BACK TO INDEX

Publications of year 2011
Books
  1. Stanislas Dehaene. The number sense (2nd edition).. New York: Oxford University Press, 2011. [bibtex-entry]


  2. Stanislas Dehaene. Apprendre à lire. Des sciences cognitives à la salle de classe. Odile Jacob, 2011. [WWW] [bibtex-entry]


  3. Caroline Huron. L'enfant dyspraxique: Mieux l'aider à la maison et à l'école. Odile Jacob, 2011. [WWW] [bibtex-entry]


  4. Stanislas Dehaene and Elizabeth Brannon, editors. Space, Time and Number in the Brain. Searching for the Foundations of Mathematical Thought. Academic Press, 2011. [WWW] [bibtex-entry]


  5. Stanislas Dehaene and Christen Y, editors. Characterizing Consciousness: From Cognition to the Clinic?. Springer-Verlag, 2011. [bibtex-entry]


Theses
  1. Francois Leroy. Etude Méthodologique et Structurale du Développement Cérébral en IRM : Application aux Aires du Langage dans une Population de Nourrissons. PhD Thesis, 2011. [WWW] [PDF] [bibtex-entry]


  2. Karla Monzalvo. Etude chez l'enfant normal et dyslexique de l'impact sur les réseaux corticaux visuel et linguistique d'une activité culturelle : la lecture. PhD Thesis, 2011. [bibtex-entry]


  3. Felipe Pegado. Impact de l'alphabétisation sur l'organisation cérébrale et la cognition: aspects de la perception visuelle et du langage parlé chez les adultes alphabétisés et non-alphabétisés.. PhD Thesis, UPMC, 2011. [PDF] [bibtex-entry]


Book chapters
  1. A. Bénézit, L. Hertz-Pannier, G. Dehaene-Lambertz, and J. Dubois. Le corps calleux : sa vie précoce, son ?uvre tardive. In Les malformations congénitales. Diagnostic anténatal et devenir. Tome 6. Sauramps Médical. Suite au 5ème Congrès de Médecine F?tale : Diagnostic Anténatal et Devenir. 2011. [PDF] [bibtex-entry]


  2. Stanislas Dehaene. Reading as Neuronal Recycling. In Dyslexia Across Languages, pages 102--16. P. McCardle, B. Miller, J.R. Lee, O. J.L. Tzeng (Eds), Paul H. Brookes Publishing, 2011. [bibtex-entry]


  3. Stanislas Dehaene, Changeux JP, and Naccache L. The Global Neuronal Workspace Model of Conscious Access: From Neuronal Architectures to Clinical Applications.. In Characterizing Consciousness: From Cognition to the Clinic?. Springer-Verlag, 2011. [bibtex-entry]


  4. Stanislas Dehaene. The Massive Impact of Literacy on the Brain and its Consequences for Education. In Human Neuroplasticity and Education, pages 19--32. A.M Battro, S. Dehaene and W.J. Singer (eds), 2011. [PDF] [bibtex-entry]


  5. Veronique Izard, Pierre Pica, Stanislas Dehaene, Danielle Hinchey, and Elizabeth Spelke. Geometry as a Universal Mental Construction. In Space, Time and Number in the Brain,. Stanislas Dehaene; Elizabeth Brannon (Ed.) (2011) 319-332, 2011. [bibtex-entry]


  6. Manuela Piazza. Neurocognitive Start-Up Tools for Symbolic Number Representations. In Space, Time and Number in the Brain. Searching for the Foundations of Mathematical Thought. Academic Press, 2011. [bibtex-entry]


  7. Mariano Sigman and Stanislas Dehaene. Why does it take time to make a decision? The role of a global workspace in simple decision making. In Oshin Vartanian and David R. Mandel, editors,, pages 11--44. Psychology Press, 2011. [PDF] [bibtex-entry]


Articles in journals
  1. Jessica F. Cantlon, Philippe Pinel, Stanislas Dehaene, and Kevin A. Pelphrey. Cortical representations of symbols, objects, and faces are pruned back during early childhood.. Cereb Cortex, 21(1):191--199, January 2011. [WWW] [PDF]
    Abstract: Regions of human ventral extrastriate visual cortex develop specializations for natural categories (e.g., faces) and cultural artifacts (e.g., words). In adults, category-based specializations manifest as greater neural responses in visual regions of the brain (e.g., fusiform gyrus) to some categories over others. However, few studies have examined how these specializations originate in the brains of children. Moreover, it is as yet unknown whether the development of visual specializations hinges on "increases" in the response to the preferred categories, "decreases" in the responses to nonpreferred categories, or "both." This question is relevant to a long-standing debate concerning whether neural development is driven by building up or pruning back representations. To explore these questions, we measured patterns of visual activity in 4-year-old children for 4 categories (faces, letters, numbers, and shoes) using functional magnetic resonance imaging. We report 2 key findings regarding the development of visual categories in the brain: 1) the categories "faces" and "symbols" doubly dissociate in the fusiform gyrus before children can read and 2) the development of category-specific responses in young children depends on cortical responses to nonpreferred categories that decrease as preferred category knowledge is acquired.
    [bibtex-entry]


