standard deviation. Indeed, the FastICA algorithm
works on whitened data (thus of isotropic unit variance) and
estimates maximally non-Gaussian directions. As in Schwartzman
et al. (2009), this null hypothesismodels the centralmode of themaps,
and we select the voxels for which the absolute intensity exceeds a
fixed threshold, that corresponds to a certain level of specificity with
respect to null distribution. More complex thresholding approaches
have been developed, for instance based on mixture modeling
(Beckmann and Smith, 2004). Our method leads to fewer selected
voxels on a pattern with very few salient features, such as on artifact
patterns. In addition, it is consistent with the FastICA model.

The main differences of our estimation method compared to the
most currently used fMRI ICA methods (GIFT and MELODIC) are:

1. Model-order determination by rejecting components that can be
generated by Gaussian noise.

2. Selecting a subspace of reproducible components at the group level
using canonical correlation analysis as a device to separate subject-
level observation noise for group variability.

3. Thresholding ICs based on the absolute value of voxel intensity.

In this article, we are mostly interested in discussing the
importance of point 2, which is the expression of the group model
used to describe between-subject variability.

Cross-validation of group-level patterns

The use of ICA is motivated by the fact that the patterns extracted
from the fMRI data display meaningful features in relation to our
knowledge of functional neuroanatomy. The validation criteria for an
ICA decomposition are unclear, as this algorithm is not based on a
testable hypothesis. However, for the method to be usable in group
studies, the features extracted from a group of healthy controls
should be comparable between different subgroups of subjects, and
generalize to different subgroups.

To test the reproducibility of the results across groups of subjects,
we split our group of subjects in two and learn ICA maps from each
sub-group: this yields the sets of patterns A1 and A2. We compare the
overlap of thresholded maps and reorder one set to match maps by
maximum overlap. Reproducibility can be quantified by studying
the cross-correlation matrix C=A1

TA2. For unit-normed components,
Ci,j=1 if and only if (A1)i and (A2)j are identical.
3 Although this is sometimes done implicitly by simply referring to the brain regions
that stand out when looking at spatial maps, it is important to this do this reduction
explicitly.
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To quantify the reliability of the patterns identified on the full
datasets, we select for each pattern extracted from the full dataset the
best matching one in the different subsets computed in the cross-
validation procedure using Pearson's correlation coefficient. Along
with the extracted maps, we report the average value of this pattern-
reproducibility measure.

Validation experiments: comparing to other methods
We compare our method with state-of-the-art methods using

different group-model estimation procedures: concatenation
approaches using the implementations of the GIFT ICA toolbox
(Calhoun et al., 2001) and the MELODIC software (Smith et al.,
2004), as well as the tensor ICA model, also implemented in the
MELODIC software (Beckmann and Smith, 2005).

Also, to isolate the effect of separating subject-level variance from
group-level variance in the estimation algorithm from implementa-
tion-specific details, we run a modified version of CanICA without the
CCA step, retaining the subject-level variance Σs at the group level on
the same datasets: Eqs. (15) and (16) are thus replaced by

P̃s = ΣsVsð Þ1 N nsbj
; ð19Þ

W̃s = Usð Þ1 N nsbj
: ð20Þ

With this estimation algorithm, the variance explained by the
components at the subject level is carried on to the group level. This is
analogous to a fixed-effect model.

As estimating larger numbers of independent components tend to
explore less stable patterns, we run all analysis using the number of
components estimated by CanICA. We perform cross-correlation
analysis on the non-thresholded ICA maps, but also use each
implementation's thresholding algorithm to separate the features of
interest. In an effort to separate the impact of the group model from
the impact of the thresholding heuristic, we study reproducibility of
non-thresholded maps, as well as thresholded maps, although non-
thresholded maps can be considered as of little neuro-scientific
interest. The mixture model implemented in MELODIC selects 3000
voxels on average on all the patterns. We set the specificity for the
other methods to select the same average number of voxels. For GIFT,
the thresholding is done on the t-statistics maps generated by the
algorithm. We threshold at |t|N2.

