BACK TO INDEX

Publications of year 2016
Theses
  1. Claire Kabdebon. Neurophysiologie de l apprentissage de règles abstraites durant la première année de vie. PhD Thesis, Paris VI, 2016. [PDF] [bibtex-entry]


Book chapters
  1. E Eger. Neuronal foundations of human numerical representations. In Wim Fias Marinella Cappelletti, editor,The Mathematical Brain Across the Lifespan, volume 227, pages 1--27. PBR, UK: Elsevier, 2016. [bibtex-entry]


  2. Christophe Pallier and Murielle Fabre. Bases cérébrales des processus syntaxiques. In Serge Pinto and Marc Sato, editors,Traité de Neurolinguistique, pages 219--228. de Boeck, 2016. [bibtex-entry]


Articles in journals
  1. Marie Amalric and Stanislas Dehaene. Origins of the brain networks for advanced mathematics in expert mathematicians.. Proc Natl Acad Sci U S A, April 2016. [WWW] [PDF]
    Abstract: The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.
    [bibtex-entry]


  2. M. A. Assaneo, M. F., Sitt, J., Varoquaux, G., Sigman, M., Cohen, L., & Trevisan. Exploring the anatomical encoding of voice with a mathematical model of the vocal system. NeuroImage, 141:31--9, 2016. [bibtex-entry]


  3. Valentina Borghesani, Fabian Pedregosa, Marco Buiatti, Alexis Amadon, Evelyn Eger, and Manuela Piazza. Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding.. Neuroimage, 143:128--140, September 2016. [WWW] [PDF]
    Abstract: The meaning of words referring to concrete items is thought of as a multidimensional representation that includes both perceptual (e.g., average size, prototypical color) and conceptual (e.g., taxonomic class) dimensions. Are these different dimensions coded in different brain regions? In healthy human subjects, we tested the presence of a mapping between the implied real object size (a perceptual dimension) and the taxonomic categories at different levels of specificity (conceptual dimensions) of a series of words, and the patterns of brain activity recorded with functional magnetic resonance imaging in six areas along the ventral occipito-temporal cortical path. Combining multivariate pattern classification and representational similarity analysis, we found that the real object size implied by a word appears to be primarily encoded in early visual regions, while the taxonomic category and sub-categorical cluster in more anterior temporal regions. This anteroposterior gradient of information content indicates that different areas along the ventral stream encode complementary dimensions of the semantic space.
    [bibtex-entry]


  4. Perrine Brusini, Ghislaine Dehaene-Lambertz, Michel Dutat, François Goffinet, and Anne Christophe. ERP evidence for on-line syntactic computations in 2-year-olds.. Dev Cogn Neurosci, 19:164--173, March 2016. [WWW] [PDF]
    Abstract: Syntax allows human beings to build an infinite number of sentences from a finite number of words. How this unique, productive power of human language unfolds over the course of language development is still hotly debated. When they listen to sentences comprising newly-learned words, do children generalize from their knowledge of the legal combinations of word categories or do they instead rely on strings of words stored in memory to detect syntactic errors? Using novel words taught in the lab, we recorded Evoked Response Potentials (ERPs) in two-year-olds and adults listening to grammatical and ungrammatical sentences containing syntactic contexts that had not been used during training. In toddlers, the ungrammatical use of words, even when they have been just learned, induced an early left anterior negativity (surfacing 100-400ms after target word onset) followed by a late posterior positivity (surfacing 700-900ms after target word onset) that was not observed in grammatical sentences. This late effect was remarkably similar to the P600 displayed by adults, suggesting that toddlers and adults perform similar syntactic computations. Our results thus show that toddlers build on-line expectations regarding the syntactic category of upcoming words in a sentence.
    [bibtex-entry]