  2. Clio P. Coste, Sepideh Sadaghiani, Karl J. Friston, and Andreas Kleinschmidt. Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance.. Cereb Cortex, 21(11):2612--2619, November 2011. [WWW] [PDF]
    Abstract: Recent studies have established a relation between ongoing brain activity fluctuations and intertrial variability in evoked neural responses, perception, and motor performance. Here, we extended these investigations into the domain of cognitive control. Using functional neuroimaging and a sparse event-related design (with long and unpredictable intervals), we measured ongoing activity fluctuations and evoked responses in volunteers performing a Stroop task with color-word interference. Across trials, prestimulus activity of several regions predicted subsequent response speed and across subjects this effect scaled with the Stroop effect size, being significant only in subjects manifesting behavioral interference. These effects occurred only in task relevant as the dorsal anterior cingulate and dorsolateral prefrontal cortex as well as ventral visual areas sensitive to color and visual words. Crucially, in subjects showing a Stroop effect, reaction times were faster when prestimulus activity was higher in task-relevant (color) regions and slower when activity was higher in irrelevant (word form) regions. These findings suggest that intrinsic brain activity fluctuations modulate neural mechanisms underpinning selective voluntary attention and cognitive control. Rephrased in terms of predictive coding models, ongoing activity can hence be considered a proxy of the precision (gain) with which prediction error signals are transmitted upon sensory stimulation.
    [bibtex-entry]


  3. Stanislas Dehaene and Jean-Pierre Changeux. Experimental and theoretical approaches to conscious processing.. Neuron, 70(2):200--227, April 2011. [WWW] [PDF]
    Abstract: Recent experimental studies and theoretical models have begun to address the challenge of establishing a causal link between subjective conscious experience and measurable neuronal activity. The present review focuses on the well-delimited issue of how an external or internal piece of information goes beyond nonconscious processing and gains access to conscious processing, a transition characterized by the existence of a reportable subjective experience. Converging neuroimaging and neurophysiological data, acquired during minimal experimental contrasts between conscious and nonconscious processing, point to objective neural measures of conscious access: late amplification of relevant sensory activity, long-distance cortico-cortical synchronization at beta and gamma frequencies, and "ignition" of a large-scale prefronto-parietal network. We compare these findings to current theoretical models of conscious processing, including the Global Neuronal Workspace (GNW) model according to which conscious access occurs when incoming information is made globally available to multiple brain systems through a network of neurons with long-range axons densely distributed in prefrontal, parieto-temporal, and cingulate cortices. The clinical implications of these results for general anesthesia, coma, vegetative state, and schizophrenia are discussed.
    [bibtex-entry]


  4. Stanislas Dehaene and Laurent Cohen. The unique role of the visual word form area in reading. Trends Cogn Sci, May 2011. [WWW] [PDF]
    Abstract: Reading systematically activates the left lateral occipitotemporal sulcus, at a site known as the visual word form area (VWFA). This site is reproducible across individuals/scripts, attuned to reading-specific processes, and partially selective for written strings relative to other categories such as line drawings. Lesions affecting the VWFA cause pure alexia, a selective deficit in word recognition. These findings must be reconciled with the fact that human genome evolution cannot have been influenced by such a recent and culturally variable activity as reading. Capitalizing on recent functional magnetic resonance imaging experiments, we provide strong corroborating evidence for the hypothesis that reading acquisition partially recycles a cortical territory evolved for object and face recognition, the prior properties of which influenced the form of writing systems.
    [bibtex-entry]


  5. Jessica Dubois, G. Dehaene-Lambertz, J. F. Mangin, D. Le Bihan, P. S. Hüppi, and L. Hertz-Pannier. Développement cérébral du nourrisson et Imagerie par Résonance Magnétique. Neurophysiologie Clinique / Clinical Neurophysiology, 2011. [PDF] [bibtex-entry]