Similarity measures for decompositions learned in different subjects
We define two measures to quantify the stability of the subspace

spanned by the components and the reproducibility of the maps. First,
a measure of the overlap of the subspaces selected in both groups is
given by the energy of the matrix, i.e. its Frobenius norm: E=tr (CTC).
To compare this quantity for different subspace sizes, we normalize it
by the minimum dimension of the subspaces,

d = min rank A1; rank A2ð Þ ð21Þ

e =
1
d
tr CTC
� �

: ð22Þ

e quantifies the reproducibility of the subspace spanned by the maps.
For e=1, the two groups of maps span the same subspace, although
individual independent components may differ. If A1 and A2 have
different dimensions, taking theminimumdimension of both does not
account for possible instability of patterns extracted from a group and
not the other. However, the dimensionality as estimated by our
procedure does not vary much over the cross-validation pairs
(maximum 10% relative difference).

Second, we measure one-to-one reproducibility of maps. We
reorder the matrix C by matching sequentially maximally mutually
correlated components of A1 and A2, considering the absolute value of
the pair-wise correlation. This procedure creates a reordered cross-
correlationmatrix C̃with maximal matching values on the diagonal. If
one of the two groups has more components than the other, we use
the smaller of the two as a reference, and stop thematching procedure
once all of its components have been matching. As a result, C̃ is a
square matrix that we populate with absolute values of pair-wise
correlations. Although we acknowledge that this algorithm may not
give the optimal matching in general, we observe that the solution is
satisfactory in practice. We use the normalized trace of the reordered
cross-correlation matrix,

t =
1
d
tr C̃
� �

; ð23Þ

as an overall measure of one-to-one overlap between matched pairs
of components.

fMRI datasets

We apply the probabilistic ICA method described above to extract
brain networks from two multi-subjects datasets: a group resting-
state study and a functional localizer.

Resting-state data
We use datasets from a resting-state experiment: subjects were

blindfolded and instructed to keep their eyes closed. The resting state
session was recorded as the first session preceding a series of
cognitive experiments as part of a study not detailed here. At the time
of resting-state data collection, subjects were naive with respect to
the nature of the subsequent experiments. Twelve right-handed
healthy volunteers (two females; ages 19–30) gave written informed
consent before participation in imaging on a 3 T MRI whole-body
scanner (Tim-Trio, Siemens, Erlangen). The study received local ethics
committee approval. 820 EPI volumes (25 slices, TR=1.5 s,
TE=30 ms, FOV 19.2 cm× 19.2 cm, 3 mm isotropic resolution)
were acquired during a rest period of 20 min. A full description of the
paradigm and the acquisition parameters can be found in Sadaghiani
et al. (2009).

Functional localizer data
We used an event-related experimental paradigm consisting of 10

conditions. Subjects were presented with a series of stimuli and were
engaged in tasks such as passive viewing of horizontal or vertical
checkerboards, left or right button press after auditory or visual
instruction, computation (subtraction) after video or visual instruc-
tion and sentence processing, from the auditory or visual modality.
Events were randomly occurring in time (mean inter stimulus
interval: 3 s), with 10 occurrences per event type (except button
presses for which there are only five trials per session).

Two hundred right-handed subjects participated in the study. The
subjects gave informed consent and the protocol was approved by the
local ethics committee. Functional images were acquired on a 3 T
Bruker scanner using an EPI sequence (40 slices, TR=2.4 s, TE=
60 ms, FOV 19.2 cm×19.2 cm, 3 mm isotropic resolution). A session
comprised 132 scans. The first four functional scans were discarded to
allow the MR signal to reach steady state. The experimental paradigm
and the acquisition parameters are describedwithmore detail in Pinel
et al. (2007). To balance the comparison with resting-state data, we
first report reproducibility analysis on 12 subjects acquired con-
secutively. We also study reproducibility on a group of 62 subjects all
acquired successively in time.

Preprocessing
The above datasets were preprocessed using the SPM5 software

(Wellcome Department of Cognitive Neurology; http://www.fil.ion.
ucl.ac.uk/spm). After slice-timing interpolation and motion correc-
tion, cerebral volumes were realigned to the MNI152 inter-subject

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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template and smoothed with a 5 mm isotropic Gaussian kernel.
Voxels contained in a mask of the brain (approximately 40 000
voxels) were selected for pattern extraction using the CanICA
procedure. We do not apply a frequency filter to the time-series, as
we have found out that this yields ICs displaying better separation
between brain networks and artifacts such as movement or blood-
flow related patterns.