  5. Perrine Brusini, Ghislaine Dehaene-Lambertz, Marieke van Heugten, Alex de Carvalho, François Goffinet, Anne-Caroline Fiévet, and Anne Christophe. Ambiguous function words do not prevent 18-month-olds from building accurate syntactic category expectations: An ERP study.. Neuropsychologia, August 2016. [WWW] [PDF]
    Abstract: To comprehend language, listeners need to encode the relationship between words within sentences. This entails categorizing words into their appropriate word classes. Function words, consistently preceding words from specific categories (e.g., the ballNOUN, I speakVERB), provide invaluable information for this task, and children's sensitivity to such adjacent relationships develops early on in life. However, neighboring words are not the sole source of information regarding an item's word class. Here we examine whether young children also take into account preceding sentence context online during syntactic categorization. To address this question, we use the ambiguous French function word la which, depending on sentence context, can either be used as determiner (the, preceding nouns) or as object clitic (it, preceding verbs). French-learning 18-month-olds' evoked potentials (ERPs) were recorded while they listened to sentences featuring this ambiguous function word followed by either a noun or a verb (thus yielding a locally felicitous co-occurrence of la + noun or la + verb). Crucially, preceding sentence context rendered the sentence either grammatical or ungrammatical. Ungrammatical sentences elicited a late positivity (resembling a P600) that was not observed for grammatical sentences. Toddlers' analysis of the unfolding sentence was thus not limited to local co-occurrences, but rather took into account non-adjacent sentence context. These findings suggest that by 18 months of age, online word categorization is already surprisingly robust. This could be greatly beneficial for the acquisition of novel words.
    [bibtex-entry]


  6. Lucie Charles, Raphaël Gaillard, Isabelle Amado, Marie-Odile Krebs, Narjes Bendjemaa, and Stanislas Dehaene. Conscious and unconscious performance monitoring: Evidence from patients with schizophrenia.. Neuroimage, September 2016. [WWW]
    Abstract: The ability to detect our own errors is an essential component of action monitoring. Using a masking paradigm in normal adults, we recently discovered that some error-detection processes can proceed without awareness, while other markers of performance monitoring such as the Error-Related Negativity (ERN) are tightly linked to conscious perception. Interestingly, research on cognitive deficit in schizophrenia has shown that the ERN is altered in these patients. In the present study, we therefore tested if the error detection impairment in schizophrenia is specific to conscious perception or is also found under non-conscious conditions, probing whether these performance monitoring processes are truly distinct. Thirteen patients with schizophrenia and thirteen age-matched healthy control subjects performed a speeded number comparison task on masked stimuli while EEG and MEG signals were recorded. Conscious perception and error-detection were assessed on a trial-by-trial basis using subjective reports of visibility and confidence. We found that patients with schizophrenia presented altered cingulate error-detection responses in conscious trials, as reflected by a decreased ERN. By contrast, on unconscious trials, both controls and schizophrenia patients performed above chance in evaluating the likelihood of having made an error. This dissociation confirms the existence of two distinct performance monitoring systems, and suggests that conscious metacognition in schizophrenia is specifically altered while non-conscious performance monitoring remains preserved.
    [bibtex-entry]


  7. Laurent Cohen, Stanislas Dehaene, Samantha McCormick, Szonya Durant, and Johannes M. Zanker. Brain mechanisms of recovery from pure alexia:a single case study with multiple longitudinal scans.. Neuropsychologia, July 2016. [WWW]
    Abstract: Pure alexia is an acquired reading disorder, typically due to a left occipito-temporal lesion affecting the Visual Word Form Area (VWFA). It is unclear whether the VWFA acts as a unique bottleneck for reading, or whether alternative routes are available for recovery. Here, we address this issue through the single-case longitudinal study of a neuroscientist who experienced pure alexia and participated in 17 behavioral, 9 anatomical, and 9 fMRI assessment sessions over a period of two years. The origin of the impairment was assigned to a small left fusiform lesion, accompanied by a loss of VWFA responsivity and by the degeneracy of the associated white matter pathways. fMRI experiments allowed us to image longitudinally the visual perception of words, as compared to other classes of stimuli, as well as the mechanisms of letter-by-letter reading. The progressive improvement of reading was not associated with the re-emergence of a new area selective to words, but with increasing responses in spared occipital cortex posterior to the lesion and in contralateral right occipital cortex. Those regions showed a non-specific increase of activations over time and an increase in functional correlation with distant language areas. Those results confirm the existence of an alternative occipital route for reading, bypassing the VWFA, but they also point to its key limitation: the patient remained a slow letter-by-letter reader, thus supporting the critical importance of the VWFA for the efficient parallel recognition of written words.
    [bibtex-entry]