  6. Zhao Fan, Krish Singh, Suresh Muthukumaraswamy, Mariano Sigman, Stanislas Dehaene, and Kimron Shapiro. The cost of serially chaining two cognitive operations.. Psychol Res, August 2011. [WWW] [bibtex-entry]


  7. Frédéric Faugeras, Benjamin Rohaut, Nicolas Weiss, Tristan A. Bekinschtein, Damien Galanaud, Louis Puybasset, Francis Bolgert, Claire Sergent, Laurent Cohen, Stanislas Dehaene, and Lionel Naccache. Probing consciousness with event-related potentials in patients who meet clinical criteria for vegetative state. Neurology, May 2011. [PDF] [bibtex-entry]


  8. Ludovic Ferrand, Marc Brysbaert, Emmanuel Keuleers, Boris New, Patrick Bonin, Alain Meot, Maria Augustinova, and Christophe Pallier. Comparing word processing times in naming, lexical decision, and progressive demasking: evidence from chronolex.. Front Psychol, 2:306, 2011. [WWW] [PDF]
    Abstract: We report performance measures for lexical decision (LD), word naming (NMG), and progressive demasking (PDM) for a large sample of monosyllabic monomorphemic French words (N?=?1,482). We compare the tasks and also examine the impact of word length, word frequency, initial phoneme, orthographic and phonological distance to neighbors, age-of-acquisition, and subjective frequency. Our results show that objective word frequency is by far the most important variable to predict reaction times in LD. For word naming, it is the first phoneme. PDM was more influenced by a semantic variable (word imageability) than LD, but was also affected to a much greater extent by perceptual variables (word length, first phoneme/letters). This may reduce its usefulness as a psycholinguistic word recognition task.
    [bibtex-entry]


  9. H. Glasel, F. Leroy, J. Dubois, L. Hertz-Pannier, J. F. Mangin, and G. Dehaene-Lambertz. A robust cerebral asymmetry in the infant brain: The rightward superior temporal sulcus.. Neuroimage, 58(3):716--723, October 2011. [WWW] [PDF]
    Abstract: In order to understand how genetic mutations might have favored language development in our species, we need a better description of the human brain at the beginning of life. As the linguistic network mainly involves the left perisylvian regions in adults, we used anatomical MRI to study the structural asymmetries of these regions in 14 preverbal infants. Our results show four significant asymmetries. First and foremost, they stress an important but little-known asymmetry: the larger depth of the right superior temporal sulcus (STS) at the base of Heschl's gyrus. Then, we characterized the early forward and upward shift of the posterior end of the right Sylvian fissure, the elongation of the left planum temporale as well as the thickening of the left Heschl's gyrus. The rightward bias of the STS is robust and large, and is not correlated with the leftward asymmetries of the planum and Heschl's gyrus, suggesting that different morphogenetic factors drive these asymmetries. As this sulcus is engaged in multiple high-level functions (e.g. language and theory of mind), and has been spotted as abnormal in several developmental disorders (e.g. schizophrenia, autism), this early rightward asymmetry should be further explored as a target for a genetic evolutionary pressure.
    [bibtex-entry]


  10. G. Hesselmann, G. Flandin, and S. Dehaene. Probing the cortical network underlying the psychological refractory period: A combined EEG-fMRI study. Neuroimage, March 2011. [WWW] [PDF]
    Abstract: Human performance exhibits strong multi-tasking limitations in simple response time tasks. In the psychological refractory period (PRP) paradigm, where two tasks have to be performed in brief succession, central processing of the second task is delayed when the two tasks are performed at short time intervals. Here, we aimed to probe the cortical network underlying this postponement of central processing by simultaneously recording electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data while 12 subjects performed two simple number-comparison tasks. Behavioral data showed a significant slowing of response times to the second target stimulus at short stimulus-onset asynchronies, together with significant correlations between response times to the first and second target stimulus, i.e., the hallmarks of the PRP effect. The analysis of EEG data showed a significant delay of the post-perceptual P3 component evoked by the second target, which was of similar magnitude as the effect on response times. fMRI data revealed an involvement of parietal and prefrontal regions in dual-task processing. The combined analysis of fMRI and EEG data-based on the trial-by-trial variability of the P3-revealed that BOLD signals in two bilateral regions in the inferior parietal lobe and precentral gyrus significantly covaried with P3 related activity. Our results show that combining neuroimaging methods of high spatial and temporal resolutions can help to identify cortical regions underlying the central bottleneck of information processing, and strengthen the conclusion that fronto-parietal cortical regions participate in a distributed "global neuronal workspace" system that underlies the generation of the P3 component and may be one of the key cerebral underpinnings of the PRP bottleneck.
    [bibtex-entry]