Results

Group-level patterns extracted

Resting-state dataset
On the resting-state dataset, consisting of 820 scans, CanICA

identified in average 50 non-observation-noise principal compo-
nents at the subject level and a subspace of 42 reproducible patterns
at the group level (see Eq. (7)). This number matches those
commonly hand-selected by users in current ICA studies. Kiviniemi
et al. (2009) reported 60 stable independent components and 42
brain networks in a study of group-level ICA patterns stability on a
similar dataset. On this dataset made of long time sequences, model-
evidence-based methods such as those used in Beckmann and Smith
(2004) select 200 components at the subject level (or 340 when
applied on smoothed data). Out of the 42 maps extracted by the
CanICA, we identified by eye 26 putatively components as brain
networks (Fig. 2). When using CanICA without CCA, we putatively
identified only 11 components extracted as brain networks. Other
components related to physiological noise or movement form
patterns in the BOLD signal common to the group as they are
related to reproducible anatomical features.

Functional localizer dataset
On the functional localizer dataset, consisting of 150 scans, CanICA

extracts 20 ICA patterns, out of which we identify 13 putative
functional networks (see Fig. 3). When using Eq. (20) instead of Eq.
(15), i.e. without the whitening of the individual patterns imposed in
the CCA, only 6 functional networks are identified (see supplementary
materials).

Reproducibility results

The reproducibility metrics we obtained by cross-validation are
reported in Table 1. For the resting-state experiment, on non-
thresholded maps, the GIFT and ConcatICA perform similarly with
regards to subspace-stability, which can be explained by the fact that
they implement similar group models. For this experiment, the
reproducibility of the TensorICA model is not as good. Conversely, for
the localizer experiment, the reproducibility of TensorICA is good. The
assumption of the TensorICA model that networks share similar time
courses across subjects is clearly more suitable for task-driven studies.
The CCA-based estimation procedure of the two-level group model of
CanICA yields the most stable subspace in both experiments.
However, the relative performance of different methods changes
between the two experiments that have very different signal length
and TR.

Performance of the method with regards to one-to-one repro-
ducibility of thresholded maps does not differ significantly from non-
thresholded maps for all the methods using histogram-based
thresholding. On the other hand, GIFT thresholds a t-statistic map
over back-reconstructed subject-specific components, which is quite
unstable across population splits. As a result, one-to-one matching of
thresholded maps extracted by GIFT does not perform well. We also
note that the independent components extracted from the functional
localizer dataset are less contrasted than those extracted from the
resting-state data because the number of volumes is smaller, and as a
result thresholding has a more detrimental impact on stability.
The distribution of maximal component matching from one sub-
group to another provides an assessment of the reproducibility of the
individual maps. Table 2 gives the percentile of this distribution on
both datasets, for thresholded and non-thresholdedmaps, when these
are extracted with CanICA. The maps for which there is a matching
above 50% are of particular interest, as they have sufficient
correspondence to establish a one-to-one mapping with a simple
matching scheme.

In addition, we have performed the same reproducibility analysis
using a higher number of independent components, to compare the
different methods for parameters similar to the analysis of Kiviniemi
et al. (2009) (see Table 4). As expected, the reproducibility of the
selected subspace is reduced compared to using a small number of
components selected, but the relative performance of the methods is
similar.

Finally, we have studied reproducibility for a large group of
subjects, on the localizer dataset for CanICA with and without CCA. As
can be seen in Table 3, reproducibility is improved when estimating
ICs on larger groups. On these groups, the use of CCA remains an
important factor of reproducibility.

We conclude from this cross-validation study that CanICA is a
suitable tool for purely data-driven extraction of stable markers from
fMRI data on a homogeneous group of subjects as it yields a small
number of highly repeatable features that can be identified between
different groups. The procedure is fully automatic as it does not rely
on identification of previously known activation patterns corres-
ponding to cognitive paradigms. Unlike previous reproducibility
studies (e.g. Damoiseaux et al., 2006), we report on the complete
set of patterns extracted.