  8. Rhodri Cusack, Gareth Ball, Christopher D. Smyser, and Ghislaine Dehaene-Lambertz. A neural window on the emergence of cognition.. Ann N Y Acad Sci, 1369(1):7--23, April 2016. [WWW] [PDF]
    Abstract: Can babies think? A fundamental challenge for cognitive neuroscience is to answer when brain functions begin and in what form they first emerge. This is challenging with behavioral tasks, as it is difficult to communicate to an infant what a task requires, and motor function is impoverished, making execution of the appropriate response difficult. To circumvent these requirements, neuroimaging provides a complementary route for assessing the emergence of cognition. Starting from the prerequisites of cognitive function and building stepwise, we review when the cortex forms and when it becomes gyrated and regionally differentiated. We then discuss when white matter tracts mature and when functional brain networks arise. Finally, we assess the responsiveness of these brain systems to external events. We find that many cognitive systems are observed surprisingly early. Some emerge before birth, with activations in the frontal lobe even in the first months of gestation. These discoveries are changing our understanding of the nature of cognitive networks and their early function, transforming cognitive neuroscience, and opening new windows for education and investigation. Infant neuroimaging also has tremendous clinical potential, for both detecting atypical development and facilitating earlier intervention. Finally, we discuss the key technical developments that are enabling this nascent field.
    [bibtex-entry]


  9. Stanislas Dehaene and Ghislaine Dehaene-Lambertz. Is the brain prewired for letters?. Nature Neuroscience, 19(9), 2016. [PDF] [bibtex-entry]


  10. Dror Dotan and Stanislas Dehaene. On the Origins of Logarithmic Number-to-Position Mapping. Psychological Review, 123(6):637--666, 2016. [PDF] [bibtex-entry]


  11. Jessica Dubois, Parvaneh Adibpour, Cyril Poupon, Lucie Hertz-Pannier, and Ghislaine Dehaene-Lambertz. MRI and M/EEG studies of the White Matter Development in Human Fetuses and Infants: Review and Opinion. Brain Plasticity, 2(1):49--69, December 2016. [WWW] [PDF] [bibtex-entry]


  12. J Dubois, D Germanaud, H Angleys, F Leroy, C Fischer, J Lebenberg, F Lazeyras, G Dehaene-Lambertz, L Hertz-Pannier, JF Mangin, PS Hüppi, and J. Lefèvre. Exploring the successive waves of cortical folding in the developing brain using MRI and spectral analysis of gyrification. IEEE ISBI, 261-264, DOI: 10.1109/ISBI.2016.7493259, 2016. [PDF] [bibtex-entry]


  13. Jessica Dubois, Cyril Poupon, Bertrand Thirion, Hina Simonnet, Sofya Kulikova, François Leroy, Lucie Hertz-Pannier, and Ghislaine Dehaene-Lambertz. Exploring the Early Organization and Maturation of Linguistic Pathways in the Human Infant Brain.. Cereb Cortex, 26(5):2283--2298, April 2016. [WWW] [PDF]
    Abstract: Linguistic processing is based on a close collaboration between temporal and frontal regions connected by two pathways: the "dorsal" and "ventral pathways" (assumed to support phonological and semantic processing, respectively, in adults). We investigated here the development of these pathways at the onset of language acquisition, during the first post-natal weeks, using cross-sectional diffusion imaging in 21 healthy infants (6-22 weeks of age) and 17 young adults. We compared the bundle organization and microstructure at these two ages using tractography and original clustering analyses of diffusion tensor imaging parameters. We observed structural similarities between both groups, especially concerning the dorsal/ventral pathway segregation and the arcuate fasciculus asymmetry. We further highlighted the developmental tempos of the linguistic bundles: The ventral pathway maturation was more advanced than the dorsal pathway maturation, but the latter catches up during the first post-natal months. Its fast development during this period might relate to the learning of speech cross-modal representations and to the first combinatorial analyses of the speech input.
    [bibtex-entry]