  11. Véronique Izard, Pierre Pica, Elizabeth S. Spelke, and Stanislas Dehaenee. Flexible intuitions of Euclidean geometry in an Amazonian indigene group.. Proc Natl Acad Sci U S A, May 2011. [WWW] [PDF]
    Abstract: Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ?180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics.
    [bibtex-entry]


  12. Juan E. Kamienkowski, Harold Pashler, Stanislas Dehaene, and Mariano Sigman. Effects of practice on task architecture: Combined evidence from interference experiments and random-walk models of decision making. Cognition, February 2011. [WWW] [PDF]
    Abstract: Does extensive practice reduce or eliminate central interference in dual-task processing? We explored the reorganization of task architecture with practice by combining interference analysis (delays in dual-task experiment) and random-walk models of decision making (measuring the decision and non-decision contributions to RT). The main delay observed in the Psychologically Refractory Period at short stimulus onset asynchronies (SOA) values was largely unaffected by training. However, the range of SOAs over which this interference regime held diminished with learning. This was consistent with an overall shift observed in single-task performance from a highly variable decision time to a reliable (non-decision time) contribution to response time. Executive components involved in coordinating dual-task performance decreased (and became more stable) after extensive practice. The results suggest that extensive practice reduces the duration of central decision stages, but that the qualitative property of central seriality remains a structural invariant.
    [bibtex-entry]


  13. Jean-Rémi King, Tristan Bekinschtein, and Stanislas Dehaene. Comment on preserved feedforward but impaired top-down processes in the vegetative state.. Science, 334(6060):1203, December 2011. [WWW] [PDF]
    Abstract: Boly et al. (Reports, 13 May 2011, p. 858) investigated cortical connectivity patterns in patients suffering from a disorder of consciousness, using electroencephalography in an auditory oddball paradigm. We point to several inconsistencies in their data, including a failure to replicate the classical mismatch negativity. Data quality, source reconstruction, and statistics would need to be improved to support their conclusions.
    [bibtex-entry]


  14. Andreas Kleinschmidt. [Recovering the contents of consciousness in the noise of neuroimaging.]. Med Sci (Paris), 27(2):199--203, February 2011. [WWW] [PDF]
    Abstract: A classical approach in the neurosciences is to study neural activity modulations induced by a stimulus, a task, etc. This approach is anchored in a behaviourist culture and has proven informative within certain limits. The present paper shows that this approach nonetheless neglects aspects of neural activity that can also contribute important information about brain function. Over the last years, the contributions with the strongest impact on progress in cognitive neuroscience have used other approaches that exploit a spatial or temporal variability of neural activity that standard analyses consider as noise and hence do not take into account. By applying multi-variate analyses, spatial variability of evoked responses has permitted decoding sensory and cognitive representations in the brain. Temporal variability of ongoing neural activity influences how stimuli are perceived trial by trial as well as the associated evoked responses which points out the importance of spontaneous brain activity for cognition. We describe these two kind of approaches based on experiments using functional neuroimaging but the conclusions generalize to other techniques applied in the neurosciences.
    [bibtex-entry]


  15. Andreas Kleinschmidt and Elena Rusconi. Gerstmann Meets Geschwind: A Crossing (or Kissing) Variant of a Subcortical Disconnection Syndrome?. Neuroscientist, June 2011. [WWW]
    Abstract: That disconnection causes clinical symptoms is a very influential concept in behavioral neurology. Criteria for subcortical disconnection usually are symptoms that are distinct from those following cortical lesions and damage to a single, long-range fiber tract. Yet, a recent study combining functional magnetic resonance imaging and fiber tracking concluded that a focal lesion in left parietal white matter provides the only tenable explanation for pure Gerstmann's syndrome, an enigmatic tetrad of acalculia, agraphia, finger agnosia, and left-right disorientation. Such a lesion would affect not only a single fiber tract but crossing or "kissing" of different fiber tracts and hence disconnect separate cortical networks. As fiber crossing is prominent in the cerebral white matter, the authors propose an extension to the subcortical disconnection framework that opens the door to ascribing a more diversified clinical phenomenology to white matter damage and ensuing disconnection than has been the case so far.
    [bibtex-entry]


  16. Floris P. de Lange, Simon van Gaal, Victor A. F. Lamme,