Discussion

Factors impacting reproducibility

Importance of the signal subspace
We have used two different metrics to measure reproducibility of

the ICs. While tmeasures exact one-to-one matching of the final ICs, e
is a measure of reproducibility of the subspace, and is thus
independent of the ICA step. The FastICA algorithm was ran with
different parameters (in symmetric or in deflation mode, and using
either the cube or the logcosh non-linearity), and gave similar
reproducibility results as measured by t on both datasets (t metrics
differing of .01). While GIFT and MELODIC in TensorICA use different
ICA algorithms, MELODIC in concatenation mode and CanICA, with
and without CCA, all use the FastICA algorithm. We thus conjecture
that the difference between the reproducibility scores of these last
methods is mainly due to different subspace-selection procedures
which consist of preprocessing and group-model estimation.

Importance of thresholding on canonical correlations
We compared four different sub-space selection procedures:

CanICA with and without CCA, MELODIC and GIFT. CanICA without
CCA implements a fixed-effect model, in which the principal
components of each subjects are concatenated without whitening
before group-level analysis. CanICA with CCA uses whitening of the
individual datasets to perform canonical correlation analysis and select
group- level components via a well-known reproducibility score: the
canonical correlation. The comparison of performing analysis with and
without CCA over different datasets (Table 1), with varying group sizes
(Table 3), and for different number of ICs (Table 4), shows the
importance of the CCA step.

To our knowledge, there is no published detailed description of the
group-level estimation procedure implemented in MELODIC Con-
catICA and GIFT, we therefore base our discussion on our analysis of
the software packages. GIFT groups individual subject datasets and
performs successive PCAs and thresholding. This can be interpreted



Fig. 2. The 42 ICA maps extracted by CanICA from the resting-state dataset (display in radiologic convention: the right hemisphere is on the left of the axial view). The maps are
ordered by reproducibility (from left to right on each line, and top to bottom line after line). Maps corresponding to functionally plausible networks are in a black frame, whereas
maps likely corresponding to artifacts are not framed. Extracted brain networks are labeled with the name of the general structure they can be related to.
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Fig. 3. The 20 ICA maps extracted by CanICA on the functional localizer dataset (radiologic convention).
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as applying nested fixed-effects model. MELODIC applies a group-
average filtering matrix before performing whitening and group-
level data reduction via SVD. For these methods, the group-level
components are thus not selected using canonical correlation
analysis on the individual subject data. While canonical correlation
selects the sub-space to optimize for reproducibility, the procedures
for group-level data reduction applied by both MELODIC and GIFT
impose some reproducibility criteria, as can be seen by their e score
on the resting-state dataset which out-performs a simple concate-
nation (see Table 1).

We note that when performing analysis with a large number of ICs
(Table 4), selecting the signal subspace on a canonical correlation
criteria is less critical, as the retained subspace covers a larger
proportion of the initial signal. On the opposite, on the localizer
dataset, performing CCA is important for reproducibility even for large
groups of subjects (Table 3).
Table 1
Average reproducibility measures e and t for Group ICA, Tensor ICA and CanICA
calculated on the half-split cross-correlation matrices, both for non-thresholded and
thresholded maps. Numbers in parenthesis give the standard deviation across the
different splits.

MELODIC
TensorICA

GIFT
GroupICA

MELODIC
ConcatICA

CanICA
no CCA

CanICA
CCA

Resting state
Unthresholded ICA maps

e: subspace stability .47 (.06) .58 (.04) .58 (.04) .36 (.02) .71 (.01)
t: one-to-onematching .36 (.03) .53 (.04) .51 (.04) .36 (.02) .72 (.05)

Thresholded ICA maps
t: one-to-onematching .35 (.02) .10 (.01) .50 (.03) .21 (.02) .62 (.04)

Localizer
Unthresholded ICA maps

e: subspace stability .54 (.05) .25 (.03) .43 (.02) .35 (.01) .52 (.01)
t: one-to-onematching .36 (.02) .34 (.04) .35 (.03) .37 (.02) .55 (.02)

Thresholded ICA maps
t: one-to-onematching .29 (.03) .02 (.01) .31 (.05) .26 (.03) .46 (.02)
Thresholding heuristic
The metric t applied to thresholded ICs measures the reproduc-

ibility of features identified by the thresholding heuristic. This
measure indicates the ability of the ICA algorithm to yield
reproducible salient features, but is also a factor of the thresholding
heuristic. The focus of this paper is not to discuss thresholding
heuristics, and we use a simple one. However, we note that the
impact of different heuristics (a mixture model, as in MELODIC, or
amplitude-based thresholding, as in CanICA) on the cross-validation
reproducibility score varies across the different studies. In Table 1,
mixture models seem to impact reproducibility to a lesser extend,
whereas when using a high number of ICs (Table 4), amplitude-based
thresholding performs better. This can be understood by the fact that
the heuristics depend strongly on the histogram of the maps, which
vary with the number of ICs or subjects. It is thus difficult to conclude
on thresholding without further study.