  14. E. Eger. Neuronal foundations of human numerical representations.. Prog Brain Res, 227:1--27, 2016. [WWW] [PDF]
    Abstract: The human species has developed complex mathematical skills which likely emerge from a combination of multiple foundational abilities. One of them seems to be a preverbal capacity to extract and manipulate the numerosity of sets of objects which is shared with other species and in humans is thought to be integrated with symbolic knowledge to result in a more abstract representation of numerical concepts. For what concerns the functional neuroanatomy of this capacity, neuropsychology and functional imaging have localized key substrates of numerical processing in parietal and frontal cortex. However, traditional fMRI mapping relying on a simple subtraction approach to compare numerical and nonnumerical conditions is limited to tackle with sufficient precision and detail the issue of the underlying code for number, a question which more easily lends itself to investigation by methods with higher spatial resolution, such as neurophysiology. In recent years, progress has been made through the introduction of approaches sensitive to within-category discrimination in combination with fMRI (adaptation and multivariate pattern recognition), and the present review summarizes what these have revealed so far about the neural coding of individual numbers in the human brain, the format of these representations and parallels between human and monkey neurophysiology findings.
    [bibtex-entry]


  15. Baptiste Gauthier and Virginie van Wassenhove. Cognitive mapping in mental time travel and mental space navigation.. Cognition, 154:55--68, May 2016. [WWW] [PDF]
    Abstract: The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 \& 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion.
    [bibtex-entry]


  16. B Gauthier and Virginie van Wassenhove. Time is not space: core computations and domain-specific networks for mental travels. The Journal of Neuroscience, 36(47):11891--11903, 2016. [bibtex-entry]


  17. A. Gomez, M Piazza, A. Jobert, G Dehaene-Lambertz, and C. Huron. Numerical abilities of school-age children with Developmental Coordination Disorder (DCD): A behavioral and eye-tracking study. Human Movement Science, 2016. [PDF] [bibtex-entry]


  18. KJ Kersbergen, F Leroy, I Isgum, F Groenendaal, LS de Vries, NHP Claessens, IC van Haastert, P Moeskops, C Fischer, JF Mangin, MA Viergever, J Dubois, and MJNL. Benders. Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants. Neuroimage, 142:301--310, 2016. [PDF] [bibtex-entry]


  19. J-R. King, Niccolo Pescetelli, and Stanislas Dehaene. Brain Mechanisms Underlying the Brief Maintenance of Seen and Unseen Sensory Information. Neuron, 92(5):1122--34, December 2016. [PDF] [bibtex-entry]


  20. Tadeusz W. Kononowicz and Trevor B. Penney. The contingent negative variation (CNV): timing isn?t everything. Curr Opin Behav Sci, 2016. [PDF] [bibtex-entry]


  21. Tadeusz W. Kononowicz and Virginie van Wassenhove. In Search of Oscillatory Traces of the Internal Clock.. Front Psychol, 7:224, 2016. [WWW] [PDF] [bibtex-entry]


  22. A. Kosem, A. Basirat, L. Azizi, and V. van Wassenhove. High-frequency neural activity predicts word parsing in ambiguous speech streams.. J Neurophysiol, 116(6):2497--2512, 2016. [bibtex-entry]


  23. S Kulikova, L Hertz-Pannier, G Dehaene-Lambertz, C Poupon, and J Dubois. A new strategy for fast MRI-based quantification of the myelin water fraction: application to brain imaging in infants.. Plos One, 2016. [PDF] [bibtex-entry]


  24. Anne Kösem, Anahita Basirat, Leila Azizi, and Virginie van Wassenhove. High frequency neural activity predicts word parsing in ambiguous speech streams.. J Neurophysiol, pp jn.00074.2016, September 2016. [WWW]
    Abstract: During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g. syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses propose that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguistic representations (top-down linguistic parsing) is unknown. In this magnetoencephalography study, we contrasted acoustic and linguistic parsing using bistable speech sequences. While listening to the speech sequences, participants were asked to maintain one of the two possible speech percepts through volitional control. We predicted that the tracking of speech dynamics by neural oscillations would not only follow the acoustic properties but also shift in time according to the participant's conscious speech percept. Our results show that the latency of high-frequency activity (specifically, beta and gamma bands) varied as a function of the perceptual report. In contrast, the phase of low-frequency oscillations was not strongly affected by top-down control. While changes in low-frequency neural oscillations were compatible with the encoding of pre-lexical segmentation cues, high-frequency activity specifically informed on an individual's conscious speech percept.
    [bibtex-entry]


  25. Anne Kösem and Virginie van Wassenhove. Distinct contributions of low and high frequency neural oscillations to speech comprehension. Language, Cognition and Language, 2016. [