Interpretation of the ICA patterns

Sensitivity of the method to brain networks
The patterns extracted display many different components that

can be interpreted as functional networks. On the resting-state data,
this is the case for 26 ICs out of 42 (Fig. 2). MELODIC's Concat-ICA,
which corresponds to a state-of-the-art implementation of a one-level
Table 2
Percentiles of maximum one-to-onematching betweenmaps extracted with CanICA on
two sub-groups of six different subjects.

Unthresholded Thresholded

RS Loc. RS Loc.

Matching above 50% 91% 64% 77% 44%
Matching below 25% 0% 2% 5% 25%
Matching above 75% 55% 19% 34% 28%



Table 3
Reproducibility scores with using CanICA on the localizer dataset with many subjects.

12 subjects 20 subjects 40 subjects 62 subjects

No CCA CCA No CCA CCA No CCA CCA No CCA CCA

Unthresholded ICA maps
e: subspace stability .35 (.01) .52 (.01) .36 (.01) .57 (.01) .42 (.01) .71 (.01) .50 (.01) .78 (.01)
t: one-to-one matching .37 (.02) .55 (.02) .40 (.02) .57 (.03) .45 (.01) .68 (.03) .49 (.01) .72 (.03)

Thresholded ICA maps
t: one-to-one matching .26 (.03) .46 (.02) .29 (.02) .45 (.03) .33 (.02) .56 (.03) .38 (.03) .60 (.04)
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group model, when run on the same dataset with the same model
order, yields 20 identifiable functional networks (Fig. 5, supplemen-
tary materials). Using the same implementation as CanICA, with the
same preprocessing and thresholding steps, but without modeling
two levels of variance (fixed-effect model), only 11 patterns extracted
can be identified as brain networks.

However, the brain networks detected in both the fixed-effects
and the random-effects group models display close resemblance:
modeling two levels of variance, at the subject and at the group level,
does not significantly alter the group-level brain networks extracted.
The difference in extracted networks corresponds to a difference in
sensitivity of the methods to brain networks. This can be understood
by the fact that different networks can be activated in varying
proportion in each subject. This variability is tamed by the whitening
introduced in the CCA step that gives an equal weighting to all the
information captured in each dataset. As a result more networks are
identified: well-known networks can be segmented into reproducible
sub-networks, and additional networks seldom encountered in ICA
analysis are extracted.

We note that on the resting-state dataset, because of the reduced
field of view, the upper part of the cortex is cropped (as can been seen
on map 4), and we have no information on the networks in the lower
temporal lobes and in the cerebellum.

Extracted brain networks
Most of the networks extracted can be related to stable networks

well-known from the resting-state literature, such as the visual
system or the fronto-parietal ventral and dorsal structures labeled as
attentional networks (Fox et al., 2006). However, due to the increased
statistical power, we resolve sub-structures of these networks.

For instance, the network known as default mode network appears
to be split into several sub-networks separating portions of the
posterior cingulate region, as well as occipito-parietal junction,
precuneus and medial pre-frontal cortex (maps 5, 6, 7, and 18 on
Table 4
Average reproducibility measures e and t for Group ICA, Tensor ICA and CanICA
calculated on the half-split cross-correlation matrices, with 70 ICs, both for non-
thresholded and thresholded maps. Numbers in parenthesis give the standard
deviation across the different splits. The localizer dataset is made of runs of 132
volumes, selecting 70 ICs explores thus the tail of the PCA.

MELODIC
TensorICA

GIFT
GroupICA

MELODIC
ConcatICA

CanICA
No CCA

CanICA
CCA

Resting state
Unthresholded ICA maps

e: subspace stability .28 (.01) .41 (.01) .53 (.02) .28 (.01) .49 (.02)
t: one-to-onematching .15 (.01) .37 (.01) .47 (.02) .28 (.01) .50 (.01)

Thresholded ICA maps
t: one-to-onematching .19 (.02) .06 (.01) .33 (.02) .29 (.01) .57 (.02)

Localizer
Unthresholded ICA maps

e: subspace stability .52 (.07) .17 (.02) .41 (.01) .25 (.01) .30 (.01)
t: one-to-onematching .28 (.01) .21 (.02) .29 (.03) .27 (.02) .34 (.02)

Thresholded ICA maps
t: one-to-onematching .23 (.02) .02 (.01) .28 (.03) .35 (.03) .39 (.01)
the resting-state dataset and 2 and 10 on the localizer dataset). In
particular, the retrosplenial cortex stands separated from the
posterior cingulate cortex, grouped on map 7 of the resting-state
dataset with parietal regions. It has been shown to be the focus of
anatomical connections to the medial pre-frontal regions (Greicius
et al., 2009). Also the ventral anterior cingulate cortex, shown on map
6 of the resting-state dataset, has been consistently identified
separately from the default mode network, with evidence from EEG
measurements that it forms a differentiable network (Mantini et al.,
2007). This sub-network has been associated with self-referential
mental activity (D'Argembeau et al., 2005; Johnson et al., 2006).

The networks identified in the frontal lobes, associated to
executive functions, display considerable variability in the literature
as well as between our datasets. Maps 37 and 39 on the resting-state
dataset and map 12 on the functional localizer correspond to the
network related to salience processing in Seeley et al. (2007) and
associated with task set maintenance in Dosenbach et al. (2006, 2007,
2008). As reported by Dosenbach et al. (2007) and Seeley et al. (2007),
it forms a distinct network from the parietal-frontal network made of
maps 10, 19 and 29 of the resting-state dataset.

Finally, we extract from the resting-state dataset some function-
specific networks such as the putative language network (map 16) or
an occipito-parietal network (map 41) related to the dorsal visual
pathway. Map 15 of the localizer dataset is a rich, anatomically well-
defined cortico-subcortical motor network that comprises the ventral
and cingular motor cortices, as well as the insular cortex and the
lentiform nucleus and thalamus.

Occurrence of the brain networks across groups

Different networks can be recruited depending on the task, and
thus we may expect the occurrence of cognitive networks to vary
when estimated on different experiments, or different sessions. For
instance, we observe that the right and left motor cortices appear on
different independent components for the localizer experiment,
which may be explained by the separate right and left finger-tapping
tasks present in the experimental paradigm of the localizer experi-
ment, whereas in the resting-state experiment, the motor areas are
divided symmetrically in somatotopic regions corresponding to lower
body, upper body and face.

The reproducibility number, indicated in Figs. 2 and 3, gives an
indication of the occurrence of a network identified across subgroups.
Visual and attentional areas stand out among the most reproducible
brain networks in both datasets—different parts of the visual cortex,
and the network coined visuo-spatial system in Beckmann et al.
(2005). Parietal regions are embedded into various networks, bilateral
or not, and possibly but not necessarily associated with frontal
regions, according to the dataset considered or the processing
strategy. The same kind of observation also applies to frontal regions.
Bilateral auditory cortices, on the other hand, appear as a robust single
network across datasets. In general, networks related to primary areas
(sensory or motor) are more stable across groups, paradigms, and
methods, whereas networks related to higher-level areas (mainly in
the frontal lobes) or higher-level specific tasks (such as language



298 G. Varoquaux et al. / NeuroImage 51 (2010) 288–299
processing) are less stable, and sometimes ill-resolved by the
methods.

Although the comparison of resting-state versus activation
datasets is not the topic of this paper, one can notice that the results
are relatively consistent between the two datasets, and that the
resting-state data based on longer time series tends to produce a
larger number of interpretable components. This hints at the fact that
these networks may be defined not only at rest, but also inmuchmore
general contexts of co-activation (Smith et al., 2009).

Limitations of the method

When running a group analysis using CanICA, signal originating
from different subject are put in correspondence via spatial alignment
(performed by the preprocessing steps). While the CanICA model
accounts for subject-to-subject differences, one of its major limita-
tions is that it does not model spatial variability across subjects. This is
why the estimation is applied on smoothed data. Similarly, the
validation metrics e and t only test for spatial correspondence.
Differences between two ICs estimated on different subgroups that
can be accounted for by a spatial displacement of features will induce
poor reproducibility scores, and will hinder the matching procedure
used in the t reproducibility score.

A fundamental limitation of the ICA-based method presented and
the validation metrics is that they make no difference between
neuronal and artifactual signal. Thus, not only will the method extract
and report non-neuronal signal, but the corresponding maps will
impact the validationmetrics. Additional pattern-matching techniques
can be used for these purposes (De Martino et al., 2007). Extracting
markers of the non-neuronal signal can also have some value, for
instance to use them as nuisance regressors (Perlbarg et al., 2007).

Choosing the model order of an ICA method is a difficult problem,
as the ICA algorithm will estimate orthogonal components spanning
all the signal subspace with no measure of statistical relevance. Our
approach tries to combine criteria of non-Gaussianity at the subject
level, and a reproducibility threshold on the signal subspace at the
group level to identify the reproducible non-Gaussian signal subspace.
One limitation of selecting a subspace of reproducible signal across
subjects is that projection on this subspace may lead to projecting on
the same IC components that could be separated in larger subspace, as
outlined by Kiviniemi et al. (2009). This can be seen via component
splitting when using higher model orders. On the other hand,
selecting a higher number of components leads to less reproducible
components and uncontrolled ICs that are considered as artifacts and
not interpreted in most analysis.

In the CCA estimation step, the statistical measure of reproduc-
ibility (canonical correlation) is a linear correlationmeasure and is not
informed with regards to the criteria of ICA, non-Gaussianity. This is a
limitation of the canonical correlation approach in our framework.
One could consider kernel or non-linear CCA models that would be
more specific to ICA criteria. Such procedures are much less tractable,
and there are less known results in statistics.

Finally, while CanICA models group-variability during the estima-
tion step to extract ICs representative of the group, it does not provide
a procedure to infer individual components related the group-level
maps. For this purpose, we suggest using dual regression as in
Filippini et al. (2009): the dual regression framework is independent
of the estimation procedure used to extract maps representative of
the group.

Algorithm complexity and numerical efficiency

Because the estimation of the group-level model relies solely on
simple linear algebra routines, and the ICA optimization loop is
performed on a small number of selected components, it can be very
efficient on large data when implemented with optimized linear
algebra packs, both in terms of number of operations and memory.
The computational cost of estimating the full model on a group of S
subjects, withm volumes each, and p voxels in the brain is dominated
by the cost of the subject-level PCA that scales in S · m2 · p. The
group-level inference is made of the CCA step, that scales in S2 · p, and
the ICA step, that scales in S · p. For our data set, it takes a fewminutes
on a 2 GHz Intel core Duo. The speed of this step is critical for cross-
validation, as the initial subject-level model does not need to be
recomputed.

Performance is important to scale to long fMRI time series, high-
resolution data, or large groups. In addition, as the group-level pattern
extraction (CCA and ICA) is very fast, cross-validation of the group
patterns is feasible on modest hardware.

On the other hand, the model-order selection steps imply
bootstrap analysis. These steps are computationally costly. In
particular estimation of the number of principal components retained
at the subject level involves evaluation of many SVDs, a lengthy
process (scaling in p · m2). We do not estimate the subject-level
model order for each sub-group during the cross-validation of the
group patterns.

Conclusion

We have presented a multivariate two-level generative model for
multi-subject datasets and applied it to an ICA model and
corresponding pattern-extraction algorithm for fMRI data, CanICA.
Compared to existing methods, our approach uses non-parametric
noise description for model-order selection. As a result, the method is
auto-calibrated and extracts in a fully automated waymeaningful and
reproducible features from fMRI data. In addition, we have introduced
a cross-validation procedure and associated metrics for ICA patterns
and used it to establish validity of group-level maps.

ICA is an unstable procedure with no intrinsic significance
testing, but we have shown that our pattern-extraction method,
based on a mixed-effects-like group model, can yield a set of
thresholded maps of which many are reproducible and can be
identified one to one when extracted from two different groups of
only six healthy controls. Reproducibility is an important feature of
exploratory analysis methods, as the validity of their results cannot
be established by hypothesis testing. In addition, group reproduc-
ibility on control groups and one-to-one matching between groups
is necessary when using extracted patterns as bio-markers for group
analysis.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2010.02.010.
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